Download citation
Download citation
link to html
In the linear coordination polymer catena-poly[[[aqua­(1,10-phenanthroline-[kappa]2N,N')copper(II)]-[mu]-pyridine-2,6-dicarboxyl­ato-[kappa]4O2:O2',N,O6-[(nitrato-[kappa]2O,O')bismuth(III)]-[mu]-pyridine-2,6-di­carboxyl­ato-[kappa]4O2,N,O6:O6'] dihydrate], {[BiIIICuII(C7H3NO4)2(NO3)(C12H8N2)(H2O)]·2H2O}n, the BiIII cation is O,N,O'-chelated by the two pyridine-2,6-di­carboxyl­ate ligands and O,O'-chelated by the nitrate anion, the nine coordinating atoms conferring a tricapped trigonal prismatic environment on the metal centre. Each pyridine-2,6-di­carboxyl­ate ligand uses one of its carboxyl­ate O atoms to bind to an aqua­(1,10-phenanthroline)copper(II) unit, the Cu-O dative bonds giving rise to the formation of a ribbon motif. The CuII cation exhibits a square-pyramidal geometry. The ribbon motif propagates along the shortest axis of the triclinic unit cell and the solvent water mol­ecules are hydrogen bonded to the same ribbon.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614028125/uk3108sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614028125/uk3108Isup2.hkl
Contains datablock I

CCDC reference: 1041160

Introduction top

For bis­muth derivatives of pyridine-2,6-di­carb­oxy­lic acid, the anion, in addition to engaging in N,O,O'-chelation, can also serve as a bridge between adjacent metal centres. Because the metal is trivalent and the carb­oxy­lic acid diprotic, some compounds exist as salts; in these bis­muthates, the negative charge is balanced by an ammonium counter-ion. Neutral compounds have also been isolated (Aghabozorg, Nemati et al., 2008; Aghabozorg, Ramezanipour et al., 2008; Aghabozorg et al., 2011; Anjaneyulu et al., 2010; Anjaneyulu & Kumara Swamy, 2011; Jeon et al., 2012; Ranjbar et al., 2003; Sharif et al., 2007; Sheshmani et al., 2005; Soleimannejad & Gholizadeh, 2012; Sushrutha & Natarajan, 2013; Stavila et al., 2009; Thirumurugan et al., 2012; Zevaco et al., 1992, 2009; Zhang, Tian et al., 2013; Zhang, Wang et al., 2013).

Charge balance in other bis­muthate salts is maintained by suitable metal cations. In the cobalt and nickel salts, the hexa­aqua­metallate(II) cation inter­acts with the dibismuthate anion through hydrogen-bonding inter­actions involving coordinated water molecules (Stavila et al., 2011). In the lithium derivative, the pyridine-2,6-di­carboxyl­ate unit uses a carboxyl­ate arm to bind to the metal centre (Thirumurugan et al., 2012).

An attempt to synthesize a heterometallic bis­muth pyridine-2,6-di­carboxyl­ate (pydc) complex using a hydro­thermal method instead of a conventional solution method yielded the hydrated bis­(2,2'-bi­pyridine)­chloridocopper(II) hemi[aqua­chloridobis(pyridine-2,6-di­carboxyl­ato)bis­muthate(III)] salt (Wang et al., 2011). Inter­estingly, replacing copper chloride with copper nitrate [as well as changing the ligand from 2,2'-bi­pyridine to 1,10-phenanthroline (phen)] yielded the title heterometallic compound, {[BiIIICuII(pydc)2(NO3)(phen)(H2O)].2H2O}n, (I), the structure of which is reported here.

Experimental top

Synthesis and crystallization top

Bismuth nitrate penta­hydrate (0.49 g, 1 mmol), copper chloride dihydrate (0.26 g, 1.5 mmol), pyridine-2,6-di­carb­oxy­lic acid (0.25 g, 1.5 mmol), 1,10-phenanthroline (0.09 g, 0.5 mmol), ethyl­ene glycol (6 ml) and water (2 ml) were placed in a 50 ml Teflon-lined Parr bomb. The Parr bomb was maintained at 433 K for 7 d and then cooled to room temperature at a rate of 10 K h-1. The solution was filtered and slow evaporation over a period of 5 d yielded blue prismatic crystals in 40% yield (based on bis­muth nitrate). These were collected and washed with water. Elemental analysis, calculated: C 34.74, H 2.24, N 7.79%; found: C 35.11, H 1.90, N 8.07%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. C-bound H atoms were placed in calculated positions, with C—H = 0.93 Å, and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2–1.5Ueq(C). The water H atoms were placed in chemically sensible positions on the basis of hydrogen-bonding inter­actions, with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O). The final difference Fourier map had a peak 0.90 Å from atom Bi1 and a hole 0.92 Å from the same atom.

Results and discussion top

The BiIII cation in (I) is N,O,O'-chelated by the pydc ligands and O,O'-chelated by the nitrate anion, the nine coordinating atoms leading to a tricapped trigonal prismatic environment at the metal centre. The two chelating pydc ligands are approximately perpendicular; their planes are aligned at an angle of 83.3 (1)°. The triangles of the trigonal prism are nearly parallel, these being aligned at an angle of 16.1 (3)°. The BiIII cation lies 0.357 (3) Å out of the plane that is made up of the atoms that cap the squares; this large deviation arises from the somewhat anisobidendate chelating nature of the nitrate ion (Fig. 2).

Each pydc ligand uses one of its carboxyl­ate O atoms to bind to a water-coordinated phen-chelated CuII cation. The two chelating ligands are nearly coplanar, aligned at an angle of 3.2 (2)°. This coplanarity allows for the formation of a water–carboxyl­ate O—H···O hydrogen bond that stabilizes the ribbon motif. The CuII cation shows a square-pyramidal geometry (Fig. 3). The ribbon motif propagates along the shortest axis of the triclinic unit cell, and the solvent water molecules are hydrogen-bonded to the same ribbon (Fig. 4, Table 2).

The title compound is the first heterometallic system having a bis­muth carboxyl­ate unit connected to a CuII cation whose structure has been determined by X-ray crystallography. There is only one other example of a copper carboxyl­ate that is connected to a BiIII cation; this system is a mixed-metal metal–organic framework (MOF) displaying a two-dimensional network that possesses catalytic activity (Shi et al., 2013).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, -y + 2, -z; (ii) x + 1, y, z.]
[Figure 2] Fig. 2. The nine-coordinate geometry of the BiIII cation in (I).
[Figure 3] Fig. 3. The five-coordinate geometry of the CuII cation in (I).
[Figure 4] Fig. 4. The linear ribbon motif in (I).
catena-Poly[[[aqua(1,10-phenanthroline-κ2N,N')copper(II)]-µ-pyridine-2,6-dicarboxylato-κ4O2:O2',N,O6-[(nitrato-κ2O,O')bismuth(III)]-µ-pyridine-2,6-dicarboxylato-κ4<O2,N,O6:O6']] dihydrate] top
Crystal data top
[BiCu(C7H3NO4)2(NO3)(C12H8N2)(H2O)]·2H2OZ = 2
Mr = 898.99F(000) = 870
Triclinic, P1Dx = 2.136 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1376 (8) ÅCell parameters from 3108 reflections
b = 12.1229 (11) Åθ = 2.4–26.5°
c = 13.4135 (12) ŵ = 7.13 mm1
α = 86.649 (2)°T = 296 K
β = 87.233 (2)°Prism, blue
γ = 70.502 (1)°0.26 × 0.22 × 0.18 mm
V = 1397.6 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5656 independent reflections
Radiation source: fine-focus sealed tube4523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.259, Tmax = 0.360k = 1415
7803 measured reflectionsl = 1216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0611P)2]
where P = (Fo2 + 2Fc2)/3
5656 reflections(Δ/σ)max = 0.001
424 parametersΔρmax = 3.53 e Å3
0 restraintsΔρmin = 2.65 e Å3
Crystal data top
[BiCu(C7H3NO4)2(NO3)(C12H8N2)(H2O)]·2H2Oγ = 70.502 (1)°
Mr = 898.99V = 1397.6 (2) Å3
Triclinic, P1Z = 2
a = 9.1376 (8) ÅMo Kα radiation
b = 12.1229 (11) ŵ = 7.13 mm1
c = 13.4135 (12) ÅT = 296 K
α = 86.649 (2)°0.26 × 0.22 × 0.18 mm
β = 87.233 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5656 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4523 reflections with I > 2σ(I)
Tmin = 0.259, Tmax = 0.360Rint = 0.036
7803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.01Δρmax = 3.53 e Å3
5656 reflectionsΔρmin = 2.65 e Å3
424 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.02065 (3)0.85438 (3)0.09838 (2)0.02660 (12)
Cu10.52249 (12)0.60313 (9)0.35139 (8)0.0333 (3)
O10.4276 (6)0.5682 (5)0.2330 (5)0.0326 (14)
O20.2141 (7)0.7270 (6)0.2166 (5)0.0421 (16)
O30.1075 (7)0.8068 (5)0.0390 (5)0.0378 (14)
O40.1050 (8)0.6804 (7)0.1528 (6)0.0534 (19)
O50.3263 (7)0.6866 (6)0.2597 (5)0.0459 (17)
O60.1276 (6)0.7210 (5)0.1796 (5)0.0350 (15)
O70.1487 (6)1.0661 (5)0.0272 (5)0.0375 (15)
O80.3633 (8)1.2232 (6)0.0187 (8)0.079 (3)
O90.1198 (11)0.9311 (10)0.2849 (8)0.090 (3)
O100.0815 (14)0.9761 (9)0.2612 (9)0.104 (4)
O110.0129 (14)0.9629 (9)0.4110 (9)0.106 (4)
O1W0.3405 (7)0.7382 (6)0.3830 (5)0.0435 (16)
H110.28140.74900.33470.065*
H120.36130.80030.38660.065*
O2W0.3191 (12)0.9533 (9)0.4277 (9)0.105 (4)
H210.34480.95590.48660.158*
H220.37680.97640.38710.158*
O3W0.3984 (18)0.9817 (17)0.6101 (12)0.191 (9)
H310.31471.00940.64300.286*
H320.45120.91670.63620.286*
N10.1397 (7)0.6530 (5)0.0496 (5)0.0259 (15)
N20.3049 (7)0.9379 (6)0.1230 (5)0.0301 (16)
N30.6818 (8)0.4442 (7)0.3510 (6)0.0365 (18)
N40.6224 (10)0.6074 (7)0.4842 (6)0.043 (2)
N50.0189 (12)0.9561 (7)0.3127 (8)0.052 (2)
C10.3048 (9)0.6303 (7)0.1887 (7)0.0317 (19)
C20.2644 (9)0.5831 (7)0.0960 (6)0.0278 (18)
C30.3495 (10)0.4738 (7)0.0625 (7)0.038 (2)
H30.43510.42530.09680.046*
C40.3037 (10)0.4387 (8)0.0237 (7)0.039 (2)
H40.36070.36640.04880.047*
C50.1731 (11)0.5106 (8)0.0730 (8)0.040 (2)
H50.14020.48730.13030.047*
C60.0933 (9)0.6189 (7)0.0332 (7)0.0294 (19)
C70.0498 (10)0.7049 (8)0.0805 (7)0.034 (2)
C80.2708 (10)0.7488 (7)0.2063 (6)0.0293 (19)
C90.3752 (9)0.8694 (7)0.1709 (6)0.0286 (18)
C100.5334 (10)0.9061 (8)0.1866 (8)0.043 (2)
H100.58250.85550.21490.052*
C110.6183 (10)1.0219 (8)0.1586 (8)0.045 (2)
H11A0.72541.04980.17000.054*
C120.5427 (10)1.0959 (8)0.1137 (7)0.039 (2)
H12A0.59681.17410.09740.047*
C130.3843 (9)1.0483 (7)0.0941 (7)0.0320 (19)
C140.2916 (10)1.1200 (8)0.0438 (8)0.042 (2)
C150.7806 (10)0.4208 (8)0.4282 (7)0.039 (2)
C160.7088 (11)0.3632 (8)0.2819 (8)0.043 (2)
H160.64350.37740.22810.052*
C170.8334 (13)0.2577 (9)0.2892 (10)0.059 (3)
H170.84960.20300.24040.070*
C180.9311 (13)0.2345 (10)0.3673 (10)0.065 (3)
H181.01290.16390.37130.078*
C190.9094 (11)0.3160 (8)0.4419 (8)0.047 (3)
C200.9999 (14)0.3015 (12)0.5285 (11)0.071 (4)
H201.08360.23290.53800.085*
C210.9679 (13)0.3845 (11)0.5974 (9)0.060 (3)
H21A1.03040.37290.65240.071*
C220.8377 (13)0.4900 (11)0.5857 (8)0.053 (3)
C230.7957 (15)0.5801 (13)0.6539 (9)0.067 (4)
H230.85310.57250.71080.080*
C240.6716 (16)0.6783 (12)0.6369 (10)0.068 (4)
H240.64350.73790.68200.082*
C250.5843 (13)0.6891 (10)0.5484 (8)0.053 (3)
H250.49880.75590.53690.064*
C260.7464 (11)0.5079 (9)0.5014 (7)0.042 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.02385 (16)0.02133 (16)0.0358 (2)0.00949 (11)0.00466 (12)0.00475 (12)
Cu10.0334 (5)0.0340 (6)0.0361 (7)0.0163 (5)0.0091 (4)0.0052 (5)
O10.027 (3)0.029 (3)0.042 (4)0.007 (2)0.016 (3)0.001 (3)
O20.042 (4)0.036 (4)0.044 (4)0.006 (3)0.011 (3)0.003 (3)
O30.035 (3)0.037 (4)0.039 (4)0.009 (3)0.014 (3)0.000 (3)
O40.047 (4)0.060 (5)0.053 (5)0.014 (3)0.023 (3)0.013 (4)
O50.042 (4)0.038 (4)0.060 (5)0.021 (3)0.002 (3)0.017 (3)
O60.030 (3)0.023 (3)0.050 (4)0.010 (2)0.005 (3)0.016 (3)
O70.025 (3)0.030 (3)0.055 (4)0.008 (2)0.003 (3)0.013 (3)
O80.038 (4)0.027 (4)0.155 (9)0.001 (3)0.024 (5)0.032 (4)
O90.070 (6)0.110 (8)0.094 (8)0.031 (6)0.002 (5)0.021 (6)
O100.121 (9)0.082 (7)0.119 (10)0.047 (7)0.027 (7)0.036 (7)
O110.153 (11)0.098 (8)0.091 (9)0.071 (8)0.026 (7)0.006 (6)
O1W0.040 (4)0.045 (4)0.048 (4)0.016 (3)0.006 (3)0.008 (3)
O2W0.120 (9)0.078 (7)0.121 (9)0.031 (6)0.033 (7)0.027 (6)
O3W0.157 (13)0.28 (2)0.187 (15)0.129 (14)0.037 (11)0.155 (15)
N10.026 (3)0.021 (3)0.033 (4)0.011 (3)0.007 (3)0.006 (3)
N20.025 (3)0.020 (3)0.041 (5)0.004 (3)0.002 (3)0.007 (3)
N30.034 (4)0.037 (4)0.042 (5)0.018 (3)0.014 (3)0.013 (4)
N40.061 (5)0.054 (5)0.027 (5)0.035 (4)0.006 (4)0.002 (4)
N50.056 (6)0.037 (5)0.065 (7)0.019 (4)0.008 (5)0.006 (4)
C10.029 (4)0.030 (5)0.039 (5)0.015 (4)0.004 (4)0.005 (4)
C20.022 (4)0.023 (4)0.037 (5)0.007 (3)0.002 (3)0.008 (3)
C30.033 (5)0.026 (5)0.055 (7)0.009 (4)0.010 (4)0.011 (4)
C40.041 (5)0.026 (4)0.046 (6)0.005 (4)0.006 (4)0.005 (4)
C50.044 (5)0.030 (5)0.046 (6)0.014 (4)0.001 (4)0.003 (4)
C60.021 (4)0.030 (4)0.036 (5)0.008 (3)0.001 (3)0.002 (4)
C70.030 (4)0.038 (5)0.035 (6)0.012 (4)0.001 (4)0.004 (4)
C80.038 (5)0.028 (4)0.028 (5)0.020 (4)0.002 (4)0.005 (3)
C90.028 (4)0.030 (4)0.028 (5)0.011 (3)0.001 (3)0.001 (3)
C100.028 (4)0.044 (6)0.060 (7)0.016 (4)0.006 (4)0.018 (5)
C110.022 (4)0.044 (6)0.064 (7)0.008 (4)0.002 (4)0.017 (5)
C120.026 (4)0.032 (5)0.055 (6)0.005 (4)0.000 (4)0.008 (4)
C130.025 (4)0.025 (4)0.047 (6)0.010 (3)0.007 (4)0.010 (4)
C140.031 (5)0.026 (5)0.066 (7)0.007 (4)0.005 (4)0.015 (4)
C150.036 (5)0.042 (5)0.047 (6)0.025 (4)0.008 (4)0.013 (4)
C160.049 (6)0.036 (5)0.044 (6)0.013 (4)0.010 (5)0.005 (4)
C170.057 (7)0.038 (6)0.078 (9)0.010 (5)0.013 (6)0.000 (6)
C180.052 (6)0.038 (6)0.101 (10)0.010 (5)0.024 (6)0.022 (6)
C190.047 (6)0.036 (5)0.063 (7)0.023 (4)0.013 (5)0.019 (5)
C200.056 (7)0.076 (9)0.089 (10)0.037 (6)0.045 (7)0.053 (8)
C210.061 (7)0.071 (8)0.061 (8)0.045 (7)0.039 (6)0.037 (7)
C220.065 (7)0.073 (8)0.039 (7)0.048 (6)0.003 (5)0.010 (6)
C230.074 (8)0.101 (11)0.046 (8)0.059 (8)0.020 (6)0.022 (7)
C240.083 (9)0.079 (9)0.062 (9)0.052 (8)0.001 (7)0.014 (7)
C250.062 (7)0.052 (7)0.049 (7)0.023 (5)0.007 (5)0.003 (5)
C260.043 (5)0.055 (6)0.038 (6)0.031 (5)0.014 (4)0.024 (5)
Geometric parameters (Å, º) top
Bi1—O22.708 (6)N4—C261.369 (13)
Bi1—O32.220 (6)C1—C21.510 (13)
Bi1—O62.346 (5)C2—C31.382 (12)
Bi1—O92.727 (10)C3—C41.384 (14)
Bi1—O72.586 (6)C3—H30.9300
Bi1—O7i2.591 (5)C4—C51.392 (13)
Bi1—O103.052 (11)C4—H40.9300
Bi1—N12.498 (6)C5—C61.395 (12)
Bi1—N22.466 (6)C5—H50.9300
Cu1—O11.977 (6)C6—C71.514 (12)
Cu1—O5ii2.251 (6)C8—C91.518 (12)
Cu1—O1W1.955 (6)C9—C101.372 (11)
Cu1—N31.990 (8)C10—C111.397 (13)
Cu1—N42.051 (8)C10—H100.9300
O1—C11.276 (10)C11—C121.398 (12)
O2—C11.254 (10)C11—H11A0.9300
O3—C71.315 (11)C12—C131.386 (11)
O4—C71.210 (11)C12—H12A0.9300
O5—C81.223 (9)C13—C141.515 (11)
O5—Cu1iii2.251 (6)C15—C191.425 (13)
O6—C81.277 (9)C15—C261.432 (15)
O7—C141.265 (10)C16—C171.402 (14)
O7—Bi1i2.591 (5)C16—H160.9300
O8—C141.239 (11)C17—C181.364 (16)
O9—N51.146 (12)C17—H170.9300
O10—N51.202 (13)C18—C191.408 (17)
O11—N51.331 (13)C18—H180.9300
O1W—H110.8400C19—C201.426 (16)
O1W—H120.8400C20—C211.356 (19)
O2W—H210.8400C20—H200.9300
O2W—H220.8399C21—C221.433 (16)
O3W—H310.8400C21—H21A0.9300
O3W—H320.8400C22—C261.401 (14)
N1—C21.328 (10)C22—C231.407 (18)
N1—C61.342 (11)C23—C241.359 (18)
N2—C91.329 (10)C23—H230.9300
N2—C131.337 (10)C24—C251.438 (17)
N3—C161.344 (13)C24—H240.9300
N3—C151.361 (12)C25—H250.9300
N4—C251.298 (13)
O3—Bi1—O684.5 (2)O2—C1—C2117.4 (7)
O3—Bi1—N277.4 (2)O1—C1—C2117.4 (7)
O6—Bi1—N267.5 (2)N1—C2—C3122.2 (8)
O3—Bi1—N168.9 (2)N1—C2—C1115.4 (7)
O6—Bi1—N171.9 (2)C3—C2—C1122.4 (8)
N2—Bi1—N1128.8 (2)C2—C3—C4118.0 (8)
O3—Bi1—O783.5 (2)C2—C3—H3121.0
O6—Bi1—O7131.46 (17)C4—C3—H3121.0
N2—Bi1—O764.00 (19)C3—C4—C5120.5 (8)
N1—Bi1—O7142.7 (2)C3—C4—H4119.7
O3—Bi1—O7i83.5 (2)C5—C4—H4119.7
O6—Bi1—O7i159.0 (2)C4—C5—C6117.5 (9)
N2—Bi1—O7i126.0 (2)C4—C5—H5121.3
N1—Bi1—O7i87.68 (19)C6—C5—H5121.3
O7—Bi1—O7i64.0 (2)N1—C6—C5121.6 (8)
O3—Bi1—O2130.1 (2)N1—C6—C7116.0 (7)
O6—Bi1—O278.5 (2)C5—C6—C7122.4 (8)
N2—Bi1—O2134.1 (2)O4—C7—O3123.0 (8)
N1—Bi1—O261.3 (2)O4—C7—C6121.1 (8)
O7—Bi1—O2140.6 (2)O3—C7—C6116.0 (8)
O7i—Bi1—O296.25 (19)O5—C8—O6124.4 (8)
O3—Bi1—O9140.9 (3)O5—C8—C9119.2 (7)
O6—Bi1—O972.3 (3)O6—C8—C9116.3 (6)
N2—Bi1—O965.0 (3)N2—C9—C10121.5 (8)
N1—Bi1—O9128.4 (3)N2—C9—C8116.2 (7)
O7—Bi1—O988.8 (3)C10—C9—C8122.2 (7)
O7i—Bi1—O9126.7 (3)C9—C10—C11118.1 (8)
O2—Bi1—O976.1 (3)C9—C10—H10121.0
O3—Bi1—O10166.4 (3)C11—C10—H10121.0
O6—Bi1—O10106.8 (3)C10—C11—C12120.1 (8)
N2—Bi1—O1099.8 (3)C10—C11—H11A119.9
N1—Bi1—O10121.2 (3)C12—C11—H11A119.9
O7—Bi1—O1083.4 (3)C13—C12—C11117.6 (8)
O7i—Bi1—O1087.7 (3)C13—C12—H12A121.2
O2—Bi1—O1061.1 (3)C11—C12—H12A121.2
O9—Bi1—O1042.0 (3)N2—C13—C12121.2 (7)
O1W—Cu1—O193.2 (3)N2—C13—C14116.8 (7)
O1W—Cu1—N3163.6 (3)C12—C13—C14121.9 (7)
O1—Cu1—N390.3 (3)O8—C14—O7126.3 (8)
O1W—Cu1—N492.3 (3)O8—C14—C13117.4 (8)
O1—Cu1—N4168.9 (3)O7—C14—C13116.2 (7)
N3—Cu1—N481.8 (3)N3—C15—C19124.8 (10)
O1W—Cu1—O5ii102.3 (3)N3—C15—C26116.1 (9)
O1—Cu1—O5ii93.6 (3)C19—C15—C26119.0 (9)
N3—Cu1—O5ii93.5 (3)N3—C16—C17121.3 (10)
N4—Cu1—O5ii94.7 (3)N3—C16—H16119.3
C1—O1—Cu1129.2 (6)C17—C16—H16119.3
C1—O2—Bi1119.6 (6)C18—C17—C16120.6 (12)
C7—O3—Bi1124.9 (5)C18—C17—H17119.7
C8—O5—Cu1iii167.6 (6)C16—C17—H17119.7
C8—O6—Bi1122.8 (5)C17—C18—C19120.8 (10)
C14—O7—Bi1120.5 (5)C17—C18—H18119.6
C14—O7—Bi1i122.8 (5)C19—C18—H18119.6
Bi1—O7—Bi1i116.0 (2)C18—C19—C15114.8 (9)
N5—O9—Bi1103.6 (8)C18—C19—C20126.5 (11)
N5—O10—Bi185.7 (8)C15—C19—C20118.7 (11)
Cu1—O1W—H11106.0C21—C20—C19122.1 (12)
Cu1—O1W—H12113.1C21—C20—H20118.9
H11—O1W—H12106.3C19—C20—H20118.9
H21—O2W—H22110.3C20—C21—C22120.1 (10)
H31—O3W—H32109.9C20—C21—H21A120.0
C2—N1—C6120.1 (7)C22—C21—H21A120.0
C2—N1—Bi1125.8 (6)C26—C22—C23116.6 (11)
C6—N1—Bi1114.0 (5)C26—C22—C21119.5 (11)
C9—N2—C13121.2 (7)C23—C22—C21123.8 (11)
C9—N2—Bi1116.7 (5)C24—C23—C22120.3 (11)
C13—N2—Bi1122.0 (5)C24—C23—H23119.8
C16—N3—C15117.7 (8)C22—C23—H23119.8
C16—N3—Cu1128.4 (6)C23—C24—C25119.2 (12)
C15—N3—Cu1113.8 (7)C23—C24—H24120.4
C25—N4—C26119.6 (9)C25—C24—H24120.4
C25—N4—Cu1129.1 (8)N4—C25—C24121.4 (11)
C26—N4—Cu1111.3 (7)N4—C25—H25119.3
O9—N5—O10126.0 (13)C24—C25—H25119.3
O9—N5—O11116.6 (10)N4—C26—C22122.9 (10)
O10—N5—O11117.5 (12)N4—C26—C15116.7 (8)
O2—C1—O1125.2 (8)C22—C26—C15120.5 (10)
O1W—Cu1—O1—C111.6 (7)O1W—Cu1—N4—C26168.0 (6)
N3—Cu1—O1—C1175.5 (7)O1—Cu1—N4—C2648.5 (18)
N4—Cu1—O1—C1131.0 (15)N3—Cu1—N4—C263.4 (6)
O5ii—Cu1—O1—C190.9 (7)O5ii—Cu1—N4—C2689.5 (6)
O3—Bi1—O2—C19.5 (7)Bi1—O9—N5—O1019.3 (14)
O6—Bi1—O2—C182.1 (6)Bi1—O9—N5—O11160.3 (8)
N2—Bi1—O2—C1124.3 (6)Bi1—O10—N5—O916.8 (13)
N1—Bi1—O2—C16.6 (6)Bi1—O10—N5—O11162.8 (9)
O7—Bi1—O2—C1133.0 (6)Bi1—O2—C1—O1172.9 (6)
O7i—Bi1—O2—C177.3 (6)Bi1—O2—C1—C27.9 (10)
O9—Bi1—O2—C1156.4 (7)Cu1—O1—C1—O23.8 (12)
O10—Bi1—O2—C1161.1 (7)Cu1—O1—C1—C2177.1 (5)
O6—Bi1—O3—C770.2 (7)C6—N1—C2—C30.6 (11)
N2—Bi1—O3—C7138.3 (7)Bi1—N1—C2—C3178.1 (6)
N1—Bi1—O3—C72.5 (6)C6—N1—C2—C1179.6 (7)
O7—Bi1—O3—C7156.9 (7)Bi1—N1—C2—C12.9 (9)
O7i—Bi1—O3—C792.5 (7)O2—C1—C2—N13.8 (11)
O2—Bi1—O3—C70.2 (8)O1—C1—C2—N1177.0 (7)
O9—Bi1—O3—C7123.0 (7)O2—C1—C2—C3175.2 (8)
O10—Bi1—O3—C7142.6 (11)O1—C1—C2—C34.0 (12)
O3—Bi1—O6—C883.9 (7)N1—C2—C3—C41.5 (12)
N2—Bi1—O6—C85.3 (6)C1—C2—C3—C4179.6 (8)
N1—Bi1—O6—C8153.5 (7)C2—C3—C4—C51.7 (13)
O7—Bi1—O6—C87.6 (8)C3—C4—C5—C61.1 (13)
O7i—Bi1—O6—C8139.4 (7)C2—N1—C6—C50.0 (12)
O2—Bi1—O6—C8143.2 (7)Bi1—N1—C6—C5177.7 (6)
O9—Bi1—O6—C864.3 (7)C2—N1—C6—C7179.9 (7)
O10—Bi1—O6—C888.5 (7)Bi1—N1—C6—C72.1 (9)
O3—Bi1—O7—C1485.3 (8)C4—C5—C6—N10.2 (12)
O6—Bi1—O7—C148.6 (9)C4—C5—C6—C7179.7 (8)
N2—Bi1—O7—C146.3 (7)Bi1—O3—C7—O4176.4 (7)
N1—Bi1—O7—C14127.0 (7)Bi1—O3—C7—C64.5 (10)
O7i—Bi1—O7—C14171.3 (9)N1—C6—C7—O4176.7 (8)
O2—Bi1—O7—C14122.5 (7)C5—C6—C7—O43.4 (13)
O9—Bi1—O7—C1456.3 (8)N1—C6—C7—O34.2 (11)
O10—Bi1—O7—C1498.0 (8)C5—C6—C7—O3175.7 (8)
O3—Bi1—O7—Bi1i86.0 (3)Cu1iii—O5—C8—O6176 (3)
O6—Bi1—O7—Bi1i162.7 (2)Cu1iii—O5—C8—C96 (4)
N2—Bi1—O7—Bi1i165.0 (4)Bi1—O6—C8—O5170.2 (7)
N1—Bi1—O7—Bi1i44.3 (5)Bi1—O6—C8—C97.8 (10)
O7i—Bi1—O7—Bi1i0.0C13—N2—C9—C104.7 (14)
O2—Bi1—O7—Bi1i66.2 (4)Bi1—N2—C9—C10178.4 (7)
O9—Bi1—O7—Bi1i132.4 (3)C13—N2—C9—C8175.8 (8)
O10—Bi1—O7—Bi1i90.7 (3)Bi1—N2—C9—C81.1 (10)
O3—Bi1—O9—N5168.6 (7)O5—C8—C9—N2172.4 (8)
O6—Bi1—O9—N5135.0 (9)O6—C8—C9—N25.6 (12)
N2—Bi1—O9—N5152.1 (9)O5—C8—C9—C108.0 (14)
N1—Bi1—O9—N587.1 (9)O6—C8—C9—C10173.9 (9)
O7—Bi1—O9—N590.4 (8)N2—C9—C10—C115.7 (15)
O7i—Bi1—O9—N534.6 (10)C8—C9—C10—C11174.8 (9)
O2—Bi1—O9—N552.8 (8)C9—C10—C11—C121.7 (16)
O10—Bi1—O9—N59.1 (7)C10—C11—C12—C133.0 (16)
O3—Bi1—O10—N5118.5 (11)C9—N2—C13—C120.4 (14)
O6—Bi1—O10—N527.3 (8)Bi1—N2—C13—C12176.3 (7)
N2—Bi1—O10—N542.0 (8)C9—N2—C13—C14177.6 (8)
N1—Bi1—O10—N5105.9 (7)Bi1—N2—C13—C140.9 (11)
O7—Bi1—O10—N5104.1 (8)C11—C12—C13—N24.2 (15)
O7i—Bi1—O10—N5168.2 (8)C11—C12—C13—C14178.8 (9)
O2—Bi1—O10—N593.4 (8)Bi1—O7—C14—O8175.5 (10)
O9—Bi1—O10—N58.4 (7)Bi1i—O7—C14—O813.8 (16)
O3—Bi1—N1—C2177.7 (7)Bi1—O7—C14—C138.1 (12)
O6—Bi1—N1—C291.3 (6)Bi1i—O7—C14—C13162.5 (6)
N2—Bi1—N1—C2130.0 (6)N2—C13—C14—O8178.4 (10)
O7—Bi1—N1—C2132.7 (6)C12—C13—C14—O81.3 (16)
O7i—Bi1—N1—C293.7 (6)N2—C13—C14—O74.9 (14)
O2—Bi1—N1—C24.7 (6)C12—C13—C14—O7177.9 (9)
O9—Bi1—N1—C243.2 (7)C16—N3—C15—C191.0 (13)
O10—Bi1—N1—C27.8 (7)Cu1—N3—C15—C19176.6 (7)
O3—Bi1—N1—C60.1 (5)C16—N3—C15—C26178.7 (8)
O6—Bi1—N1—C691.1 (5)Cu1—N3—C15—C265.6 (10)
N2—Bi1—N1—C652.4 (6)C15—N3—C16—C170.6 (14)
O7—Bi1—N1—C644.9 (7)Cu1—N3—C16—C17175.5 (7)
O7i—Bi1—N1—C683.9 (5)N3—C16—C17—C180.0 (17)
O2—Bi1—N1—C6177.7 (6)C16—C17—C18—C190.3 (18)
O9—Bi1—N1—C6139.2 (5)C17—C18—C19—C150.1 (16)
O10—Bi1—N1—C6169.8 (5)C17—C18—C19—C20178.2 (11)
O3—Bi1—N2—C991.0 (6)N3—C15—C19—C180.7 (14)
O6—Bi1—N2—C91.8 (6)C26—C15—C19—C18178.4 (9)
N1—Bi1—N2—C941.8 (7)N3—C15—C19—C20177.7 (9)
O7—Bi1—N2—C9179.9 (7)C26—C15—C19—C200.0 (13)
O7i—Bi1—N2—C9163.2 (6)C18—C19—C20—C21178.6 (11)
O2—Bi1—N2—C943.7 (7)C15—C19—C20—C210.5 (16)
O9—Bi1—N2—C978.4 (7)C19—C20—C21—C221.3 (17)
O10—Bi1—N2—C9102.5 (6)C20—C21—C22—C261.6 (15)
O3—Bi1—N2—C1392.2 (7)C20—C21—C22—C23179.6 (10)
O6—Bi1—N2—C13178.6 (7)C26—C22—C23—C240.4 (15)
N1—Bi1—N2—C13141.4 (6)C21—C22—C23—C24179.2 (10)
O7—Bi1—N2—C133.3 (6)C22—C23—C24—C250.2 (17)
O7i—Bi1—N2—C1320.0 (8)C26—N4—C25—C241.2 (15)
O2—Bi1—N2—C13133.2 (7)Cu1—N4—C25—C24178.0 (8)
O9—Bi1—N2—C1398.4 (7)C23—C24—C25—N40.6 (17)
O10—Bi1—N2—C1374.3 (7)C25—N4—C26—C221.0 (14)
O1W—Cu1—N3—C16110.1 (12)Cu1—N4—C26—C22178.3 (7)
O1—Cu1—N3—C167.8 (8)C25—N4—C26—C15179.2 (9)
N4—Cu1—N3—C16179.9 (8)Cu1—N4—C26—C151.5 (10)
O5ii—Cu1—N3—C1685.8 (8)C23—C22—C26—N40.3 (14)
O1W—Cu1—N3—C1574.7 (12)C21—C22—C26—N4178.6 (8)
O1—Cu1—N3—C15177.1 (6)C23—C22—C26—C15180.0 (9)
N4—Cu1—N3—C154.9 (6)C21—C22—C26—C151.1 (13)
O5ii—Cu1—N3—C1589.3 (6)N3—C15—C26—N42.7 (12)
O1W—Cu1—N4—C2512.7 (9)C19—C15—C26—N4179.4 (8)
O1—Cu1—N4—C25132.2 (14)N3—C15—C26—C22177.5 (8)
N3—Cu1—N4—C25177.3 (9)C19—C15—C26—C220.3 (13)
O5ii—Cu1—N4—C2589.8 (9)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O20.841.792.59 (1)159
O1W—H12···O2W0.841.872.65 (1)153
O2W—H21···O3W0.841.822.66 (2)172
O2W—H22···O3Wiv0.842.282.95 (2)138
O3W—H31···O9v0.841.922.76 (2)178
Symmetry codes: (iv) x+1, y+2, z+1; (v) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[BiCu(C7H3NO4)2(NO3)(C12H8N2)(H2O)]·2H2O
Mr898.99
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.1376 (8), 12.1229 (11), 13.4135 (12)
α, β, γ (°)86.649 (2), 87.233 (2), 70.502 (1)
V3)1397.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)7.13
Crystal size (mm)0.26 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.259, 0.360
No. of measured, independent and
observed [I > 2σ(I)] reflections
7803, 5656, 4523
Rint0.036
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.01
No. of reflections5656
No. of parameters424
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.53, 2.65

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O20.841.792.59 (1)159
O1W—H12···O2W0.841.872.65 (1)153
O2W—H21···O3W0.841.822.66 (2)172
O2W—H22···O3Wi0.842.282.95 (2)138
O3W—H31···O9ii0.841.922.76 (2)178
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds