Download citation
Download citation
link to html
Succinic acid has been known since 1546 and was first chemically identified in the mid-19th century. In an attempt to prepare a mol­ecular salt of succinic acid with (S)-(−)-α-methyl­benzyl­amine, we have obtained the second polymorph of the mono­ammonium salt of succinic acid, NH4+·C4H5O4. The crystal structure determination proves the structure of the ionic compound and the intimate role of the ammonium ion in the structure, which is compared to the earlier described polymorph.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619001037/uk3169sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619001037/uk3169Isup2.hkl
Contains datablock I

CCDC reference: 1892130

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

(I) top
Crystal data top
NH4+·C4H5O4F(000) = 576
Mr = 135.12Dx = 1.45 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1747 reflections
a = 9.3716 (14) Åθ = 2.8–21.4°
b = 11.7529 (18) ŵ = 0.13 mm1
c = 11.2357 (16) ÅT = 293 K
β = 90.187 (9)°Plate, colourless
V = 1237.5 (3) Å30.2 × 0.01 × 0.01 mm
Z = 8
Data collection top
Bruker SMART 1K CCD area detector
diffractometer
1381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
phi and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.96, Tmax = 0.99k = 1414
9934 measured reflectionsl = 1313
2307 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0932P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.008
2307 reflectionsΔρmax = 0.19 e Å3
193 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Intensity data for form II were collected on a Bruker (Bruker AXS Inc. Madison, WI, USA) SMART 1K CCD area-detector diffractometer with graphite-monochromated Mo Kα (λ = 0.71073 Å) (50 kV, 30 mA) and performed at 293 K. The collection involved ω-scans of width 0.3°. Data reduction was carried out using the program SAINT+ and empirical absorption corrections were made using the program SADABS (Krause et al., 2015). The structures were solved in the WinGX (Farrugia, 2012) suite of programs by direct methods using SHELXS2017 (Sheldrick, 2015) and refined using full-matrix least-squares/difference Fourier techniques on F2 using SHELXL2017 (Sheldrick, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4323 (3)0.1234 (2)0.4020 (2)0.0458 (6)
C20.3229 (2)0.1396 (2)0.4993 (2)0.0495 (7)
H2A0.3345440.0783410.5563720.059*
H2B0.3445830.2101290.5403280.059*
C30.1687 (2)0.1429 (2)0.4618 (2)0.0480 (7)
H3A0.1523440.0817660.405450.058*
H3B0.1517510.2140030.4202570.058*
C40.0596 (3)0.1325 (2)0.5605 (2)0.0476 (7)
O10.56054 (18)0.13492 (17)0.42367 (16)0.0600 (6)
O20.38423 (18)0.09378 (17)0.29825 (17)0.0612 (6)
O30.10738 (18)0.11318 (19)0.66637 (16)0.0657 (6)
O40.07002 (17)0.13878 (18)0.53754 (16)0.0625 (6)
C50.6190 (2)0.5147 (2)0.62746 (19)0.0411 (6)
C60.7342 (2)0.5301 (2)0.5353 (2)0.0448 (6)
H6A0.8183510.5592010.5754820.054*
H6B0.702550.5883650.4801040.054*
C70.7789 (3)0.4273 (2)0.4630 (2)0.0451 (6)
H7A0.6948570.3945880.4257710.054*
H7B0.8184230.370570.5165080.054*
C80.8880 (2)0.4534 (2)0.3672 (2)0.0411 (6)
O50.55838 (17)0.42223 (15)0.64399 (15)0.0522 (5)
O60.58933 (18)0.60675 (16)0.68451 (17)0.0590 (6)
O70.92076 (18)0.55715 (15)0.34982 (15)0.0543 (5)
H71.008 (3)0.575 (2)0.266 (3)0.081*
O80.94355 (18)0.37229 (15)0.31164 (15)0.0559 (5)
H60.501 (3)0.609 (2)0.758 (3)0.084*
N10.8301 (3)0.1535 (2)0.2988 (2)0.0585 (7)
H1N0.890 (4)0.116 (3)0.248 (3)0.088*
H2N0.734 (4)0.136 (3)0.303 (3)0.088*
H3N0.845 (3)0.139 (3)0.373 (3)0.088*
H4N0.848 (3)0.242 (3)0.297 (3)0.088*
N21.1651 (3)0.3088 (2)0.1553 (2)0.0573 (7)
H5N1.157 (3)0.227 (3)0.164 (3)0.086*
H6N1.099 (3)0.340 (3)0.211 (3)0.086*
H7N1.143 (3)0.329 (3)0.080 (3)0.086*
H8N1.260 (4)0.335 (3)0.154 (3)0.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0409 (14)0.0434 (15)0.0531 (16)0.0027 (12)0.0150 (12)0.0037 (12)
C20.0395 (14)0.0594 (18)0.0496 (15)0.0062 (12)0.0153 (11)0.0032 (13)
C30.0374 (13)0.0598 (18)0.0469 (14)0.0007 (12)0.0118 (11)0.0009 (12)
C40.0430 (14)0.0512 (17)0.0486 (16)0.0009 (12)0.0131 (12)0.0002 (12)
O10.0384 (10)0.0847 (15)0.0569 (11)0.0000 (9)0.0119 (8)0.0008 (10)
O20.0418 (10)0.0856 (15)0.0563 (12)0.0051 (9)0.0167 (9)0.0213 (10)
O30.0446 (10)0.1025 (17)0.0501 (12)0.0067 (10)0.0153 (9)0.0159 (10)
O40.0365 (10)0.0938 (16)0.0574 (12)0.0027 (9)0.0103 (8)0.0038 (10)
C50.0352 (13)0.0506 (16)0.0377 (13)0.0029 (12)0.0074 (10)0.0009 (12)
C60.0431 (14)0.0466 (16)0.0447 (13)0.0000 (11)0.0117 (11)0.0013 (12)
C70.0437 (13)0.0458 (15)0.0457 (14)0.0007 (11)0.0147 (11)0.0018 (11)
C80.0354 (13)0.0490 (17)0.0391 (13)0.0019 (11)0.0070 (10)0.0016 (11)
O50.0482 (10)0.0529 (12)0.0555 (11)0.0023 (9)0.0183 (8)0.0042 (9)
O60.0539 (11)0.0611 (13)0.0623 (12)0.0031 (9)0.0278 (9)0.0162 (10)
O70.0553 (11)0.0493 (12)0.0585 (12)0.0047 (9)0.0291 (9)0.0107 (9)
O80.0516 (11)0.0578 (12)0.0585 (11)0.0012 (9)0.0220 (9)0.0117 (9)
N10.0476 (14)0.0639 (17)0.0639 (16)0.0077 (12)0.0181 (12)0.0117 (14)
N20.0477 (14)0.0597 (17)0.0646 (16)0.0032 (12)0.0215 (12)0.0064 (13)
Geometric parameters (Å, º) top
C1—O11.233 (3)C6—H6B0.97
C1—O21.296 (3)C7—C81.519 (3)
C1—C21.513 (3)C7—H7A0.97
C2—C31.505 (3)C7—H7B0.97
C2—H2A0.97C8—O81.253 (3)
C2—H2B0.97C8—O71.273 (3)
C3—C41.515 (3)O6—H61.17 (3)
C3—H3A0.97O7—H71.26 (3)
C3—H3B0.97N1—H1N0.92 (4)
C4—O41.243 (3)N1—H2N0.93 (3)
C4—O31.290 (3)N1—H3N0.87 (3)
C5—O51.240 (3)N1—H4N1.05 (3)
C5—O61.289 (3)N2—H5N0.97 (3)
C5—C61.509 (3)N2—H6N0.96 (3)
C6—C71.515 (3)N2—H7N0.90 (3)
C6—H6A0.97N2—H8N0.94 (3)
O1—C1—O2122.9 (2)C7—C6—H6B107.8
O1—C1—C2120.4 (2)H6A—C6—H6B107.1
O2—C1—C2116.7 (2)C6—C7—C8114.0 (2)
C3—C2—C1117.0 (2)C6—C7—H7A108.8
C3—C2—H2A108C8—C7—H7A108.8
C1—C2—H2A108C6—C7—H7B108.8
C3—C2—H2B108C8—C7—H7B108.8
C1—C2—H2B108H7A—C7—H7B107.6
H2A—C2—H2B107.3O8—C8—O7123.5 (2)
C2—C3—C4116.3 (2)O8—C8—C7118.8 (2)
C2—C3—H3A108.2O7—C8—C7117.7 (2)
C4—C3—H3A108.2C5—O6—H6121.4 (15)
C2—C3—H3B108.2C8—O7—H7115.3 (13)
C4—C3—H3B108.2H1N—N1—H2N121 (3)
H3A—C3—H3B107.4H1N—N1—H3N115 (3)
O4—C4—O3122.6 (2)H2N—N1—H3N94 (3)
O4—C4—C3120.3 (2)H1N—N1—H4N111 (3)
O3—C4—C3117.1 (2)H2N—N1—H4N112 (3)
O5—C5—O6124.2 (2)H3N—N1—H4N101 (3)
O5—C5—C6122.5 (2)H5N—N2—H6N105 (3)
O6—C5—C6113.4 (2)H5N—N2—H7N110 (3)
C5—C6—C7118.1 (2)H6N—N2—H7N112 (3)
C5—C6—H6A107.8H5N—N2—H8N113 (3)
C7—C6—H6A107.8H6N—N2—H8N120 (3)
C5—C6—H6B107.8H7N—N2—H8N97 (3)
O1—C1—C2—C3170.3 (2)O5—C5—C6—C71.5 (3)
O2—C1—C2—C311.8 (3)O6—C5—C6—C7179.6 (2)
C1—C2—C3—C4166.7 (2)C5—C6—C7—C8176.04 (19)
C2—C3—C4—O4177.3 (2)C6—C7—C8—O8172.1 (2)
C2—C3—C4—O35.0 (4)C6—C7—C8—O76.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3i1.17 (3)1.33 (3)2.496 (2)175 (3)
O7—H7···O2ii1.26 (3)1.27 (3)2.513 (2)167 (2)
N1—H1N···O5iii0.92 (4)2.02 (4)2.902 (3)162 (3)
N1—H2N···O10.93 (3)2.12 (3)2.901 (3)141 (3)
N1—H3N···O4iv0.87 (3)2.01 (3)2.843 (3)162 (3)
N1—H4N···O81.05 (3)1.78 (3)2.787 (3)158 (3)
N2—H5N···O5iii0.97 (3)1.99 (3)2.896 (3)154 (3)
N2—H6N···O80.96 (3)1.88 (3)2.824 (3)167 (3)
N2—H7N···O1iii0.90 (3)1.96 (4)2.856 (3)170 (3)
N2—H8N···O4v0.94 (3)2.09 (3)2.884 (3)141 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y, z; (v) x+3/2, y+1/2, z1/2.
Comparative bond lengths and angles of forms I and II (Å, °) top
Form I (Z' = 1)Form II (Z' = 2)
C1—O11.233 (1)C1—O11.233 (3)
C1—O21.290 (1)C1—O21.296 (3)
C4—O41.240 (1)C4—O41.243 (3)
C4—O31.281 (1)C4—O31.290 (3)
C1—C2—C3—C4-70.4 (2)C1—C2—C3—C4166.7 (2)
C5—O51.240 (3)
C5—O61.289 (3)
C8—O81.253 (3)
C8—O71.273 (3)
C5—C6—C7—C8176.0 (2)
Comparative hydrogen-bond geometries of forms I and II (Å, °) top
D—H···AD—HH···AD···AD—H···A
Form I
O2—H1···O2i0.86 (4)1.64 (4)2.502 (2)179 (4)
O3—H6···O3ii0.84 (5)1.65 (5)2.479 (2)177 (5)
N1—H9···O1ii0.95 (2)1.95 (2)2.883 (2)169 (2)
N1—H10···O40.96 (2)1.95 (2)2.894 (2)167 (2)
N1—H8···O1iii0.86 (3)2.18 (3)2.956 (2)149 (3)
N1—H7···O4iv0.94 (3)2.05 (3)2.963 (2)164 (3)
Form II
O6—H6···O3v1.17 (3)1.33 (3)2.496 (2)175 (3)
O7—H7···O2vi1.26 (3)1.27 (3)2.513 (2)167 (2)
N1—H1N···O5vii0.92 (4)2.02 (4)2.902 (3)162 (3)
N1—H2N···O10.93 (3)2.12 (3)2.901 (3)141 (3)
N1—H3N···O4viii0.86 (3)2.01 (3)2.843 (3)162 (3)
N1—H4N···O81.05 (3)1.78 (3)2.787 (3)158 (3)
N2—H5N···O5vii0.97 (3)1.99 (3)2.896 (3)154 (3)
N2—H6N···O80.96 (3)1.88 (3)2.824 (3)167 (3)
N2—H7N···O1vii0.90 (3)1.96 (4)2.856 (3)170 (3)
N2—H8N···O4ix0.94 (3)2.09 (3)2.884 (3)141 (3)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z; (iii) x, y+1, z; (iv) x, y, z-1; (vi) -x+3/2, y+1/2, -z+1/2; (v) -x+1/2, y+1/2, -z+3/2; (vii) x+1/2, -y+1/2, z-1/2; (viii) x+1, y, z; (ix) x+3/2, -y+1/2, z-1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds