Download citation
Download citation
link to html
Penta­chloro­pyridine N-oxide, C5Cl5NO, crystallizes in the monoclinic space group P21/c. In the crystal structure, mol­ecules are linked by C—Cl...Cl halogen bonds into infinite ribbons extending along the crystallographic [100] direction. These mol­ecular aggregates are further stabilized by very short inter­molecular N-oxide–N-oxide inter­actions into herringbone motifs. Computations based on quantum chemistry methods allowed for a more detailed description of the N-oxide–N-oxide inter­actions and Cl...Cl halogen bonds. For this purpose, Hirshfeld surface analysis and the many-body approach to interaction energy were applied.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617017922/uk3147sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017922/uk3147Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617017922/uk3147sup3.pdf
Energy parameters estimated for model systems discussed in the paper

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229617017922/uk3147Isup4.cml
Supplementary material

CCDC reference: 1811541

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: Structure solution software; please supply; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010), PLATON (Spek, 2009) and WinGX (Farrugia, 2012).

Pentachloropyridine N-oxide top
Crystal data top
C5Cl5NOF(000) = 520
Mr = 267.31Dx = 2.116 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.5852 (2) ÅCell parameters from 3739 reflections
b = 17.0639 (4) Åθ = 5.4–76.2°
c = 5.9883 (2) ŵ = 15.31 mm1
β = 106.936 (3)°T = 100 K
V = 839.22 (4) Å3Plate, colourless
Z = 40.34 × 0.08 × 0.02 mm
Data collection top
Agilent SuperNova DualSource
diffractometer
1391 reflections with I > 2σ(I)
Detector resolution: 10.4052 pixels mm-1Rint = 0.046
CrysAlisPro 1.171.39.15e (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. scansθmax = 68.5°, θmin = 5.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1010
Tmin = 0.100, Tmax = 1.000k = 1720
8310 measured reflectionsl = 77
1548 independent reflections
Refinement top
Refinement on F2109 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.0274P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.40 e Å3
1548 reflectionsΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.66813 (6)0.46937 (3)0.91688 (9)0.01612 (17)
Cl30.32783 (7)0.41016 (3)0.60185 (10)0.01635 (17)
Cl20.31457 (7)0.31363 (3)0.14987 (10)0.01768 (17)
Cl60.94101 (7)0.32091 (4)0.32595 (11)0.02151 (18)
Cl50.98100 (7)0.42141 (4)0.78199 (10)0.02224 (18)
O10.6181 (2)0.29071 (10)0.0775 (3)0.0196 (4)
N10.6295 (2)0.32790 (11)0.2679 (3)0.0137 (4)
C30.5028 (3)0.38880 (13)0.5324 (4)0.0136 (5)
C50.7925 (3)0.39268 (13)0.6128 (4)0.0150 (5)
C40.6539 (3)0.41299 (13)0.6757 (4)0.0131 (5)
C20.4926 (3)0.34654 (13)0.3314 (4)0.0140 (5)
C60.7787 (3)0.34953 (14)0.4118 (4)0.0150 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0184 (3)0.0165 (3)0.0140 (3)0.00124 (19)0.0056 (2)0.00348 (18)
Cl30.0132 (3)0.0187 (3)0.0188 (3)0.00076 (18)0.0071 (2)0.0008 (2)
Cl20.0155 (3)0.0199 (3)0.0157 (3)0.00312 (19)0.0015 (2)0.00179 (19)
Cl60.0166 (3)0.0280 (3)0.0228 (3)0.0019 (2)0.0104 (2)0.0042 (2)
Cl50.0128 (3)0.0333 (4)0.0197 (3)0.0038 (2)0.0033 (2)0.0063 (2)
O10.0275 (9)0.0177 (8)0.0148 (9)0.0022 (7)0.0079 (7)0.0061 (6)
N10.0168 (10)0.0120 (9)0.0128 (9)0.0011 (7)0.0051 (8)0.0008 (7)
C30.0141 (11)0.0126 (11)0.0150 (11)0.0024 (8)0.0054 (8)0.0024 (8)
C50.0152 (11)0.0141 (11)0.0146 (11)0.0019 (9)0.0028 (9)0.0003 (8)
C40.0154 (11)0.0112 (11)0.0128 (11)0.0015 (8)0.0042 (9)0.0005 (8)
C20.0161 (11)0.0105 (10)0.0148 (11)0.0003 (8)0.0036 (9)0.0021 (8)
C60.0159 (11)0.0148 (11)0.0166 (11)0.0008 (8)0.0083 (9)0.0021 (9)
Geometric parameters (Å, º) top
Cl4—C41.710 (2)N1—C61.370 (3)
Cl3—C31.711 (2)N1—C21.374 (3)
Cl2—C21.693 (2)C3—C21.384 (3)
Cl6—C61.692 (2)C3—C41.393 (3)
Cl5—C51.712 (2)C5—C61.386 (3)
O1—N11.284 (3)C5—C41.393 (3)
Cl4···Cl5i3.555 (1)O1···N1v2.766 (2)
Cl3···Cl4ii3.532 (1)Cl4···N1vi3.281 (1)
Cl4···Cl4ii3.477 (1)Cl2···Cl5vii3.572 (1)
Cl3···Cl5iii3.455 (1)Cl5···Cl2viii3.572 (1)
Cl3···Cl6iii3.589 (1)Cl2···Cl2v3.699 (1)
Cl6···Cl2iv3.658 (1)Cl2···Cl2ix3.699 (1)
O1—N1—C6120.5 (2)C5—C4—C3118.4 (2)
O1—N1—C2120.7 (2)C5—C4—Cl4120.80 (18)
C6—N1—C2118.8 (2)C3—C4—Cl4120.79 (18)
C2—C3—C4120.1 (2)N1—C2—C3121.2 (2)
C2—C3—Cl3118.99 (18)N1—C2—Cl2115.51 (18)
C4—C3—Cl3120.86 (18)C3—C2—Cl2123.25 (19)
C6—C5—C4120.2 (2)N1—C6—C5121.1 (2)
C6—C5—Cl5119.55 (19)N1—C6—Cl6115.69 (18)
C4—C5—Cl5120.24 (18)C5—C6—Cl6123.18 (19)
C6—C5—C4—C30.1 (3)C4—C3—C2—N10.4 (3)
Cl5—C5—C4—C3179.63 (17)Cl3—C3—C2—N1179.99 (17)
C6—C5—C4—Cl4177.46 (18)C4—C3—C2—Cl2178.99 (17)
Cl5—C5—C4—Cl42.1 (3)Cl3—C3—C2—Cl20.7 (3)
C2—C3—C4—C50.8 (3)O1—N1—C6—C5177.2 (2)
Cl3—C3—C4—C5178.82 (17)C2—N1—C6—C53.0 (3)
C2—C3—C4—Cl4176.73 (17)O1—N1—C6—Cl62.3 (3)
Cl3—C3—C4—Cl43.6 (3)C2—N1—C6—Cl6177.52 (17)
O1—N1—C2—C3177.9 (2)C4—C5—C6—N11.8 (4)
C6—N1—C2—C32.3 (3)Cl5—C5—C6—N1177.69 (17)
O1—N1—C2—Cl22.7 (3)C4—C5—C6—Cl6178.72 (17)
C6—N1—C2—Cl2177.13 (17)Cl5—C5—C6—Cl61.7 (3)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y1/2, z3/2; (vi) x, y, z+1; (vii) x1, y, z1; (viii) x+1, y, z+1; (ix) x, y1/2, z1/2.
Interaction energy estimated for various dimers in N-oxide–N-oxide-stabilized chain of molecules of (I) top
All values are given in kcal mol-1. Eint* corresponds to interaction energy without BSSE correction. The other values have been corrected for this error.
Molecular pairs within the chain 1-mEint1-m*Eint1-m
1–2-9.06-5.91
1–3-7.13-4.77
1–4-0.64-0.36
1–5-0.19-0.12
1–6-0.12-0.06
Selected energy parameters estimated for model chain stabilized by N-oxide–N-oxide interactions top
All values are given in kcal mol-1. n is the number of molecules in the chain. Eint* corresponds to interaction energy without BSSE correction. The other values are corrected for this error. Values of Enonadd were estimated as Enonadd = Eint - Eint2-body.
nEint*EintEint2-bodyEnonaddEint/moleculeEint/molecule2-bodyEnonadd/molecule
2-9.02-5.91-5.910-2.95-2.950
3-25.03-16.72-16.59-0.13-5.57-5.53-0.04
4-41.64-27.72-27.63-0.09-6.93-6.91-0.02
5-58.40-38.88-38.79-0.09-7.78-7.76-0.02
6-75.39-50.24-50.01-0.23-8.37-8.33-0.04
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds