Download citation
Download citation
link to html
Electroactive metallocene polymers are of inter­est due to the possibility that they offer a muscle-like response, and in gel systems very large volume changes are possible. The ferrocenyl moiety exhibits physical and electrochemical stability of the neutral and oxidized forms and could be a candidate for use as the redox-active group in these materials. The title compounds, [Fe(C5H5)(C10H11O2)], (I), and [Fe(C10H11O2)2], (II), comprise a typical ferrocene core with coplanar and approximately eclipsed cyclo­penta­dienyl (Cp) rings. In (I), there is a single methyl methacrylate substituent, with the other Cp ring unsubstituted. In (II), a methyl methacrylate substituent on each Cp ring completes the structure. In both compounds, there is an s-trans geometry of the vinyl and carbonyl components of the methacrylate group. Inversion dimers formed through C-H...O contacts dominate the crystal packing of both mol­ecules. Weak C-H...[pi](ring) contacts and, in the case of (I), an unusual C-H...[pi](alkene) contact further stabilize the structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615022512/uk3123sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615022512/uk3123Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615022512/uk3123IIsup3.hkl
Contains datablock II

CCDC references: 1438745; 1438744

Introduction top

In 1970, ferrocenyl-containing acrylate polymers made their debut (Pittman, 2005) and ignited an inter­est in metallocene polymers that continues today (Hudson, 2001; McAdam et al., 2008; Herbert et al., 2009; Abd-El-Aziz et al., 2010; Elbert et al., 2013). Our inter­est is the preparation of electroactive polymers due to the possibility that they offer a muscle-like response (Hara et al., 2004; Goswami et al., 2013). For gel systems, in particular, very large volume changes are possible, associated with the influx or egress of solvent. Our choice of the ferrocenyl moiety to provide the redox-active group in these materials is based on the physical and electrochemical stability of the neutral and oxidized forms of this redox centre, and a comprehensive and versatile synthetic chemistry (Cuffe et al., 2005). However, scale-up of small-molecule chemistry to larger and `workable' gel assemblies provides special challenges. Principal among these is the need for multigram scale synthesis of starting materials. Hy­droxy­methyl­ferrocene and 1,1'-bis­(hy­droxy­methyl)­ferrocene are synthesized in one simple step from commercially available ferrocenecarbaldehyde and ferrocene, respectively. Condensation of these with methacryloyl chloride generates the simple ferrocenyl­methyl methacrylate monomer, (I) (Pittman et al., 1970), and the crosslinker ferrocene-1,1'-diylbis(methyl­ene), (II) (Tsubakiyama et al., 1979).

Experimental top

Synthesis and crystallization top

Compound (I) was prepared in 70% yield using the methodology of Suzaki & Osakada (2007) by the condensation of hy­droxy­methyl­ferrocene with methacryloyl chloride using CH2Cl2/tri­ethyl­amine as the solvent/base system. Compound (II) was synthesized in a similar manner from 1,1'-bis­(hy­droxy­methyl)­ferrocene. X-ray-quality crystals were obtained from toluene layered with hexane in each case.

Analytical data top

For (I), 1H NMR: δ 6.10 (m, 1H, CMeCHtrans), 5.55 (m, 1H, CMeCHcis), 4.96 (s, 2H, CH2O), 4.30 (m, 2H, Fc—H)], 4.18 (m, 2H + 5H, Fc—H), 1.94 (m, 3H, CH3).

For (II), 1H NMR: δ 6.10 (m, 2H, CMeCHtrans), 5.56 (quin, J = 1.5 Hz, 2H, CMeCHcis), 4.95 (s, 4H, CH2O), 4.29 and 4.18 [2 × (t, J = 1.8 Hz, 4H, Fc—H)], 1.94 (t, J = 1.2 Hz, 6H, CH3).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. A l l H atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and vinyl groups, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 groups, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for CH3 groups. The methyl H atoms in (II) were disordered equally over two sites. These H atoms were placed in calculated positions, with the two sites rotated by 60° from one another, and with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).

Comment top

Molecular structures of (I) and (II) top

The molecular structures of (I) with one methyl methacrylate unit and (II) with two methyl methacrylate unitss, one on each Cp ring, are shown in Figs. 1(a) and 1(b),respectively. The Cp rings of the central ferrocenyl group are effectively coplanar, being inclined to one another at an angle of 2.43 (9)° for (I) and 0.65 (5)° for (II). The methyl methacrylate residues are also remarkably planar, with r.m.s. deviations from the planes through all seven non-H atoms of 0.04 Å for (I), and this plane is almost orthogonal to the substituted cyclo­penta­dienyl ring plane with a dihedral angle of 82.32 (4)°. The corresponding methyl methacrylate residues in bis-compound (II) are similarly planar, with r.m.s. deviations of 0.08 and 0.04 Å for the 1- and 1'-substituents, respectively. They also are roughly orthogonal to the rings to which they are attached, with dihedral angles 72.28 (4) and 71.48 (4)°.

While the Cp rings in (I) are almost perfectly eclipsed, with a mean C···Cg11···Cg12···C angle of 0.7 (1)° [Cg11 and Cg12 are the centroids of the C1–C5 and C11–C15 Cp rings, respectively, of (I)], those in (II) are slightly staggered and the mean angle is 11.1 (2)°. Importantly, in this latter system, the methyl methacrylate substituents are located on opposite sides of the ferrocenyl rings, with a C6···Cg21···Cg22···C16 angle of approximately 157° [Cg21 and Cg22 are the centroids of the C1–C5 and C11–C15 Cp rings, respectively, of (II)]. This geometry of the ring substituents contrasts sharply with that of its acrylate analogue [ferrocene-1,1'-diylbis(methyl­ene) dicrylate; Cambridge Structural Database (CSD, Version 5.36, with 3 updates; Groom & Allen, 2014) refcode UDUJAF (Suzaki & Osakada, 2007)], wherein the FeII atom lies on a crystallographic twofold axis and the methyl acrylate substituents are almost eclipsed, the corresponding torsion angle being 8.1°.

A survey of the CSD revelas more than 100 methacrylate structures (see, for example: Shklover et al., 1990; Zhang & Zhang, 2011; Spirlet et al., 2000; Wendicke et al., 2003). Only one structure is reported with both ferrocenyl and methacrylate residues (Abd-El-Aziz et al., 2012). If structures with a `free' methacrylate group are considered, i.e. structures with a metal atom coordinated to the alkene group or the O atoms of the methacrylate functional group are excluded, there are 94 observations of methacrylate torsional geometry. These results show a preference for an s-trans arrangement [Vista (Groom & Allen, 2014) results: 58 for s-trans and 36 s-cis] of the vinyl and carbonyl groups (Fig. 2). Both the methacrylate group of (I) and the two unique methacrylate groups of (II) have an s-trans configuration for the CC and CO residues. The analogous survey of acrylate structures finds this preference is reversed (Vista results: 83 observations, with 57 for s-cis and 26 for s-trans). The structure of UDUJAF has an s-cis configuration of the acrylate residues (Suzaki & Osakada, 2007).

Only four simple ferrocenyl­methyl esters have been described previously (Suzaki & Osakada, 2007; Nakatsuji et al., 2013), however, more complex biferrocene (Dong et al., 1997) and 1,2-substituted examples have been reported (Stepnicka & Cisarova, 2002; Pérez et al., 2012). Inter­estingly, of the reported methacrylate structures, only ten display a C—H···π(alkene) contact similar to that observed for (I) (see, for example: Hirano et al., 2002; Banwell et al., 2003; Wu et al., 2011; El Aziz et al., 2012; Kong et al., 2012), but none of these reports detailed this contact.

Packing for (I) top

In the crystal lattice of (I), a double chain of molecules extending along c is generated by C12—H12···Cg12 e dge-to- face contacts (Cg12 is the centroid of the unsubstituted Cp ring) bolstered by C—H···O contacts in which the carbonyl O7 atom acts as a bifurcated acceptor forming weak C11—H11···O7 and C10—H10C···O7 hydrogen bonds (Table 2) to generate a zigzag chain motif. An equivalent but inverted double chain is linked to this by inversion dimers formed from C5—H5···O6 hydrogen bonds and C9—H9B···Cg11 e dge-to-face contacts (Table 2). The C5—H5···O6 contacts generate R22(10) rings (Bernstein et al., 1995). Repeated pairs of double chains extend along the b-axis direction, generating sheets of molecules in the bc plane (Fig. 3a). An alternative view along c (Fig. 3b) shows the double chains of molecules forming columnar stacks in a zigzag fashion along b.

C3—H3···π(alkene) (Desiraju & Steiner, 1999) contacts with an H···Cg13 distance of approximately 2.78 Å (Cg13 is the centroid of the methacrylate C8C9 double bond) link molecules in a head-to-tail fashion, forming a chain that propagates along a (Fig. 4) and links the bc sheets into a three-dimensional structure.

Packing for (II) top

Inversion-dimer formation also plays a considerable role in the crystal packing for (II). However, with two methacrylate substituents, each with potential acceptor atoms, the three-dimensional structure for (II) is more complicated. The carbonyl O7 atom acts as a bifurcated acceptor forming C4—H4···O7 contacts together with C12—H12···O7 inversion dimers (Table 3). The former contact links molecules into chains along a, while the second inter­action connects to a parallel chain in an obverse fashion. The overall effect is the formation of a double chain of molecules that propagates in along a (Fig. 5).

C10—H10···Cg22 and C20—H20···Cg21 e dge-to-face contacts (Table 3), involving both Cp rings and the methyl groups of the methacrylate residues from opposite rings, form chains along [110]. Bifurcated C9—H9A···O17 and C15—H15···O17 hydrogen bonds combine with C5—H5···O6 contacts to link adjacent chains again in an obverse fashion. Adjacent double chains are further joined by the C12—H12···O7 hydrogen bonds mentioned previously to generate sheets parallel to (110) (Fig. 6).

Comparison of the structures and packing for (I) and (II) top

The molecular structures for both compounds are closely comparable, with (I) having a single methacrylate substituent on one Cp ring, while (II) has comparable substituents on both rings. All three methacrylate residues are reasonably planar. The variation in the substitution pattern does not effect the coplanarity of the Cp ring systems but, while the two rings in (I) are eclipsed, those for (II) are slightly staggered. This feature is the principal difference between the two closely related molecules.

The crystal packing for both structures is characterized by a propensity to form inversion dimers through C—H···O hydrogen bonds, although the additional methacrylate residue in (II) inevitably complicates the packing. Another common feature is that the O7 carbonyl atoms function as bifurcated acceptors in both molecules, as does the second O17 carbonyl atom in (II). C—H···O contacts are also supported by C—H···π(ring) edge-to-face hydrogen bonds in both systems, but a totally unique feature of the packing in (I) is the formation of chains of molecules linked by C—H···π(alkene) hydrogen bonds. These chains play an important role in forming the three-dimensional network for this structure.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) (I) and (b) (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. For (II), only one set of disorder components of the equally disordered H atoms of the C10 and C20 methyl groups is shown.
[Figure 2] Fig. 2. The s-trans and s-cis torsional preference of methacrylate and acrylate.
[Figure 3] Fig. 3. Two views of the double chains of molecules formed by (I), viewed (a) along a and (b) along c. Intermolecular hydrogen bonds are drawn as blue lines and C—H···π contacts are drawn as green lines. Red and yellow spheres represent the centroids of the C1–C5 and C11–C15 Cp rings, respectively.
[Figure 4] Fig. 4. A chain of molecules of (I) along a formed through C—H···π(alkene) contacts. The blue sphere is the centroid of the C8C9 double bond.
[Figure 5] Fig. 5. Double chains of (II) along the a axis formed through C—H···O contacts to the bifurcated acceptor O7 atom. Only one set of disorder components of the equally disordered H atoms of the C10 and C20 methyl groups is shown.
[Figure 6] Fig. 6. Sheets of molecules of (II) parallel to (110) viewed along the ab diagonal. Only one set of disorder components of the equally disordered H atoms of the C10 and C20 methyl groups is shown. Green and blue spheres represent the centroids of C1–C5 and C11–C15 rings, respectively.
(I) Ferrocenylmethyl methacrylate top
Crystal data top
[Fe(C5H5)(C10H11O2)]F(000) = 592
Mr = 284.13Dx = 1.483 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2871 (3) ÅCell parameters from 8356 reflections
b = 19.6330 (7) Åθ = 2.3–32.4°
c = 7.3663 (3) ŵ = 1.17 mm1
β = 108.604 (2)°T = 89 K
V = 1272.94 (8) Å3Plate, yellow
Z = 40.35 × 0.34 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3861 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.032
ω scansθmax = 33.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1313
Tmin = 0.760, Tmax = 1.000k = 3028
23442 measured reflectionsl = 1010
4534 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.4873P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4534 reflectionsΔρmax = 0.55 e Å3
164 parametersΔρmin = 0.49 e Å3
Crystal data top
[Fe(C5H5)(C10H11O2)]V = 1272.94 (8) Å3
Mr = 284.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2871 (3) ŵ = 1.17 mm1
b = 19.6330 (7) ÅT = 89 K
c = 7.3663 (3) Å0.35 × 0.34 × 0.05 mm
β = 108.604 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4534 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
3861 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 1.000Rint = 0.032
23442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
4534 reflectionsΔρmin = 0.49 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65725 (13)0.59181 (6)0.62812 (16)0.0150 (2)
C20.80586 (14)0.60055 (6)0.76461 (17)0.0184 (2)
H20.83370.63320.86490.022*
C30.90430 (14)0.55162 (6)0.72324 (18)0.0200 (2)
H31.00930.54600.79140.024*
C40.81807 (13)0.51253 (6)0.56172 (18)0.0175 (2)
H40.85560.47650.50340.021*
C50.66577 (12)0.53719 (6)0.50349 (16)0.0151 (2)
H50.58390.52020.39970.018*
Fe10.81108 (2)0.61414 (2)0.49313 (2)0.01174 (5)
C60.52040 (15)0.63304 (6)0.6166 (2)0.0221 (2)
H6A0.54980.68080.65360.026*
H6B0.44890.63270.48410.026*
O60.44828 (12)0.60284 (5)0.74810 (15)0.0251 (2)
C70.38090 (12)0.64550 (6)0.83699 (17)0.0161 (2)
O70.38276 (15)0.70647 (5)0.82059 (19)0.0412 (3)
C80.30764 (12)0.61020 (6)0.96491 (17)0.0170 (2)
C90.31796 (14)0.54298 (7)0.99003 (19)0.0229 (2)
H9A0.37260.51650.92610.028*
H9B0.27060.52151.07180.028*
C100.22244 (17)0.65612 (8)1.0571 (2)0.0305 (3)
H10A0.18360.62951.14400.046*
H10B0.13730.67720.95800.046*
H10C0.29070.69171.12960.046*
C110.73444 (16)0.70139 (7)0.3442 (2)0.0275 (3)
H110.64480.72550.34030.033*
C120.88183 (18)0.71203 (6)0.4778 (2)0.0259 (3)
H120.90780.74450.57880.031*
C130.98337 (14)0.66563 (6)0.43362 (17)0.0197 (2)
H131.08910.66170.49970.024*
C140.89870 (14)0.62620 (6)0.27305 (17)0.0169 (2)
H140.93820.59120.21340.020*
C150.74508 (14)0.64815 (7)0.21720 (18)0.0220 (2)
H150.66390.63050.11370.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0186 (5)0.0137 (5)0.0160 (5)0.0027 (4)0.0101 (4)0.0002 (4)
C20.0245 (6)0.0209 (5)0.0112 (5)0.0075 (4)0.0077 (4)0.0004 (4)
C30.0186 (5)0.0229 (6)0.0173 (5)0.0025 (4)0.0042 (4)0.0074 (4)
C40.0206 (5)0.0122 (5)0.0226 (6)0.0008 (4)0.0110 (4)0.0034 (4)
C50.0170 (5)0.0139 (5)0.0158 (5)0.0035 (4)0.0073 (4)0.0012 (4)
Fe10.01453 (8)0.01107 (8)0.01141 (8)0.00090 (5)0.00667 (6)0.00096 (5)
C60.0277 (6)0.0178 (5)0.0294 (7)0.0006 (4)0.0213 (5)0.0021 (5)
O60.0351 (5)0.0160 (4)0.0368 (5)0.0040 (3)0.0295 (5)0.0035 (4)
C70.0142 (4)0.0193 (5)0.0159 (5)0.0023 (4)0.0063 (4)0.0006 (4)
O70.0658 (8)0.0202 (5)0.0583 (8)0.0135 (5)0.0490 (7)0.0107 (5)
C80.0137 (4)0.0228 (5)0.0163 (5)0.0021 (4)0.0070 (4)0.0015 (4)
C90.0188 (5)0.0259 (6)0.0269 (6)0.0005 (4)0.0112 (5)0.0058 (5)
C100.0354 (7)0.0295 (7)0.0377 (8)0.0043 (6)0.0273 (6)0.0088 (6)
C110.0339 (7)0.0209 (6)0.0369 (8)0.0130 (5)0.0242 (6)0.0160 (5)
C120.0462 (8)0.0126 (5)0.0282 (7)0.0062 (5)0.0250 (6)0.0016 (4)
C130.0210 (5)0.0217 (5)0.0185 (5)0.0064 (4)0.0095 (4)0.0020 (4)
C140.0212 (5)0.0186 (5)0.0141 (5)0.0002 (4)0.0100 (4)0.0020 (4)
C150.0198 (5)0.0299 (6)0.0162 (5)0.0000 (5)0.0059 (4)0.0101 (5)
Geometric parameters (Å, º) top
C1—C51.4303 (15)C6—H6B0.9900
C1—C21.4351 (17)O6—C71.3354 (14)
C1—C61.4863 (17)C7—O71.2038 (15)
C1—Fe12.0318 (11)C7—C81.4968 (16)
C2—C31.4245 (18)C8—C91.3317 (17)
C2—Fe12.0334 (11)C8—C101.4977 (17)
C2—H20.9500C9—H9A0.9500
C3—C41.4276 (17)C9—H9B0.9500
C3—Fe12.0477 (12)C10—H10A0.9800
C3—H30.9500C10—H10B0.9800
C4—C51.4254 (16)C10—H10C0.9800
C4—Fe12.0539 (11)C11—C121.423 (2)
C4—H40.9500C11—C151.427 (2)
C5—Fe12.0434 (11)C11—H110.9500
C5—H50.9500C12—C131.4215 (18)
Fe1—C112.0362 (12)C12—H120.9500
Fe1—C152.0391 (12)C13—C141.4224 (17)
Fe1—C122.0457 (12)C13—H130.9500
Fe1—C142.0465 (11)C14—C151.4198 (17)
Fe1—C132.0546 (11)C14—H140.9500
C6—O61.4670 (14)C15—H150.9500
C6—H6A0.9900
C5—C1—C2107.55 (10)C14—Fe1—C4108.53 (5)
C5—C1—C6126.38 (11)C3—Fe1—C440.74 (5)
C2—C1—C6126.06 (11)C1—Fe1—C13158.06 (5)
C5—C1—Fe169.89 (6)C2—Fe1—C13122.61 (5)
C2—C1—Fe169.39 (6)C11—Fe1—C1368.49 (5)
C6—C1—Fe1125.21 (8)C15—Fe1—C1368.48 (5)
C3—C2—C1108.00 (10)C5—Fe1—C13160.09 (5)
C3—C2—Fe170.11 (7)C12—Fe1—C1340.57 (5)
C1—C2—Fe169.27 (6)C14—Fe1—C1340.59 (5)
C3—C2—H2126.0C3—Fe1—C13108.61 (5)
C1—C2—H2126.0C4—Fe1—C13124.38 (5)
Fe1—C2—H2126.2O6—C6—C1107.72 (10)
C2—C3—C4108.25 (10)O6—C6—H6A110.2
C2—C3—Fe169.03 (7)C1—C6—H6A110.2
C4—C3—Fe169.86 (7)O6—C6—H6B110.2
C2—C3—H3125.9C1—C6—H6B110.2
C4—C3—H3125.9H6A—C6—H6B108.5
Fe1—C3—H3126.8C7—O6—C6117.02 (9)
C5—C4—C3107.89 (10)O7—C7—O6123.40 (11)
C5—C4—Fe169.25 (6)O7—C7—C8123.20 (11)
C3—C4—Fe169.40 (7)O6—C7—C8113.36 (10)
C5—C4—H4126.1C9—C8—C7121.29 (11)
C3—C4—H4126.1C9—C8—C10123.95 (12)
Fe1—C4—H4126.9C7—C8—C10114.76 (11)
C4—C5—C1108.31 (10)C8—C9—H9A120.0
C4—C5—Fe170.04 (6)C8—C9—H9B120.0
C1—C5—Fe169.02 (6)H9A—C9—H9B120.0
C4—C5—H5125.8C8—C10—H10A109.5
C1—C5—H5125.8C8—C10—H10B109.5
Fe1—C5—H5126.7H10A—C10—H10B109.5
C1—Fe1—C241.34 (5)C8—C10—H10C109.5
C1—Fe1—C11105.41 (5)H10A—C10—H10C109.5
C2—Fe1—C11121.77 (5)H10B—C10—H10C109.5
C1—Fe1—C15121.59 (5)C12—C11—C15107.95 (11)
C2—Fe1—C15158.35 (5)C12—C11—Fe169.95 (7)
C11—Fe1—C1540.99 (6)C15—C11—Fe169.61 (7)
C1—Fe1—C541.09 (4)C12—C11—H11126.0
C2—Fe1—C569.08 (5)C15—C11—H11126.0
C11—Fe1—C5121.38 (5)Fe1—C11—H11126.0
C15—Fe1—C5106.69 (5)C13—C12—C11108.03 (11)
C1—Fe1—C12121.21 (5)C13—C12—Fe170.05 (7)
C2—Fe1—C12106.65 (5)C11—C12—Fe169.23 (7)
C11—Fe1—C1240.82 (6)C13—C12—H12126.0
C15—Fe1—C1268.72 (6)C11—C12—H12126.0
C5—Fe1—C12157.56 (5)Fe1—C12—H12126.3
C1—Fe1—C14158.75 (5)C12—C13—C14107.94 (11)
C2—Fe1—C14159.15 (5)C12—C13—Fe169.38 (7)
C11—Fe1—C1468.58 (5)C14—C13—Fe169.40 (6)
C15—Fe1—C1440.67 (5)C12—C13—H13126.0
C5—Fe1—C14123.32 (5)C14—C13—H13126.0
C12—Fe1—C1468.39 (5)Fe1—C13—H13126.8
C1—Fe1—C369.09 (5)C15—C14—C13108.27 (11)
C2—Fe1—C340.86 (5)C15—C14—Fe169.38 (7)
C11—Fe1—C3158.92 (6)C13—C14—Fe170.01 (7)
C15—Fe1—C3159.17 (6)C15—C14—H14125.9
C5—Fe1—C368.64 (5)C13—C14—H14125.9
C12—Fe1—C3123.39 (6)Fe1—C14—H14126.3
C14—Fe1—C3123.72 (5)C14—C15—C11107.80 (12)
C1—Fe1—C469.02 (5)C14—C15—Fe169.94 (7)
C2—Fe1—C468.86 (5)C11—C15—Fe169.40 (7)
C11—Fe1—C4158.10 (6)C14—C15—H15126.1
C15—Fe1—C4122.62 (5)C11—C15—H15126.1
C5—Fe1—C440.72 (4)Fe1—C15—H15126.1
C12—Fe1—C4160.14 (6)
Hydrogen-bond geometry (Å, º) top
Cg11 and Cg12 are the centroids of the C1–C5 and C11–C15 rings, respectively, for (I). Cg13 is the centroid of the C8C9 double bond.
D—H···AD—HH···AD···AD—H···A
C5—H5···O6i0.952.633.2958 (14)128
C10—H10C···O7ii0.982.443.3789 (18)161
C11—H11···O7iii0.952.743.6889 (18)179
C9—H9B···Cg11iv0.952.793.6983 (15)161
C12—H12···Cg12v0.952.783.6631 (15)155
C3—H3···Cg13vi0.952.783.689 (2)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z+2; (v) x, y+1/2, z1/2; (vi) x1, y, z.
(II) Ferrocene-1,1'-diylbis(methylene) dimethacrylate top
Crystal data top
[Fe(C10H11O2)2]Z = 2
Mr = 382.22F(000) = 400
Triclinic, P1Dx = 1.465 Mg m3
a = 8.7326 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3037 (3) ÅCell parameters from 6188 reflections
c = 11.0775 (4) Åθ = 4.4–66.4°
α = 64.245 (2)°µ = 0.89 mm1
β = 77.333 (2)°T = 89 K
γ = 77.167 (2)°Block, yellow
V = 866.70 (5) Å30.33 × 0.17 × 0.14 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6012 independent reflections
Radiation source: fine-focus sealed tube5239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 33.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1213
Tmin = 0.826, Tmax = 1.000k = 1515
16574 measured reflectionsl = 1516
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2726P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6012 reflectionsΔρmax = 0.55 e Å3
226 parametersΔρmin = 0.36 e Å3
Crystal data top
[Fe(C10H11O2)2]γ = 77.167 (2)°
Mr = 382.22V = 866.70 (5) Å3
Triclinic, P1Z = 2
a = 8.7326 (3) ÅMo Kα radiation
b = 10.3037 (3) ŵ = 0.89 mm1
c = 11.0775 (4) ÅT = 89 K
α = 64.245 (2)°0.33 × 0.17 × 0.14 mm
β = 77.333 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6012 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
5239 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 1.000Rint = 0.028
16574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
6012 reflectionsΔρmin = 0.36 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The hydrogen atoms on both methyl groups in (II) were equally disordered over two sites. These hydrogen atoms were placed in calculated positions, with the two sites rotated by 60° from one another and with d(C—H) = 0.98 and Uiso = 1.5Ueq (C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.02772 (14)0.46803 (13)0.79640 (13)0.0146 (2)
C20.00934 (15)0.52560 (13)0.65176 (13)0.0158 (2)
H20.08650.53400.59920.019*
C30.14439 (16)0.56809 (14)0.60009 (15)0.0205 (3)
H30.18750.60970.50720.025*
C40.22230 (16)0.53727 (15)0.71202 (17)0.0225 (3)
H40.32660.55420.70680.027*
C50.11628 (16)0.47662 (15)0.83315 (15)0.0192 (3)
H50.13730.44700.92270.023*
C60.17190 (15)0.41250 (14)0.89001 (13)0.0161 (2)
H6A0.22210.36370.85230.019*
H6B0.14160.34010.97860.019*
C70.38673 (14)0.60403 (14)0.81739 (13)0.0154 (2)
C80.49034 (15)0.73143 (14)0.83828 (15)0.0187 (2)
C90.49011 (17)0.75462 (16)0.95003 (16)0.0228 (3)
H9A0.55650.83560.96250.027*
H9B0.42360.68981.01560.027*
C100.5891 (2)0.82563 (18)0.73125 (19)0.0308 (3)
H10A0.56940.78770.66120.046*0.5
H10B0.70130.82720.77020.046*0.5
H10C0.56230.92470.69110.046*0.5
H10D0.65260.90540.75380.046*0.5
H10E0.52070.86580.64470.046*0.5
H10F0.65970.76840.72390.046*0.5
C110.36581 (15)0.22038 (13)0.69983 (13)0.0153 (2)
C120.26370 (16)0.23798 (14)0.60767 (13)0.0165 (2)
H120.28790.27710.51180.020*
C130.11925 (16)0.18672 (14)0.68441 (14)0.0181 (2)
H130.02970.18670.64880.022*
C140.13307 (16)0.13546 (14)0.82419 (14)0.0188 (3)
H140.05400.09510.89800.023*
C150.28520 (16)0.15493 (14)0.83428 (13)0.0172 (2)
H150.32600.12910.91570.021*
C160.52631 (16)0.26619 (15)0.65811 (16)0.0227 (3)
H16A0.52650.35620.57380.027*
H16B0.55320.28720.72950.027*
C170.72726 (15)0.06167 (14)0.73767 (14)0.0177 (2)
C180.83536 (15)0.05837 (14)0.70811 (14)0.0161 (2)
C190.83380 (19)0.07587 (18)0.59305 (17)0.0286 (3)
H19A0.90140.15410.57630.034*
H19B0.76510.00980.52980.034*
C200.93687 (18)0.15452 (16)0.81048 (17)0.0260 (3)
H20A0.91810.12140.88380.039*0.5
H20B0.91240.25410.84700.039*0.5
H20C1.04830.15270.76940.039*0.5
H20D1.00110.23070.78300.039*0.5
H20E1.00680.09800.81980.039*0.5
H20F0.87090.19940.89740.039*0.5
O60.28472 (11)0.53304 (10)0.90844 (10)0.01733 (18)
O70.39331 (11)0.56930 (11)0.72745 (10)0.01967 (19)
O160.64456 (11)0.15078 (11)0.63586 (11)0.0219 (2)
O170.71661 (16)0.07759 (13)0.84086 (12)0.0344 (3)
Fe10.16056 (2)0.35072 (2)0.72526 (2)0.01210 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0131 (5)0.0133 (5)0.0187 (6)0.0028 (4)0.0044 (4)0.0089 (4)
C20.0135 (5)0.0129 (5)0.0187 (6)0.0031 (4)0.0044 (4)0.0056 (4)
C30.0157 (6)0.0114 (5)0.0277 (7)0.0005 (4)0.0008 (5)0.0041 (5)
C40.0144 (6)0.0167 (6)0.0411 (8)0.0007 (5)0.0062 (5)0.0163 (6)
C50.0162 (6)0.0188 (6)0.0295 (7)0.0054 (5)0.0091 (5)0.0171 (5)
C60.0147 (5)0.0144 (5)0.0173 (6)0.0042 (4)0.0033 (4)0.0071 (5)
C70.0110 (5)0.0153 (5)0.0181 (6)0.0009 (4)0.0007 (4)0.0063 (4)
C80.0127 (5)0.0154 (6)0.0270 (7)0.0005 (4)0.0007 (5)0.0099 (5)
C90.0193 (6)0.0226 (7)0.0298 (7)0.0016 (5)0.0006 (5)0.0170 (6)
C100.0267 (7)0.0258 (7)0.0445 (10)0.0109 (6)0.0178 (7)0.0194 (7)
C110.0143 (5)0.0123 (5)0.0172 (6)0.0035 (4)0.0031 (4)0.0063 (4)
C120.0196 (6)0.0153 (5)0.0137 (5)0.0038 (4)0.0038 (4)0.0072 (4)
C130.0183 (6)0.0165 (6)0.0237 (6)0.0004 (4)0.0047 (5)0.0126 (5)
C140.0223 (6)0.0123 (5)0.0195 (6)0.0020 (4)0.0013 (5)0.0065 (5)
C150.0232 (6)0.0124 (5)0.0146 (6)0.0044 (4)0.0062 (5)0.0058 (4)
C160.0139 (6)0.0163 (6)0.0346 (8)0.0052 (5)0.0047 (5)0.0102 (6)
C170.0158 (6)0.0145 (5)0.0187 (6)0.0014 (4)0.0003 (4)0.0060 (5)
C180.0126 (5)0.0139 (5)0.0205 (6)0.0009 (4)0.0010 (4)0.0076 (5)
C190.0290 (8)0.0290 (8)0.0305 (8)0.0061 (6)0.0054 (6)0.0190 (7)
C200.0244 (7)0.0202 (6)0.0349 (8)0.0072 (5)0.0112 (6)0.0142 (6)
O60.0148 (4)0.0195 (4)0.0185 (4)0.0054 (3)0.0043 (3)0.0113 (4)
O70.0170 (4)0.0217 (5)0.0207 (5)0.0028 (4)0.0056 (4)0.0102 (4)
O160.0155 (4)0.0215 (5)0.0265 (5)0.0080 (4)0.0056 (4)0.0114 (4)
O170.0486 (7)0.0283 (6)0.0231 (6)0.0153 (5)0.0093 (5)0.0153 (5)
Fe10.01121 (9)0.01061 (9)0.01471 (9)0.00188 (6)0.00334 (6)0.00628 (7)
Geometric parameters (Å, º) top
C1—C21.4312 (18)C11—C121.4272 (19)
C1—C51.4354 (18)C11—C151.4306 (18)
C1—C61.4899 (18)C11—C161.4903 (18)
C1—Fe12.0401 (12)C11—Fe12.0331 (12)
C2—C31.4240 (18)C12—C131.4242 (19)
C2—Fe12.0441 (12)C12—Fe12.0478 (12)
C2—H20.9500C12—H120.9500
C3—C41.426 (2)C13—C141.426 (2)
C3—Fe12.0506 (13)C13—Fe12.0487 (13)
C3—H30.9500C13—H130.9500
C4—C51.425 (2)C14—C151.422 (2)
C4—Fe12.0463 (13)C14—Fe12.0463 (13)
C4—H40.9500C14—H140.9500
C5—Fe12.0451 (13)C15—Fe12.0486 (13)
C5—H50.9500C15—H150.9500
C6—O61.4640 (15)C16—O161.4624 (16)
C6—H6A0.9900C16—H16A0.9900
C6—H6B0.9900C16—H16B0.9900
C7—O71.2117 (16)C17—O171.2049 (17)
C7—O61.3451 (16)C17—O161.3413 (17)
C7—C81.4966 (18)C17—C181.4919 (17)
C8—C91.359 (2)C18—C191.366 (2)
C8—C101.472 (2)C18—C201.459 (2)
C9—H9A0.9500C19—H19A0.9500
C9—H9B0.9500C19—H19B0.9500
C10—H10A0.9800C20—H20A0.9800
C10—H10B0.9800C20—H20B0.9800
C10—H10C0.9800C20—H20C0.9800
C10—H10D0.9800C20—H20D0.9800
C10—H10E0.9800C20—H20E0.9800
C10—H10F0.9800C20—H20F0.9800
C2—C1—C5107.37 (11)C14—C15—C11107.77 (12)
C2—C1—C6125.72 (12)C14—C15—Fe169.60 (7)
C5—C1—C6126.90 (12)C11—C15—Fe168.90 (7)
C2—C1—Fe169.64 (7)C14—C15—H15126.1
C5—C1—Fe169.62 (7)C11—C15—H15126.1
C6—C1—Fe1126.87 (9)Fe1—C15—H15126.9
C3—C2—C1108.32 (12)O16—C16—C11110.02 (11)
C3—C2—Fe169.90 (7)O16—C16—H16A109.7
C1—C2—Fe169.34 (7)C11—C16—H16A109.7
C3—C2—H2125.8O16—C16—H16B109.7
C1—C2—H2125.8C11—C16—H16B109.7
Fe1—C2—H2126.5H16A—C16—H16B108.2
C2—C3—C4108.10 (12)O17—C17—O16123.79 (12)
C2—C3—Fe169.40 (7)O17—C17—C18123.78 (13)
C4—C3—Fe169.47 (8)O16—C17—C18112.42 (11)
C2—C3—H3126.0C19—C18—C20123.60 (12)
C4—C3—H3126.0C19—C18—C17120.73 (13)
Fe1—C3—H3126.7C20—C18—C17115.65 (12)
C5—C4—C3108.05 (12)C18—C19—H19A120.0
C5—C4—Fe169.57 (7)C18—C19—H19B120.0
C3—C4—Fe169.80 (8)H19A—C19—H19B120.0
C5—C4—H4126.0C18—C20—H20A109.5
C3—C4—H4126.0C18—C20—H20B109.5
Fe1—C4—H4126.2H20A—C20—H20B109.5
C4—C5—C1108.16 (12)C18—C20—H20C109.5
C4—C5—Fe169.66 (8)H20A—C20—H20C109.5
C1—C5—Fe169.24 (7)H20B—C20—H20C109.5
C4—C5—H5125.9C18—C20—H20D109.5
C1—C5—H5125.9H20A—C20—H20D141.1
Fe1—C5—H5126.7H20B—C20—H20D56.3
O6—C6—C1110.05 (10)H20C—C20—H20D56.3
O6—C6—H6A109.7C18—C20—H20E109.5
C1—C6—H6A109.7H20A—C20—H20E56.3
O6—C6—H6B109.7H20B—C20—H20E141.1
C1—C6—H6B109.7H20C—C20—H20E56.3
H6A—C6—H6B108.2H20D—C20—H20E109.5
O7—C7—O6123.65 (11)C18—C20—H20F109.5
O7—C7—C8123.57 (12)H20A—C20—H20F56.3
O6—C7—C8112.77 (11)H20B—C20—H20F56.3
C9—C8—C10123.98 (13)H20C—C20—H20F141.1
C9—C8—C7120.60 (13)H20D—C20—H20F109.5
C10—C8—C7115.43 (13)H20E—C20—H20F109.5
C8—C9—H9A120.0C7—O6—C6116.32 (10)
C8—C9—H9B120.0C17—O16—C16116.99 (11)
H9A—C9—H9B120.0C11—Fe1—C1165.58 (5)
C8—C10—H10A109.5C11—Fe1—C2151.83 (5)
C8—C10—H10B109.5C1—Fe1—C241.03 (5)
H10A—C10—H10B109.5C11—Fe1—C5127.01 (5)
C8—C10—H10C109.5C1—Fe1—C541.14 (5)
H10A—C10—H10C109.5C2—Fe1—C568.79 (5)
H10B—C10—H10C109.5C11—Fe1—C1468.78 (5)
C8—C10—H10D109.5C1—Fe1—C14108.11 (5)
H10A—C10—H10D141.1C2—Fe1—C14127.89 (5)
H10B—C10—H10D56.3C5—Fe1—C14119.23 (6)
H10C—C10—H10D56.3C11—Fe1—C4106.91 (5)
C8—C10—H10E109.5C1—Fe1—C469.07 (5)
H10A—C10—H10E56.3C2—Fe1—C468.66 (5)
H10B—C10—H10E141.1C5—Fe1—C440.78 (6)
H10C—C10—H10E56.3C14—Fe1—C4152.91 (6)
H10D—C10—H10E109.5C11—Fe1—C1240.94 (5)
C8—C10—H10F109.5C1—Fe1—C12152.40 (5)
H10A—C10—H10F56.3C2—Fe1—C12118.10 (5)
H10B—C10—H10F56.3C5—Fe1—C12164.93 (6)
H10C—C10—H10F141.1C14—Fe1—C1268.46 (5)
H10D—C10—H10F109.5C4—Fe1—C12126.76 (6)
H10E—C10—H10F109.5C11—Fe1—C1541.03 (5)
C12—C11—C15107.88 (11)C1—Fe1—C15127.62 (5)
C12—C11—C16124.30 (12)C2—Fe1—C15165.87 (5)
C15—C11—C16127.81 (13)C5—Fe1—C15107.96 (5)
C12—C11—Fe170.08 (7)C14—Fe1—C1540.63 (6)
C15—C11—Fe170.06 (7)C4—Fe1—C15118.50 (6)
C16—C11—Fe1124.63 (9)C12—Fe1—C1568.66 (5)
C13—C12—C11108.13 (11)C11—Fe1—C1368.88 (5)
C13—C12—Fe169.69 (7)C1—Fe1—C13118.61 (5)
C11—C12—Fe168.98 (7)C2—Fe1—C13107.70 (5)
C13—C12—H12125.9C5—Fe1—C13153.24 (6)
C11—C12—H12125.9C14—Fe1—C1340.76 (6)
Fe1—C12—H12127.0C4—Fe1—C13164.74 (6)
C12—C13—C14107.79 (12)C12—Fe1—C1340.69 (5)
C12—C13—Fe169.62 (7)C15—Fe1—C1368.63 (5)
C14—C13—Fe169.53 (7)C11—Fe1—C3117.70 (5)
C12—C13—H13126.1C1—Fe1—C368.92 (5)
C14—C13—H13126.1C2—Fe1—C340.70 (5)
Fe1—C13—H13126.3C5—Fe1—C368.58 (6)
C15—C14—C13108.41 (11)C14—Fe1—C3165.43 (6)
C15—C14—Fe169.77 (7)C4—Fe1—C340.73 (6)
C13—C14—Fe169.71 (7)C12—Fe1—C3107.17 (6)
C15—C14—H14125.8C15—Fe1—C3152.30 (6)
C13—C14—H14125.8C13—Fe1—C3127.05 (6)
Fe1—C14—H14126.3
C5—C1—C2—C30.43 (14)C15—C11—C12—Fe160.13 (8)
C6—C1—C2—C3179.35 (11)C16—C11—C12—Fe1118.98 (12)
Fe1—C1—C2—C359.22 (9)C11—C12—C13—C140.83 (14)
C5—C1—C2—Fe159.64 (8)Fe1—C12—C13—C1459.26 (9)
C6—C1—C2—Fe1121.43 (12)C11—C12—C13—Fe158.43 (9)
C1—C2—C3—C40.00 (14)C12—C13—C14—C150.08 (14)
Fe1—C2—C3—C458.87 (9)Fe1—C13—C14—C1559.24 (9)
C1—C2—C3—Fe158.87 (9)C12—C13—C14—Fe159.32 (9)
C2—C3—C4—C50.43 (15)C13—C14—C15—C110.70 (14)
Fe1—C3—C4—C559.26 (9)Fe1—C14—C15—C1158.50 (8)
C2—C3—C4—Fe158.83 (9)C13—C14—C15—Fe159.20 (9)
C3—C4—C5—C10.69 (14)C12—C11—C15—C141.21 (14)
Fe1—C4—C5—C158.71 (9)C16—C11—C15—C14177.87 (12)
C3—C4—C5—Fe159.40 (9)Fe1—C11—C15—C1458.93 (9)
C2—C1—C5—C40.69 (14)C12—C11—C15—Fe160.14 (8)
C6—C1—C5—C4179.60 (12)C16—C11—C15—Fe1118.93 (13)
Fe1—C1—C5—C458.97 (9)C12—C11—C16—O1685.75 (15)
C2—C1—C5—Fe159.66 (8)C15—C11—C16—O1695.31 (16)
C6—C1—C5—Fe1121.43 (12)Fe1—C11—C16—O16174.03 (9)
C2—C1—C6—O685.46 (15)O17—C17—C18—C19175.54 (15)
C5—C1—C6—O693.26 (14)O16—C17—C18—C195.14 (19)
Fe1—C1—C6—O6175.66 (8)O17—C17—C18—C203.1 (2)
O7—C7—C8—C9172.28 (13)O16—C17—C18—C20176.23 (12)
O6—C7—C8—C98.25 (18)O7—C7—O6—C63.27 (18)
O7—C7—C8—C107.6 (2)C8—C7—O6—C6176.20 (10)
O6—C7—C8—C10171.90 (12)C1—C6—O6—C787.20 (13)
C15—C11—C12—C131.27 (14)O17—C17—O16—C165.0 (2)
C16—C11—C12—C13177.85 (11)C18—C17—O16—C16175.65 (11)
Fe1—C11—C12—C1358.87 (9)C11—C16—O16—C1797.76 (14)
Hydrogen-bond geometry (Å, º) top
Cg21 and Cg22 are the centroids of the C1–C5 and C11–C15 rings, respectively, for (II).
D—H···AD—HH···AD···AD—H···A
C4—H4···O7i0.952.553.4926 (17)172
C5—H5···O6ii0.952.593.4499 (17)151
C9—H9A···O17ii0.952.703.4956 (17)142
C15—H15···O17iii0.952.623.3451 (17)133
C12—H12···O7iv0.952.513.4285 (17)162
C10—H10D···Cg22v0.982.773.698 (2)159
C20—H20D···Cg21vi0.982.913.8463 (19)161
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+2; (iii) x+1, y, z+2; (iv) x, y+1, z+1; (v) x1, y+1, z; (vi) x+1, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Fe(C5H5)(C10H11O2)][Fe(C10H11O2)2]
Mr284.13382.22
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)8989
a, b, c (Å)9.2871 (3), 19.6330 (7), 7.3663 (3)8.7326 (3), 10.3037 (3), 11.0775 (4)
α, β, γ (°)90, 108.604 (2), 9064.245 (2), 77.333 (2), 77.167 (2)
V3)1272.94 (8)866.70 (5)
Z42
Radiation typeMo KαMo Kα
µ (mm1)1.170.89
Crystal size (mm)0.35 × 0.34 × 0.050.33 × 0.17 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Multi-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.760, 1.0000.826, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
23442, 4534, 3861 16574, 6012, 5239
Rint0.0320.028
(sin θ/λ)max1)0.7750.775
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.05 0.034, 0.088, 1.05
No. of reflections45346012
No. of parameters164226
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.490.55, 0.36

Computer programs: APEX2 (Bruker, 2011), APEX2 and SAINT (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and TITAN (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (I) top
Cg11 and Cg12 are the centroids of the C1–C5 and C11–C15 rings, respectively, for (I). Cg13 is the centroid of the C8C9 double bond.
D—H···AD—HH···AD···AD—H···A
C5—H5···O6i0.952.633.2958 (14)128
C10—H10C···O7ii0.982.443.3789 (18)161
C11—H11···O7iii0.952.743.6889 (18)179
C9—H9B···Cg11iv0.952.793.6983 (15)161
C12—H12···Cg12v0.952.783.6631 (15)155
C3—H3···Cg13vi0.952.783.689 (2)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z+2; (v) x, y+1/2, z1/2; (vi) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
Cg21 and Cg22 are the centroids of the C1–C5 and C11–C15 rings, respectively, for (II).
D—H···AD—HH···AD···AD—H···A
C4—H4···O7i0.952.553.4926 (17)171.5
C5—H5···O6ii0.952.593.4499 (17)150.7
C9—H9A···O17ii0.952.703.4956 (17)141.5
C15—H15···O17iii0.952.623.3451 (17)133.4
C12—H12···O7iv0.952.513.4285 (17)162.2
C10—H10D···Cg22v0.982.773.698 (2)159
C20—H20D···Cg21vi0.982.913.8463 (19)161
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+2; (iii) x+1, y, z+2; (iv) x, y+1, z+1; (v) x1, y+1, z; (vi) x+1, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds