Download citation
Download citation
link to html
Detailed considerations of how to construct inclined-incidence hard X-ray resonators are presented. Owing to the symmetry of the crystals used, the Bragg back reflection usually employed in normal-incidence two- and multi-plate resonators to reflect the X-ray beam is often accompanied by unavoidable multiple-beam diffraction, and thus the reflectivity and cavity finesse are quite low. In contrast, crystal-based Fabry–Perot (FP) resonators at inclined incidence utilize multiple-beam diffraction to excite the back reflection inside the resonator to generate FP resonance with high efficiency, while avoiding the incident beam suffering from crystal absorption. The useful characteristics of inclined-incidence resonators are derived from numerical calculations based on the inclined-incidence diffraction geometry and the dynamical theory. Experimental results with Laue inclined incidence are in accordance with the simulation. The sub-millielectronvolt energy resolution and ultra-high efficiency of the transmission spectrum of the proposed resonators are also described.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds