Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystallography at subatomic resolution permits the observation and measurement of the non-spherical character of the atomic electron density. Charge density studies are being performed on molecules of increasing size. The MOPRO least-squares refinement software has thus been developed, by extensive modifications of the program MOLLY, for protein and supramolecular chemistry applications. The computation times are long because of the large number of reflections and the complexity of the multipolar model of the atomic electron density; the structure factor and derivative calculations have thus been parallelized. Stereochemical and dynamical restraints as well as the conjugate gradient algorithm have been implemented. A large number of the normal matrix off-diagonal terms turn out to be very small and the block diagonal approximation is thus particularly efficient in the case of large structures at very high resolution.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds