Download citation
Download citation
link to html
A new quaternary oxide, BiGaTi4O11 (bis­muth gallium tetra­titanium undeca­oxide), was prepared by heating a mixture of the binary oxides at 1373 K in air. BiGaTi4O11 melts at 1487 K and prismatic single crystals were obtained from a sample melted at 1523 K and solidified by furnace cooling. The structure of BiGaTi4O11 was analyzed using single-crystal X-ray diffraction to be of a new type that crystallized in the space group Cmcm. A Bi3+ site is coordinated by nine O2− anions, and three oxygen-coordinated octa­hedral sites are statistically occupied by Ga3+ and Ti4+ cations. A relative dielectric constant of 46 with a temperature coefficient of 57 ppm K−1 in the temperature range 297–448 K was measured for a polycrystalline ceramic sample at 150 Hz–1 MHz with a dielectric loss tan δ of less than 0.01. Electrical resistivities measured at 1073 K by alternating-current impedance spectroscopic and direct-current methods were 1.16 × 10−4 and 1.14 × 10−4 S cm−1, respectively, which indicates that electrons and/or holes were conduction carriers at high temperature. The optical band gap estimated by the results of diffuse reflectance analysis was 2.9–3.0 eV, while the band gap obtained from the activation energy for electrical conduction was 3.5 eV.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619005989/uk3177sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619005989/uk3177Isup2.hkl
Contains datablock I

CCDC reference: 1913005

Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: APEX3 (Bruker, 2015); data reduction: APEX3 (Bruker, 2015); program(s) used to solve structure: APEX3 (Bruker, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Bismuth gallium tetratitanium undecaoxide top
Crystal data top
BiGaTi4O11Dx = 5.253 Mg m3
Mr = 646.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1471 reflections
a = 3.7406 (1) Åθ = 3.3–38.0°
b = 12.2765 (3) ŵ = 28.49 mm1
c = 17.7955 (4) ÅT = 301 K
V = 817.20 (3) Å3Prismatic, translucent colourless
Z = 40.10 × 0.05 × 0.03 mm
F(000) = 1160
Data collection top
Bruker D8 goniometer
diffractometer
726 independent reflections
Radiation source: micro focus sealed tube718 reflections with I > 2σ(I)
Detector resolution: 7.4074 pixels mm-1Rint = 0.030
ω, φ scansθmax = 30.5°, θmin = 3.3°
Absorption correction: numerical
(SADABS; Bruker, 2015)
h = 55
Tmin = 0.12, Tmax = 0.44k = 1717
17075 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0161P)2 + 1.0978P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.011(Δ/σ)max = 0.001
wR(F2) = 0.028Δρmax = 0.99 e Å3
S = 1.20Δρmin = 0.54 e Å3
726 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
59 parametersExtinction coefficient: 0.00138 (11)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Bi10.00000.39623 (2)0.25000.01369 (6)
Ga10.00000.06700 (3)0.57301 (2)0.00515 (10)0.098 (2)
Ti10.00000.06700 (3)0.57301 (2)0.00515 (10)0.902 (2)
Ga20.00000.22780 (3)0.07172 (2)0.00542 (9)0.302 (2)
Ti20.00000.22780 (3)0.07172 (2)0.00542 (9)0.698 (2)
Ga30.00000.10601 (4)0.25000.00827 (15)0.201 (5)
Ti30.00000.10601 (4)0.25000.00827 (15)0.799 (5)
O10.00000.04439 (17)0.67786 (9)0.0123 (3)
O20.00000.07822 (13)0.04410 (9)0.0072 (3)
O30.00000.20679 (15)0.17342 (9)0.0104 (3)
O40.00000.23954 (13)0.55257 (9)0.0068 (3)
O50.00000.39331 (13)0.07868 (10)0.0082 (3)
O60.00000.5725 (2)0.25000.0107 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.00968 (8)0.00735 (8)0.02403 (9)0.0000.0000.000
Ga10.00529 (17)0.00558 (17)0.00459 (17)0.0000.0000.00031 (11)
Ti10.00529 (17)0.00558 (17)0.00459 (17)0.0000.0000.00031 (11)
Ga20.00503 (16)0.00517 (15)0.00606 (16)0.0000.0000.00043 (10)
Ti20.00503 (16)0.00517 (15)0.00606 (16)0.0000.0000.00043 (10)
Ga30.0056 (3)0.0070 (3)0.0122 (3)0.0000.0000.000
Ti30.0056 (3)0.0070 (3)0.0122 (3)0.0000.0000.000
O10.0108 (8)0.0206 (9)0.0054 (7)0.0000.0000.0012 (6)
O20.0114 (8)0.0049 (6)0.0054 (7)0.0000.0000.0007 (5)
O30.0147 (8)0.0110 (8)0.0054 (7)0.0000.0000.0019 (6)
O40.0049 (7)0.0079 (7)0.0076 (7)0.0000.0000.0002 (5)
O50.0056 (7)0.0067 (7)0.0122 (8)0.0000.0000.0006 (5)
O60.0063 (10)0.0057 (10)0.0200 (12)0.0000.0000.000
Geometric parameters (Å, º) top
Bi1—O62.164 (2)Ga/Ti3—O31.8406 (17)
Bi1—O1i2.3827 (11)Ga/Ti3—O3v1.8406 (17)
Bi1—O1ii2.3827 (11)Ga/Ti3—O6xii1.9150 (5)
Bi1—O1iii2.3827 (11)Ga/Ti3—O6xiii1.9150 (5)
Bi1—O1iv2.3827 (11)Ga/Ti3—O1xiv2.249 (2)
Bi1—O32.6955 (18)Ga/Ti3—O1xi2.249 (2)
Bi1—O3v2.6955 (18)Ga3—Bi1xii3.1828 (4)
Bi1—O53.0490 (19)Ga3—Bi1xiii3.1828 (4)
Bi1—O5v3.0490 (19)O1—Ti3xi2.249 (2)
Bi1—Ga3vi3.1827 (4)O1—Ga3xi2.249 (2)
Bi1—Ti3vi3.1827 (4)O1—Bi1i2.3827 (11)
Bi1—Ti3vii3.1827 (4)O1—Bi1iv2.3827 (11)
Bi1—Ga3vii3.1827 (4)O2—Ti1xiv1.8555 (17)
Ga/Ti1—O2viii1.8555 (17)O2—Ga1xiv1.8555 (17)
Ga/Ti1—O11.8864 (17)O2—Ti1v2.0885 (17)
Ga/Ti1—O5ix1.9353 (4)O2—Ga1v2.0885 (17)
Ga/Ti1—O5x1.9353 (4)O4—Ti2ix1.9429 (5)
Ga/Ti1—O2v2.0886 (17)O4—Ga2ix1.9429 (5)
Ga/Ti1—O42.1492 (17)O4—Ti2x1.9429 (5)
Ga1—Ti1xi3.0754 (7)O4—Ga2x1.9429 (5)
Ga1—Ti2ix3.1376 (4)O4—Ti2v2.2165 (17)
Ga1—Ti2x3.1376 (4)O4—Ga2v2.2165 (17)
Ga/Ti2—O31.8281 (17)O5—Ti1iii1.9353 (4)
Ga/Ti2—O21.9009 (16)O5—Ga1iii1.9353 (4)
Ga/Ti2—O4iii1.9429 (5)O5—Ti1ii1.9353 (4)
Ga/Ti2—O4ii1.9429 (5)O5—Ga1ii1.9353 (4)
Ga/Ti2—O52.0357 (16)O6—Ti3vi1.9150 (5)
Ga/Ti2—O4v2.2165 (17)O6—Ga3vi1.9150 (5)
Ga2—Ti1iii3.1376 (4)O6—Ti3vii1.9150 (5)
Ga2—Ti1ii3.1376 (4)O6—Ga3vii1.9150 (5)
O6—Bi1—O1i72.19 (5)O3—Ga2—Ti1iii96.09 (5)
O6—Bi1—O1ii72.19 (5)O2—Ga2—Ti1iii141.029 (18)
O1i—Bi1—O1ii144.37 (9)O4iii—Ga2—Ti1iii42.42 (5)
O6—Bi1—O1iii72.19 (5)O4ii—Ga2—Ti1iii114.17 (5)
O1i—Bi1—O1iii65.20 (7)O5—Ga2—Ti1iii36.693 (7)
O1ii—Bi1—O1iii103.43 (7)O4v—Ga2—Ti1iii87.42 (4)
O6—Bi1—O1iv72.19 (5)O3—Ga2—Ti1ii96.09 (5)
O1i—Bi1—O1iv103.43 (7)O2—Ga2—Ti1ii141.029 (18)
O1ii—Bi1—O1iv65.20 (7)O4iii—Ga2—Ti1ii114.17 (5)
O1iii—Bi1—O1iv144.37 (9)O4ii—Ga2—Ti1ii42.42 (5)
O6—Bi1—O3149.63 (3)O5—Ga2—Ti1ii36.693 (7)
O1i—Bi1—O3122.43 (4)O4v—Ga2—Ti1ii87.42 (4)
O1ii—Bi1—O389.52 (5)Ti1iii—Ga2—Ti1ii73.180 (11)
O1iii—Bi1—O389.52 (5)O3—Ga3—O3v95.52 (11)
O1iv—Bi1—O3122.43 (4)O3—Ga3—O6xii98.30 (5)
O6—Bi1—O3v149.63 (3)O3v—Ga3—O6xii98.30 (5)
O1i—Bi1—O3v89.52 (5)O3—Ga3—O6xiii98.30 (5)
O1ii—Bi1—O3v122.43 (4)O3v—Ga3—O6xiii98.30 (5)
O1iii—Bi1—O3v122.43 (4)O6xii—Ga3—O6xiii155.19 (15)
O1iv—Bi1—O3v89.52 (5)O3—Ga3—O1xiv97.43 (7)
O3—Bi1—O3v60.74 (7)O3v—Ga3—O1xiv167.05 (7)
O6—Bi1—Ga3vi35.990 (5)O6xii—Ga3—O1xiv79.84 (6)
O1i—Bi1—Ga3vi44.86 (5)O6xiii—Ga3—O1xiv79.84 (6)
O1ii—Bi1—Ga3vi102.34 (4)O3—Ga3—O1xi167.05 (7)
O1iii—Bi1—Ga3vi44.86 (5)O3v—Ga3—O1xi97.43 (7)
O1iv—Bi1—Ga3vi102.34 (4)O6xii—Ga3—O1xi79.84 (6)
O3—Bi1—Ga3vi134.28 (2)O6xiii—Ga3—O1xi79.84 (6)
O3v—Bi1—Ga3vi134.28 (2)O1xiv—Ga3—O1xi69.62 (9)
O6—Bi1—Ti3vi35.990 (5)O3—Ga3—Bi1xii122.95 (4)
O1i—Bi1—Ti3vi44.86 (5)O3v—Ga3—Bi1xii122.95 (4)
O1ii—Bi1—Ti3vi102.34 (4)O6xii—Ga3—Bi1xii41.61 (7)
O1iii—Bi1—Ti3vi44.86 (5)O6xiii—Ga3—Bi1xii113.58 (7)
O1iv—Bi1—Ti3vi102.34 (4)O1xiv—Ga3—Bi1xii48.37 (3)
O3—Bi1—Ti3vi134.28 (2)O1xi—Ga3—Bi1xii48.37 (3)
O3v—Bi1—Ti3vi134.28 (2)O3—Ga3—Bi1xiii122.95 (4)
Ga3vi—Bi1—Ti3vi0.000 (10)O3v—Ga3—Bi1xiii122.95 (4)
O6—Bi1—Ti3vii35.990 (5)O6xii—Ga3—Bi1xiii113.58 (7)
O1i—Bi1—Ti3vii102.34 (4)O6xiii—Ga3—Bi1xiii41.61 (7)
O1ii—Bi1—Ti3vii44.86 (5)O1xiv—Ga3—Bi1xiii48.37 (3)
O1iii—Bi1—Ti3vii102.34 (4)O1xi—Ga3—Bi1xiii48.37 (3)
O1iv—Bi1—Ti3vii44.86 (5)Bi1xii—Ga3—Bi1xiii71.978 (11)
O3—Bi1—Ti3vii134.28 (2)Ga1—O1—Ti3xi133.27 (10)
O3v—Bi1—Ti3vii134.28 (2)Ga1—O1—Ga3xi133.27 (10)
Ga3vi—Bi1—Ti3vii71.979 (11)Ti3xi—O1—Ga3xi0.0
Ti3vi—Bi1—Ti3vii71.979 (11)Ga1—O1—Bi1i119.20 (5)
O6—Bi1—Ga3vii35.990 (5)Ti3xi—O1—Bi1i86.77 (5)
O1i—Bi1—Ga3vii102.34 (4)Ga3xi—O1—Bi1i86.77 (5)
O1ii—Bi1—Ga3vii44.86 (5)Ga1—O1—Bi1iv119.20 (5)
O1iii—Bi1—Ga3vii102.34 (4)Ti3xi—O1—Bi1iv86.77 (5)
O1iv—Bi1—Ga3vii44.86 (5)Ga3xi—O1—Bi1iv86.77 (5)
O3—Bi1—Ga3vii134.28 (2)Bi1i—O1—Bi1iv103.43 (7)
O3v—Bi1—Ga3vii134.28 (2)Ti1xiv—O2—Ga1xiv0.0
Ga3vi—Bi1—Ga3vii71.979 (11)Ti1xiv—O2—Ga2148.92 (10)
Ti3vi—Bi1—Ga3vii72.0Ga1xiv—O2—Ga2148.92 (10)
Ti3vii—Bi1—Ga3vii0.0Ti1xiv—O2—Ti1v102.31 (8)
O2viii—Ga1—O197.63 (8)Ga1xiv—O2—Ti1v102.31 (8)
O2viii—Ga1—O5ix104.85 (5)Ga2—O2—Ti1v108.76 (8)
O1—Ga1—O5ix89.17 (6)Ti1xiv—O2—Ga1v102.3
O2viii—Ga1—O5x104.85 (5)Ga1xiv—O2—Ga1v102.31 (8)
O1—Ga1—O5x89.17 (6)Ga2—O2—Ga1v108.76 (8)
O5ix—Ga1—O5x150.21 (9)Ti1v—O2—Ga1v0.0
O2viii—Ga1—O2v77.69 (8)Ga2—O3—Ga3145.87 (11)
O1—Ga1—O2v175.32 (8)Ga2—O3—Bi1112.26 (8)
O5ix—Ga1—O2v92.03 (6)Ga3—O3—Bi1101.87 (7)
O5x—Ga1—O2v92.03 (6)Ti2ix—O4—Ga2ix0.0
O2viii—Ga1—O4154.16 (8)Ti2ix—O4—Ti2x148.57 (10)
O1—Ga1—O4108.21 (8)Ga2ix—O4—Ti2x148.57 (10)
O5ix—Ga1—O476.16 (5)Ti2ix—O4—Ga2x148.6
O5x—Ga1—O476.16 (5)Ga2ix—O4—Ga2x148.57 (10)
O2v—Ga1—O476.48 (6)Ti2x—O4—Ga2x0.0
O2viii—Ga1—Ti1xi41.57 (5)Ti2ix—O4—Ga1100.00 (5)
O1—Ga1—Ti1xi139.20 (7)Ga2ix—O4—Ga1100.00 (5)
O5ix—Ga1—Ti1xi100.29 (5)Ti2x—O4—Ga1100.00 (5)
O5x—Ga1—Ti1xi100.29 (5)Ga2x—O4—Ga1100.00 (5)
O2v—Ga1—Ti1xi36.12 (5)Ti2ix—O4—Ti2v100.87 (5)
O4—Ga1—Ti1xi112.59 (5)Ga2ix—O4—Ti2v100.87 (5)
O2viii—Ga1—Ti2ix140.30 (2)Ti2x—O4—Ti2v100.87 (5)
O1—Ga1—Ti2ix97.20 (5)Ga2x—O4—Ti2v100.87 (5)
O5ix—Ga1—Ti2ix38.94 (5)Ga1—O4—Ti2v96.02 (7)
O5x—Ga1—Ti2ix111.98 (5)Ti2ix—O4—Ga2v100.9
O2v—Ga1—Ti2ix86.55 (4)Ga2ix—O4—Ga2v100.87 (5)
O4—Ga1—Ti2ix37.577 (11)Ti2x—O4—Ga2v100.9
Ti1xi—Ga1—Ti2ix115.045 (14)Ga2x—O4—Ga2v100.87 (5)
O2viii—Ga1—Ti2x140.30 (2)Ga1—O4—Ga2v96.02 (7)
O1—Ga1—Ti2x97.20 (5)Ti2v—O4—Ga2v0.0
O5ix—Ga1—Ti2x111.98 (5)Ti1iii—O5—Ga1iii0.0
O5x—Ga1—Ti2x38.94 (5)Ti1iii—O5—Ti1ii150.21 (9)
O2v—Ga1—Ti2x86.55 (4)Ga1iii—O5—Ti1ii150.21 (9)
O4—Ga1—Ti2x37.577 (11)Ti1iii—O5—Ga1ii150.2
Ti1xi—Ga1—Ti2x115.045 (14)Ga1iii—O5—Ga1ii150.21 (9)
Ti2ix—Ga1—Ti2x73.181 (11)Ti1ii—O5—Ga1ii0.0
O3—Ga2—O296.88 (8)Ti1iii—O5—Ga2104.36 (5)
O3—Ga2—O4iii101.70 (5)Ga1iii—O5—Ga2104.36 (5)
O2—Ga2—O4iii98.86 (5)Ti1ii—O5—Ga2104.36 (5)
O3—Ga2—O4ii101.70 (5)Ga1ii—O5—Ga2104.36 (5)
O2—Ga2—O4ii98.86 (5)Ti3vi—O6—Ga3vi0.0
O4iii—Ga2—O4ii148.57 (9)Ti3vi—O6—Ti3vii155.19 (15)
O3—Ga2—O594.62 (8)Ga3vi—O6—Ti3vii155.19 (15)
O2—Ga2—O5168.50 (7)Ti3vi—O6—Ga3vii155.2
O4iii—Ga2—O578.74 (5)Ga3vi—O6—Ga3vii155.19 (15)
O4ii—Ga2—O578.74 (5)Ti3vii—O6—Ga3vii0.0
O3—Ga2—O4v175.62 (7)Ti3vi—O6—Bi1102.40 (7)
O2—Ga2—O4v78.74 (7)Ga3vi—O6—Bi1102.40 (7)
O4iii—Ga2—O4v79.14 (5)Ti3vii—O6—Bi1102.40 (7)
O4ii—Ga2—O4v79.14 (5)Ga3vii—O6—Bi1102.40 (7)
O5—Ga2—O4v89.76 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1; (v) x, y, z+1/2; (vi) x+1/2, y+1/2, z; (vii) x1/2, y+1/2, z; (viii) x, y, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x1/2, y+1/2, z+1/2; (xi) x, y, z+1; (xii) x1/2, y1/2, z; (xiii) x+1/2, y1/2, z; (xiv) x, y, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds