Download citation
Download citation
link to html
ESX-1-secreted protein regulator (EspR; Rv3849) is a key regulator in Mycobacterium tuberculosis that delivers bacterial proteins into the host cell during infection. EspR binds directly to the Rv3616c-Rv3614c promoter and activates transcription and secretes itself from the bacterial cell by the ESX-1 system. The three-dimensional structure of EspR will aid in understanding the mechanisms by which it binds to the Rv3616c-Rv3614c promoter and is involved in transcriptional activation. This study will significantly aid in the development of EspR-based therapeutics against M. tuberculosis. The full-length EspR gene from M. tuberculosis (H37Rv strain) was cloned and overexpressed as a soluble protein in Escherichia coli. The protein was purified by affinity chromatography using His-tagged protein followed by size-exclusion chromatography. EspR was crystallized using polyethylene glycol 3350 as precipitant. The crystals diffracted to 3.2 Å resolution using synchrotron radiation of wavelength 0.97625 Å. The crystal belonged to space group P3121 and contained three monomers in the asymmetric unit. Native and heavy-atom-derivatized data sets were collected from EspR crystals for use in ab initio structure-solution techniques.

Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds