Download citation
Download citation
link to html
Single crystals of SmAl3(BO3)4 were synthesized by the group growth on seeds method. The crystal structure was solved using a single-crystal experiment and the purity of the bulk material was proved by the Rietveld method. This borate crystallizes in the monoclinic C2/c space group with unit-cell parameters a = 7.2386 (3), b = 9.3412 (5), c = 11.1013 (4) Å and β = 103.2240 (10)°. IR and Raman spectroscopic analyses confirmed the monoclinic structure of SmAl3(BO3)4. Under 532.1 nm excitation, luminescence spectra exhibit bands assignable to the transitions from 4G5/2 to 6H5/2, 6H7/2, 6H9/2 and 6H11/2. The similarity of the luminescence spectra of the trigonal and monoclinic poly­morphs is explained by the minor role of Sm—O bond distortion and the primary role of rotational distortion of SmO6 octa­hedra. The smaller covalency of the Sm—O bond in alumoborates is deduced in comparison with galloborates. Calorimetric measurements did not reveal high-temperature structural phase transitions up to a temperature of 720 K.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520620008781/um5043sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620008781/um5043Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520620008781/um5043sup3.pdf
Supporting Tables and Figures

CCDC reference: 1995724

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2009).

(I) top
Crystal data top
Al3B4O12SmF(000) = 868
Mr = 466.54Dx = 4.241 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.2386 (3) ÅCell parameters from 7882 reflections
b = 9.3412 (3) Åθ = 3.6–39.0°
c = 11.1013 (4) ŵ = 8.49 mm1
β = 103.224 (1)°T = 296 K
V = 730.73 (5) Å3Block, colorless
Z = 40.4 × 0.4 × 0.2 mm
Data collection top
`SMART
diffractometer
2018 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 39.0°, θmin = 3.6°
Tmin = 0.578, Tmax = 0.745h = 1212
7882 measured reflectionsk = 1516
2025 independent reflectionsl = 1819
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0126P)2 + 8.0294P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.026(Δ/σ)max = 0.001
wR(F2) = 0.063Δρmax = 4.52 e Å3
S = 1.20Δρmin = 3.06 e Å3
2025 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
93 parametersExtinction coefficient: 0.170 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm0.50000.46392 (2)0.75000.00459 (9)
Al10.44437 (12)0.25008 (9)0.47154 (8)0.00380 (14)
Al20.50000.08861 (12)0.75000.00388 (18)
B10.7512 (4)0.4709 (3)0.5046 (3)0.0043 (4)
B20.6929 (4)0.1864 (3)0.7220 (3)0.0046 (4)
O10.9037 (3)0.3968 (2)0.57387 (18)0.0048 (3)
O20.5944 (3)0.4023 (2)0.43632 (18)0.0055 (3)
O30.8398 (3)0.2634 (2)0.79484 (18)0.0050 (3)
O40.7499 (3)0.6195 (2)0.4973 (2)0.0059 (3)
O50.5605 (3)0.2595 (2)0.63779 (18)0.0058 (3)
O60.6883 (3)0.0423 (2)0.7411 (2)0.0059 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm0.00398 (10)0.00505 (11)0.00505 (10)0.0000.00164 (5)0.000
Al10.0027 (3)0.0049 (3)0.0039 (3)0.0002 (2)0.0011 (2)0.0001 (2)
Al20.0034 (4)0.0037 (4)0.0048 (4)0.0000.0014 (3)0.000
B10.0038 (10)0.0045 (10)0.0046 (10)0.0005 (7)0.0014 (8)0.0003 (7)
B20.0042 (9)0.0044 (9)0.0049 (9)0.0012 (7)0.0005 (7)0.0002 (7)
O10.0036 (6)0.0058 (7)0.0044 (6)0.0016 (5)0.0000 (5)0.0004 (5)
O20.0037 (6)0.0059 (7)0.0064 (7)0.0018 (5)0.0002 (5)0.0009 (5)
O30.0039 (6)0.0066 (7)0.0042 (6)0.0027 (5)0.0001 (5)0.0005 (5)
O40.0045 (7)0.0053 (7)0.0090 (7)0.0001 (5)0.0037 (5)0.0001 (6)
O50.0047 (7)0.0069 (7)0.0048 (7)0.0015 (5)0.0008 (5)0.0003 (5)
O60.0051 (7)0.0044 (7)0.0089 (8)0.0014 (5)0.0030 (6)0.0005 (5)
Geometric parameters (Å, º) top
Sm—O6i2.353 (2)Al2—O1x1.9245 (19)
Sm—O6ii2.353 (2)Al2—O3vii1.941 (2)
Sm—O5iii2.374 (2)Al2—O3x1.941 (2)
Sm—O52.374 (2)Al2—Al1ix2.9898 (10)
Sm—O2iv2.379 (2)Al2—Al1xi2.9898 (10)
Sm—O2v2.379 (2)B1—O21.371 (4)
Sm—B2iii2.994 (3)B1—O11.378 (3)
Sm—B22.994 (3)B1—O41.391 (3)
Sm—B2i3.007 (3)B1—Smv3.052 (3)
Sm—B2ii3.007 (3)B2—O51.360 (3)
Sm—B1iv3.052 (3)B2—O61.364 (3)
Sm—B1v3.052 (3)B2—O31.382 (3)
Al1—O51.847 (2)B2—Smxii3.007 (3)
Al1—O21.884 (2)O1—Al1vi1.898 (2)
Al1—O1vi1.898 (2)O1—Al2xiii1.9245 (19)
Al1—O4vii1.932 (2)O2—Smv2.379 (2)
Al1—O3viii1.938 (2)O3—Al1xiv1.938 (2)
Al1—O4v1.951 (2)O3—Al2xiii1.941 (2)
Al1—Al2ix2.9898 (10)O4—Al1xiii1.932 (2)
Al2—O61.851 (2)O4—Al1v1.951 (2)
Al2—O6iii1.851 (2)O6—Smxii2.353 (2)
Al2—O1vii1.9245 (19)
O6i—Sm—O6ii143.72 (9)O4vii—Al1—O3viii88.84 (9)
O6i—Sm—O5iii121.22 (7)O5—Al1—O4v88.54 (9)
O6ii—Sm—O5iii88.98 (7)O2—Al1—O4v92.22 (9)
O6i—Sm—O588.98 (7)O1vi—Al1—O4v169.77 (10)
O6ii—Sm—O5121.22 (7)O4vii—Al1—O4v77.81 (10)
O5iii—Sm—O572.96 (10)O3viii—Al1—O4v95.14 (9)
O6i—Sm—O2iv73.61 (7)O5—Al1—Al2ix136.89 (7)
O6ii—Sm—O2iv87.43 (7)O2—Al1—Al2ix91.01 (7)
O5iii—Sm—O2iv90.97 (7)O1vi—Al1—Al2ix38.86 (6)
O5—Sm—O2iv145.86 (7)O4vii—Al1—Al2ix92.46 (7)
O6i—Sm—O2v87.43 (7)O3viii—Al1—Al2ix39.62 (6)
O6ii—Sm—O2v73.61 (7)O4v—Al1—Al2ix134.37 (7)
O5iii—Sm—O2v145.86 (7)O6—Al2—O6iii97.26 (14)
O5—Sm—O2v90.97 (7)O6—Al2—O1vii95.30 (9)
O2iv—Sm—O2v116.64 (10)O6iii—Al2—O1vii90.06 (9)
O6i—Sm—B2iii136.94 (7)O6—Al2—O1x90.06 (9)
O6ii—Sm—B2iii78.96 (7)O6iii—Al2—O1x95.30 (9)
O5iii—Sm—B2iii26.24 (7)O1vii—Al2—O1x171.89 (14)
O5—Sm—B2iii60.30 (7)O6—Al2—O3vii167.13 (9)
O2iv—Sm—B2iii114.36 (7)O6iii—Al2—O3vii88.09 (9)
O2v—Sm—B2iii119.80 (7)O1vii—Al2—O3vii96.39 (9)
O6i—Sm—B278.96 (7)O1x—Al2—O3vii77.76 (8)
O6ii—Sm—B2136.94 (7)O6—Al2—O3x88.09 (9)
O5iii—Sm—B260.31 (7)O6iii—Al2—O3x167.13 (9)
O5—Sm—B226.24 (7)O1vii—Al2—O3x77.76 (8)
O2iv—Sm—B2119.80 (7)O1x—Al2—O3x96.39 (9)
O2v—Sm—B2114.36 (7)O3vii—Al2—O3x89.15 (13)
B2iii—Sm—B260.04 (11)O6—Al2—Al1ix92.86 (7)
O6i—Sm—B2i26.00 (7)O6iii—Al2—Al1ix128.09 (7)
O6ii—Sm—B2i117.94 (7)O1vii—Al2—Al1ix38.22 (6)
O5iii—Sm—B2i136.23 (7)O1x—Al2—Al1ix135.59 (7)
O5—Sm—B2i112.91 (7)O3vii—Al2—Al1ix93.00 (7)
O2iv—Sm—B2i59.24 (7)O3x—Al2—Al1ix39.55 (6)
O2v—Sm—B2i77.61 (7)O6—Al2—Al1xi128.09 (7)
B2iii—Sm—B2i159.87 (10)O6iii—Al2—Al1xi92.86 (7)
B2—Sm—B2i104.943 (18)O1vii—Al2—Al1xi135.59 (7)
O6i—Sm—B2ii117.94 (7)O1x—Al2—Al1xi38.22 (6)
O6ii—Sm—B2ii26.00 (7)O3vii—Al2—Al1xi39.55 (6)
O5iii—Sm—B2ii112.90 (7)O3x—Al2—Al1xi93.00 (7)
O5—Sm—B2ii136.23 (7)Al1ix—Al2—Al1xi119.40 (5)
O2iv—Sm—B2ii77.61 (7)O2—B1—O1122.0 (2)
O2v—Sm—B2ii59.24 (7)O2—B1—O4116.1 (2)
B2iii—Sm—B2ii104.943 (18)O1—B1—O4121.8 (2)
B2—Sm—B2ii159.87 (10)O2—B1—Smv48.60 (13)
B2i—Sm—B2ii92.56 (10)O1—B1—Smv148.06 (18)
O6i—Sm—B1iv62.37 (8)O4—B1—Smv75.65 (14)
O6ii—Sm—B1iv109.85 (8)O5—B2—O6124.3 (2)
O5iii—Sm—B1iv79.46 (7)O5—B2—O3117.9 (2)
O5—Sm—B1iv120.26 (7)O6—B2—O3117.7 (2)
O2iv—Sm—B1iv25.61 (7)O5—B2—Sm50.53 (13)
O2v—Sm—B1iv133.79 (7)O6—B2—Sm144.07 (19)
B2iii—Sm—B1iv105.66 (7)O3—B2—Sm78.67 (15)
B2—Sm—B1iv94.34 (7)O5—B2—Smxii143.75 (19)
B2i—Sm—B1iv59.76 (7)O6—B2—Smxii49.14 (13)
B2ii—Sm—B1iv103.16 (7)O3—B2—Smxii81.20 (16)
O6i—Sm—B1v109.85 (8)Sm—B2—Smxii159.87 (10)
O6ii—Sm—B1v62.37 (8)B1—O1—Al1vi130.79 (17)
O5iii—Sm—B1v120.26 (7)B1—O1—Al2xiii126.12 (17)
O5—Sm—B1v79.46 (7)Al1vi—O1—Al2xiii102.93 (9)
O2iv—Sm—B1v133.79 (7)B1—O2—Al1132.98 (18)
O2v—Sm—B1v25.61 (7)B1—O2—Smv105.79 (16)
B2iii—Sm—B1v94.34 (7)Al1—O2—Smv120.82 (9)
B2—Sm—B1v105.66 (7)B2—O3—Al1xiv128.95 (18)
B2i—Sm—B1v103.16 (7)B2—O3—Al2xiii130.22 (18)
B2ii—Sm—B1v59.76 (7)Al1xiv—O3—Al2xiii100.83 (9)
B1iv—Sm—B1v156.97 (10)B1—O4—Al1xiii130.04 (17)
O5—Al1—O291.09 (10)B1—O4—Al1v127.50 (16)
O5—Al1—O1vi98.12 (9)Al1xiii—O4—Al1v102.19 (10)
O2—Al1—O1vi95.39 (9)B2—O5—Al1138.67 (18)
O5—Al1—O4vii93.61 (10)B2—O5—Sm103.23 (16)
O2—Al1—O4vii168.85 (10)Al1—O5—Sm117.80 (10)
O1vi—Al1—O4vii93.95 (9)B2—O6—Al2134.82 (19)
O5—Al1—O3viii175.94 (10)B2—O6—Smxii104.86 (17)
O2—Al1—O3viii87.08 (9)Al2—O6—Smxii120.19 (10)
O1vi—Al1—O3viii78.47 (9)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z; (iii) x+1, y, z+3/2; (iv) x, y+1, z+1/2; (v) x+1, y+1, z+1; (vi) x+3/2, y+1/2, z+1; (vii) x1/2, y1/2, z; (viii) x1/2, y+1/2, z1/2; (ix) x+1, y, z+1; (x) x+3/2, y1/2, z+3/2; (xi) x, y, z+1/2; (xii) x+1/2, y1/2, z; (xiii) x+1/2, y+1/2, z; (xiv) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds