Download citation
Download citation
link to html
To accurately characterize cirrhosis, knowledge of the 3D fibrous structures is essential. Histology is the gold standard in cirrhosis screening, but it mainly provides structural information in 2D planes and destroys the 3D samples in the process. The aim of this study was to evaluate the potential of X-ray phase-contrast computed tomography (PCCT) with iodine staining for the 3D nondestructive visualization of internal structural details in entire cirrhotic livers with histopathologic correlation. In this study, cirrhotic livers induced by carbon tetrachloride (CCl4) in rats were imaged via PCCT and then histopathologically processed. Characteristics of the cirrhosis, i.e. abnormal nodules surrounded by annular fibrosis, were established and a 3D reconstruction of these structures was also performed via PCCT. Fibrosis area, septal width and nodular size were measured and the correlation for these quantitative measurements between PCCT and histopathologic findings was analyzed. The results showed that fibrous bands, small nodules and angio-architecture in cirrhosis were clearly presented in the PCCT images, with histopathologic findings as standard reference. In comparison with histopathology, PCCT was associated with a very close value for fibrosis area, septal width and nodular size. The quantitative measurements showed a strong correlation between PCCT and histopathology. Additionally, the 3D structures of fibrous bands and microvasculature were presented simultaneously. PCCT provides excellent results in the assessment of cirrhosis characteristics and 3D presentation of these feature structures compared with histopathology. Thus, the technique may serve as an adjunct nondestructive 3D modality for cirrhosis characterization.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600577519006064/ve5102sup1.pdf
Sections S1 to S4 and Figs. S1 to S4.


Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds