Download citation
Download citation
link to html
Two new NiII complexes involving the ancillary ligand bis­[(pyridin-2-yl)meth­yl]amine (bpma) and two different carboxyl­ate ligands, i.e. homophthalate [hph; systematic name: 2-(2-carboxyl­atophen­yl)acetate] and benzene-1,2,4,5-tetra­car­box­yl­ate (btc), namely catena-poly[[aqua­{bis­[(pyridin-2-yl)meth­yl]amine-[kappa]3N,N',N''}nickel(II)]-[mu]-2-(2-carboxyl­ato­phen­yl)aceteto-[kappa]2O:O'], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and ([mu]-benzene-1,2,4,5-tetra­carboxyl­ato-[kappa]4O1,O2:O4,O5)bis­(aqua­{bis­[(pyridin-2-yl)meth­yl]amine-[kappa]3N,N',N''}nickel(II)) bis­(tri­aqua{­bis­[(pyridin-2-yl)meth­yl]amine-[kappa]3N,N',N''}nickel(II)) benzene-1,2,4,5-tetra­carboxyl­ate hexa­hydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are pre­sented. Compound (I) is a one-dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C-H...O inter­actions. The structure of com­pound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear com­plexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4- anions. A profuse hydrogen-bonding scheme, where both coordinated and crystal water mol­ecules play a crucial role, provides the supra­molecular linkage of the different groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614008134/uk3094sup1.cif
Contains datablocks I, II, Global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614008134/uk3094Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614008134/uk3094IIsup3.hkl
Contains datablock II

CCDC references: 996690; 996691

Introduction top

Projects on transition metal (TM) complexes surveying organic carboxyl­ates (OC) (and eventually including some ancillary ligand) have proven throughout the years an almost inexhaustible resource of crystal structures of varied complexity (zero- to three-dimensional), and many of them, initally generated out of a pure academic inter­est ended up generating materials of practical inter­est (Zheng et al., 2014, and references therein). Regarding magnetism (our main line of inter­est), some regularities linking structure and magnetic behaviour have been relatively well established over the years. For instance, syn–syn OC coordination modes frequently appear to lead to strong anti­ferromagnetism, while syn–anti and anti–anti modes tend to favour ferro- or anti­ferromagnetic coupling. In pursuit of our inter­est on TM—OC systems with potentially inter­esting magnetic properties, we present herein two new NiII complexes involving the ancillary ligand bis­[(pyridin-2-yl)methyl]­amine (bpma) and two different carboxyl­ates, i.e. homophthalate (hph) and benzene-1,2,4,5-tetra­carboxyl­ate (btc), namely [Ni(hph)(bpma)(H2O)]n, (I), and [Ni2(btc)(bpma)2(H2O)2].[Ni(bpma)(H2O)3]2(btc).6H2O, (II).

Experimental top

Synthesis and crystallization top

Complexes (I) and (II) were synthesized by similar methods. The corresponding carb­oxy­lic acid [homophthalic acid for (I) and benzene-1,2,4,5-tetra­carb­oxy­lic for (II)] (1 mmol) was added slowly to an aqueous solution (20 ml) of NaOH (4 mmol or 2 mmol, respectively). Nickel acetate tetra­hydrate (2 mmol) was dissolved in water (100 ml) and added to the above solution. The resulting mixture was stirred for 15 min, followed by the addition of a methano­lic solution (20 ml) of bis­[(pyridin-2-yl)methyl]­amine (2 mmol) and the resulting solution was maintained under reflux for 4 h. Good single crystals suitable for X-ray diffraction could be picked from the precipitates obtained after slow evaporation at room temperature.

Refinement top

All H atoms were originally found in a difference Fourier but were treated differently in the refinement. H atoms attached to C atoms were repositioned in their expected positions according to the corresponding collection temperatures [150 (2) K for (I) and 298 (2) K for (II)] and thereafter allowed to ride, with Uiso(H) = xUeq(host); C—H = 0.93/0.95 Å and x = 1.2 for aromatic H atoms, and C—H = 0.97/0.99 Å and x = 1.5 for methyl H atoms. H atoms attached to N and O atoms were refined with restrained X—H distances of 0.85 (1) Å and Uiso(H) = 1.2Ueq(N,O). In (I), atoms H21N is not involved in any conventional hydrogen bond; however, it makes two rather short N21—H21N···O inter­molecular contacts to O32 [2.62 (3) Å and 143 (3)°] and O22(-x+1/2, y+1/2, -z+1/2) [2.74 (3) Å and 118 (4)°], which could be considered as frustrated hydrogen bonds, inhibited by geometrical hindrance. In structure (II), an anti-bumpping restraint was imposed between atoms H3WB and H7WA in order to preclude an unrealistic closeness.

Results and discussion top

The structure of (I), [Ni(hph)(bpma)(H2O)]n, presents its NiII cations o­cta­hedrally coordinated by one aqua ligand, an N,N',N''-tridentate bpma ligand bent in its usual `butterfly' fashion, and a µ2-O:O hph ligand which bridges neighbouring metal centres into one-dimensional polymeric structures parallel to the unique b axis (Fig. 1). N/O—Ni coordination distances (Table 2) are similar, spanning the rather tight range 2.0674 (18)–2.104 (2)Å. Departures from regularity are more noticeable in the coordination angles [cis angles = 79.39 (9)–94.94 (7)° and trans angles = 170.36 (8)–172.97 (8)°]. The symmetry operation leading to the chain construction is the 21 screw along [010], through an Ni—O32i [(i) -x+1/2, y-1/2, -z+1/2.] bond, and the repetition step in the chain is thus the length of the short b axis, 10.4511 (14)Å. Even if not novel, the "modest" µ2κ2 bridging mode displayed by hph in (I) is rather unfrequent: it is found in less than 10% of the reported structures, the ligand usually preferring more significant involvement in cation coordination; in this context µ2 (κ3 and κ4), µ3 (κ2 to κ5) and µ4 (κ4) modes are more usual.

There are eight relevant hydrogen-bonding inter­actions in the structure of (I) (Table 3), six of which are inter­nal to the chains; among these, entries 1–3 in Table 3 are inter­nal to a single Ni coordination polyhedron, while entries 4–6 provide for the linkage of neighbouring polyhedra within chains (Fig. 1). The compact one-dimensional arrays thus formed are disposed in a parallel fashion (Fig. 2) and inter­act with each other via two centrosymmetric hydrogen-bonding loops involving the last two hydrogen bonds in Table 3, that involving atom H22 (loop `A' in Fig. 2) linking chains along the [100] direction and that involving atom H52 (loop `B' in Fig. 2) linking chains along [001].

In contrast to the formally simple structure of (I), the structure of compound (II) appears more complex. An inspection of Scheme 1 discloses the most outstanding feature of the structure, viz. the neutral coordination complex {[NiII(bpma)(H2O)]2(btc)} (hereinafter denoted C, leftmost part of Scheme 1), co-existing with a salt formulated as [NiII(bpma)(H2O)3]2(btc) (hereinafter denoted S, rightmost part of Scheme 1), the whole group being stabilized by six solvent water molecules. Substructures C and S are both centrosymmetric, with their central btc anion lying on a centre of inversion. Fig. 3(a) shows a view of substructure C, expanded through application of the 1 operation, while Fig. 3(b) shows an equivalent view for substructure S.

In the case of substructure C, the NiII cation is o­cta­hedrally coordinated by one aqua ligand, three N atoms from a bpma ligand and two O atoms from different carboxyl­ate groups of a btc ligand, which serves as a bridge in the binuclear complex molecule. The case of substructure Sis similar, the difference being that the btc bonds to NiII are absent, being replaced by two aqua ligands, thus generating a three-membered [NiII(bpma)(H2O)3]2(btc) group of ions.

As for the hph ligand in (I), the bridging mode displayed by the btc ligand in substructures C of (II) is rare; a search of the Cambridge Structural Database (CSD, Version 5.34 and updates; Allen, 2002) revealed that out of ca 500 complexes with coordinated btc ligands, only three report the anion in a µ2,κ4-mode (all O atoms from different carboxyl­ate groups), two with Cu [CSD refcodes GECNIL (Chaudhuri et al., 1988) and SALTIJ (Shi et al., 2004)] and one with Co (GEFGAA; Xia et al., 2006).

From a metrical point of view, there are no substantial differences between the Ni1 (in substructure C) and Ni2 (in substructure S) coordination polyhedra (Table 4), or with that in (I), with ranges of coordination lengths and angles (listed for substructures C and S, respectively) as follows: N/O—Ni = 2.0437 (12)–2.1241 (13) and 2.0448 (13)–2.0995 (15) Å; cis angles = 80.95 (6)–95.65 (6) and 80.70 (6)–96.25 (6)°; trans angles = 168.58 (6)–176.24 (6) and 170.22 (6)–176.31 (6)°. The fundamental difference with (I) concerns the packing scheme, due to the large number of hydrogen-bonding donors/acceptors. Even if somewhat arbitrarily, we shall describe the inter­actions in a stepwise fashion, looking firstly to those inter­actions inter­nal to the C substructures, secondly to those inter­nal to S substructures, and finally those hydrogen bonds linking them into a three-dimensional supra­molecular structure. At this stage, it is pertinent to state that each of the substructures has one hydration water molecule (O5W for C and O7W for S) fulfilling a thoroughly `inter­nal' role, in that they make and receive all their inter­actions to O atoms (and from H atoms) in the corresponding substructure, with no direct inter­actions with the other. As we shall see, only O6W acts as a bridge between both subunits.

According to this, substructure C can be considered as formed by atom Ni1, bpma(1), btc(4), O1W and O5W, while substructure S would be composed of atom Ni2, bpma(2), btc(3), O2W, O3W, O4W and O7W, where parenthesis refer to the trailing numbers characterizing atoms labels in each ligand. Again here the µ2,κ4-O1,O2:O4,O5 bridging mode of the anion (with all O atoms from different carboxyl­ate groups) is rather unusual and only three further examples are found in the CSD, out of ca 500 complexes reporting the anion in a coordinating mode.

Table 5 presents the hydrogen bonds in (II), sorted into three blocks. The upper block (entries 1–7) contains only inter­actions inter­nal to substructure C, which give rise to two-dimensional structures (Fig. 4a) parallel to (001) at z ~0.50 (Fig. 4b). The outstanding role of atom O5W (highlighted with a circle) is apparent. The second block (entries 8–18) contains in turn the inter­action inter­nal to substructure S, also generating two-dimensional structures (Fig. 5a) parallel to (001), this time at z ~0.00, 1.00 (Fig. 5b). Also here, hydration water molecule O7W (circled) is relevant for the group stability. Finally, the third block (entries 19–20) presents the only two significant bridging hydrogen-bond inter­actions, a bifurcated one pivoted by atom O6W and the weak nonconventional C72—H72B···O5W hydrogen bond. Fig. 6 presents a complete [100] view of the structure, with the bridging inter­actions circled for clear identification.

The magnetic characterization of both compounds is in progress.

Related literature top

For related literature, see: Allen (2002); Chaudhuri et al. (1988); Shi et al. (2004); Xia et al. (2006); Zheng et al. (2014).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2002); data reduction: SAINT-NT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
The asymmetric unit of (I), suggesting the way in which [010] chains are formed. Broken lines represent hydrogen bonds. [Symmetry code: (i) -x+1/2, y-1/2, -z+1/2.]

A packing view of (I), showing in projection the interaction between columns. Broken lines represent hydrogen bonds

Molecular views of (II), showing (a) substructure C and (b) substructure S (both views expanded after application of the 1 operation through the inversion centre at the btc mid-point). Displacement ellipsoids are drawn at the 40% probability level and the independent part of both substructures is shown with full bonds. [Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+2, -z.]

Partial packing views of (II), showing details of the C two-dimensional substructure, (a) projected down c and showing the internal hydrogen-bonding network, and (b) in a rotated view of the same atomic disposition now projected down a. Broken lines represent hydrogen bonds.

Partial packing views of (II), showing details of the S two-dimensional substructure (a) projected down c and showing the internal hydrogen-bonding network, and (b) in a rotated view of the same atomic disposition now projected down a. Broken lines represent hydrogen bonds. The environment of water atom O7W is highlighted with a circle.

A full packing view of (II) projected down a and showing the interaction between the C and S substructures. Broken lines represent hydrogen bonds. The bridging ligands (see text for details) are highlighted.
(I) catena-Poly[[aqua{bis[(pyridin-2-yl)methyl]amine-κ3N,N',N''}nickel(II)]-µ-2-(2-carboxylatophenyl)aceteto-κ2O:O'] top
Crystal data top
[Ni(C9H6O4)(C12H13N3)(H2O)]F(000) = 1888
Mr = 454.12Dx = 1.517 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2835 reflections
a = 18.233 (3) Åθ = 2.2–26.8°
b = 10.4511 (14) ŵ = 1.02 mm1
c = 20.898 (3) ÅT = 150 K
β = 93.081 (2)°Block, blue
V = 3976.3 (9) Å30.39 × 0.13 × 0.12 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
4399 independent reflections
Radiation source: fine-focus sealed tube3562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
CCD rotation images, thin slices scansθmax = 27.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
h = 2322
Tmin = 0.86, Tmax = 0.88k = 1313
15811 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.43 w = 1/[σ2(Fo2) + (0.0538P)2 + 2.6787P]
where P = (Fo2 + 2Fc2)/3
4399 reflections(Δ/σ)max = 0.002
280 parametersΔρmax = 0.72 e Å3
4 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C9H6O4)(C12H13N3)(H2O)]V = 3976.3 (9) Å3
Mr = 454.12Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.233 (3) ŵ = 1.02 mm1
b = 10.4511 (14) ÅT = 150 K
c = 20.898 (3) Å0.39 × 0.13 × 0.12 mm
β = 93.081 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4399 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
3562 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.88Rint = 0.028
15811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0504 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.43Δρmax = 0.72 e Å3
4399 reflectionsΔρmin = 0.37 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.268905 (17)0.54699 (3)0.182666 (15)0.01720 (13)
N110.32496 (12)0.5816 (2)0.09987 (10)0.0220 (5)
N210.28959 (13)0.7444 (2)0.19247 (10)0.0222 (5)
H21N0.2611 (14)0.785 (3)0.2153 (12)0.027*
N310.36272 (12)0.5344 (2)0.24201 (10)0.0205 (5)
C110.35626 (14)0.4973 (3)0.06188 (13)0.0245 (6)
H1A0.35700.40980.07420.029*
C210.38752 (19)0.5306 (3)0.00586 (15)0.0391 (8)
H210.40810.46750.02050.047*
C310.3881 (2)0.6591 (4)0.01100 (16)0.0495 (10)
H310.41040.68580.04880.059*
C410.3559 (2)0.7475 (3)0.02769 (14)0.0430 (9)
H410.35490.83560.01640.052*
C510.32516 (16)0.7061 (3)0.08312 (13)0.0260 (6)
C610.28692 (17)0.7966 (3)0.12672 (13)0.0294 (6)
H61A0.31130.88130.12670.035*
H61B0.23520.80810.11090.035*
C710.36221 (15)0.7644 (3)0.22740 (13)0.0238 (6)
H71A0.39860.79000.19630.029*
H71B0.35790.83550.25830.029*
C810.38960 (14)0.6485 (3)0.26261 (12)0.0210 (5)
C910.44319 (15)0.6562 (3)0.31322 (13)0.0284 (6)
H910.46030.73710.32850.034*
C1010.47052 (16)0.5456 (3)0.34028 (14)0.0336 (7)
H1010.50660.54900.37480.040*
C1110.44528 (17)0.4286 (3)0.31707 (14)0.0323 (7)
H1110.46520.35080.33400.039*
C1210.39053 (15)0.4277 (3)0.26882 (13)0.0248 (6)
H1210.37180.34760.25400.030*
O120.10542 (10)0.6298 (2)0.23059 (9)0.0275 (4)
O220.21205 (10)0.54161 (17)0.26559 (9)0.0215 (4)
O320.23373 (10)0.85118 (19)0.33165 (9)0.0254 (4)
O420.33763 (11)0.83428 (19)0.39241 (9)0.0287 (4)
C120.12750 (14)0.6080 (2)0.34231 (12)0.0187 (5)
C220.05291 (15)0.5936 (3)0.35230 (14)0.0247 (6)
H220.01940.57910.31660.030*
C320.02663 (16)0.5999 (3)0.41350 (14)0.0310 (7)
H320.02420.58890.41970.037*
C420.07535 (17)0.6224 (3)0.46512 (14)0.0308 (7)
H420.05830.62600.50720.037*
C520.14927 (16)0.6398 (3)0.45535 (13)0.0271 (6)
H520.18200.65740.49120.033*
C620.17708 (14)0.6323 (2)0.39446 (12)0.0188 (5)
C720.15014 (14)0.5928 (2)0.27372 (12)0.0202 (5)
C820.25815 (15)0.6559 (2)0.38849 (12)0.0215 (5)
H82A0.27620.59630.35610.026*
H82B0.28420.63540.43000.026*
C920.27836 (14)0.7920 (2)0.36970 (11)0.0176 (5)
O1W0.17249 (11)0.58304 (19)0.12623 (9)0.0250 (4)
H1WA0.1641 (16)0.5069 (14)0.1137 (14)0.030*
H1WB0.1416 (13)0.598 (3)0.1542 (11)0.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01567 (19)0.01819 (19)0.01774 (19)0.00132 (12)0.00081 (12)0.00055 (12)
N110.0223 (12)0.0215 (11)0.0223 (11)0.0072 (9)0.0019 (9)0.0051 (9)
N210.0249 (12)0.0198 (11)0.0221 (11)0.0041 (9)0.0041 (9)0.0016 (9)
N310.0170 (11)0.0245 (11)0.0203 (11)0.0000 (9)0.0030 (9)0.0024 (9)
C110.0183 (13)0.0299 (14)0.0254 (14)0.0108 (12)0.0005 (11)0.0017 (11)
C210.0360 (18)0.052 (2)0.0292 (16)0.0164 (15)0.0055 (13)0.0166 (14)
C310.059 (2)0.060 (2)0.0305 (17)0.0253 (19)0.0113 (16)0.0021 (16)
C410.071 (3)0.0316 (17)0.0268 (16)0.0200 (17)0.0048 (15)0.0074 (13)
C510.0303 (16)0.0269 (14)0.0204 (13)0.0110 (12)0.0034 (11)0.0006 (11)
C610.0386 (18)0.0196 (13)0.0294 (15)0.0030 (12)0.0043 (12)0.0046 (11)
C710.0174 (13)0.0233 (13)0.0308 (14)0.0020 (11)0.0023 (11)0.0056 (11)
C810.0129 (12)0.0328 (15)0.0176 (12)0.0005 (11)0.0035 (9)0.0000 (10)
C910.0183 (14)0.0399 (17)0.0271 (14)0.0057 (12)0.0038 (11)0.0029 (12)
C1010.0200 (14)0.059 (2)0.0217 (14)0.0035 (14)0.0024 (11)0.0050 (13)
C1110.0303 (16)0.0373 (17)0.0292 (15)0.0102 (13)0.0008 (12)0.0097 (13)
C1210.0212 (14)0.0262 (14)0.0275 (14)0.0044 (11)0.0047 (11)0.0049 (11)
O120.0228 (10)0.0375 (11)0.0218 (9)0.0083 (9)0.0041 (8)0.0021 (8)
O220.0184 (9)0.0241 (10)0.0222 (9)0.0039 (7)0.0037 (7)0.0034 (7)
O320.0262 (10)0.0287 (10)0.0206 (9)0.0021 (8)0.0042 (8)0.0018 (8)
O420.0264 (11)0.0305 (11)0.0285 (10)0.0070 (8)0.0040 (8)0.0061 (8)
C120.0225 (14)0.0119 (11)0.0221 (12)0.0005 (10)0.0053 (10)0.0012 (9)
C220.0181 (14)0.0212 (13)0.0349 (15)0.0022 (11)0.0030 (11)0.0015 (11)
C320.0196 (14)0.0358 (16)0.0387 (16)0.0018 (12)0.0111 (12)0.0023 (13)
C420.0415 (18)0.0273 (15)0.0248 (14)0.0027 (13)0.0125 (13)0.0034 (11)
C520.0355 (16)0.0239 (14)0.0217 (13)0.0000 (12)0.0001 (12)0.0000 (11)
C620.0218 (13)0.0124 (11)0.0222 (12)0.0032 (10)0.0011 (10)0.0001 (9)
C720.0206 (14)0.0171 (12)0.0228 (13)0.0013 (10)0.0013 (10)0.0031 (10)
C820.0282 (15)0.0204 (13)0.0160 (12)0.0015 (11)0.0005 (10)0.0008 (10)
C920.0155 (13)0.0241 (13)0.0134 (11)0.0012 (10)0.0013 (9)0.0029 (9)
O1W0.0272 (11)0.0256 (10)0.0224 (10)0.0036 (9)0.0040 (8)0.0014 (8)
Geometric parameters (Å, º) top
Ni1—N312.062 (2)C91—C1011.369 (4)
Ni1—O222.0674 (18)C91—H910.9500
Ni1—O32i2.068 (2)C101—C1111.385 (5)
Ni1—N112.088 (2)C101—H1010.9500
Ni1—O1W2.098 (2)C111—C1211.380 (4)
Ni1—N212.106 (2)C111—H1110.9500
N11—C111.334 (4)C121—H1210.9500
N11—C511.347 (4)O12—C721.244 (3)
N21—C611.477 (3)O22—C721.269 (3)
N21—C711.492 (4)O32—C921.268 (3)
N21—H21N0.841 (10)O42—C921.238 (3)
N31—C1211.335 (3)C12—C221.395 (4)
N31—C811.351 (3)C12—C621.401 (4)
C11—C211.374 (4)C12—C721.521 (3)
C11—H1A0.9500C22—C321.391 (4)
C21—C311.388 (5)C22—H220.9500
C21—H210.9500C32—C421.380 (4)
C31—C411.379 (5)C32—H320.9500
C31—H310.9500C42—C521.386 (4)
C41—C511.383 (4)C42—H420.9500
C41—H410.9500C52—C621.397 (4)
C51—C611.510 (4)C52—H520.9500
C61—H61A0.9900C62—C821.510 (4)
C61—H61B0.9900C82—C921.525 (4)
C71—C811.490 (4)C82—H82A0.9900
C71—H71A0.9900C82—H82B0.9900
C71—H71B0.9900O1W—H1WA0.849 (10)
C81—C911.403 (4)O1W—H1WB0.848 (10)
N31—Ni1—O2286.06 (8)N21—C71—H71B109.0
N31—Ni1—O32i92.06 (8)H71A—C71—H71B107.8
O22—Ni1—O32i94.91 (7)N31—C81—C91121.1 (3)
N31—Ni1—N1194.72 (9)N31—C81—C71117.0 (2)
O22—Ni1—N11171.57 (8)C91—C81—C71121.8 (3)
O32i—Ni1—N1193.45 (8)C101—C91—C81119.1 (3)
N31—Ni1—O1W172.97 (8)C101—C91—H91120.5
O22—Ni1—O1W91.91 (7)C81—C91—H91120.5
O32i—Ni1—O1W94.83 (7)C91—C101—C111119.6 (3)
N11—Ni1—O1W86.32 (8)C91—C101—H101120.2
N31—Ni1—N2182.28 (9)C111—C101—H101120.2
O22—Ni1—N2192.31 (8)C121—C111—C101118.4 (3)
O32i—Ni1—N21170.50 (8)C121—C111—H111120.8
N11—Ni1—N2179.50 (9)C101—C111—H111120.8
O1W—Ni1—N2191.09 (9)N31—C121—C111123.0 (3)
C11—N11—C51118.4 (2)N31—C121—H121118.5
C11—N11—Ni1128.51 (19)C111—C121—H121118.5
C51—N11—Ni1113.01 (18)C72—O22—Ni1126.19 (17)
C61—N21—C71112.8 (2)C92—O32—Ni1ii125.65 (17)
C61—N21—Ni1105.95 (16)C22—C12—C62119.8 (2)
C71—N21—Ni1109.55 (16)C22—C12—C72116.5 (2)
C61—N21—H21N110 (2)C62—C12—C72123.7 (2)
C71—N21—H21N102 (2)C32—C22—C12121.3 (3)
Ni1—N21—H21N116 (2)C32—C22—H22119.4
C121—N31—C81118.7 (2)C12—C22—H22119.4
C121—N31—Ni1126.13 (19)C42—C32—C22119.2 (3)
C81—N31—Ni1114.23 (17)C42—C32—H32120.4
N11—C11—C21123.4 (3)C22—C32—H32120.4
N11—C11—H1A118.3C32—C42—C52119.8 (3)
C21—C11—H1A118.3C32—C42—H42120.1
C11—C21—C31118.0 (3)C52—C42—H42120.1
C11—C21—H21121.0C42—C52—C62122.0 (3)
C31—C21—H21121.0C42—C52—H52119.0
C41—C31—C21119.3 (3)C62—C52—H52119.0
C41—C31—H31120.3C52—C62—C12117.9 (2)
C21—C31—H31120.3C52—C62—C82118.1 (2)
C31—C41—C51119.1 (3)C12—C62—C82124.0 (2)
C31—C41—H41120.5O12—C72—O22126.0 (2)
C51—C41—H41120.5O12—C72—C12116.7 (2)
N11—C51—C41121.8 (3)O22—C72—C12117.3 (2)
N11—C51—C61116.1 (2)C62—C82—C92115.1 (2)
C41—C51—C61122.0 (3)C62—C82—H82A108.5
N21—C61—C51109.7 (2)C92—C82—H82A108.5
N21—C61—H61A109.7C62—C82—H82B108.5
C51—C61—H61A109.7C92—C82—H82B108.5
N21—C61—H61B109.7H82A—C82—H82B107.5
C51—C61—H61B109.7O42—C92—O32125.7 (2)
H61A—C61—H61B108.2O42—C92—C82116.9 (2)
C81—C71—N21113.1 (2)O32—C92—C82117.4 (2)
C81—C71—H71A109.0Ni1—O1W—H1WA98 (2)
N21—C71—H71A109.0Ni1—O1W—H1WB102 (2)
C81—C71—H71B109.0H1WA—O1W—H1WB105.7 (15)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O120.84 (2)1.79 (2)2.603 (3)162 (2)
C82—H82A···O220.992.242.916 (3)124
C121—H121···O32i0.952.553.110 (4)118
O1W—H1WA···O42i0.84 (2)1.81 (2)2.632 (3)163 (3)
C71—H71B···O22ii0.992.543.205 (4)125
C121—H121···O12i0.952.333.114 (4)139
C22—H22···O12iii0.952.493.309 (3)144
C52—H52···O42iv0.952.483.191 (3)131
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1/2; (iv) x+1/2, y+3/2, z+1.
(II) (µ-Benzene-1,2,4,5-tetracarboxylato-κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin-2-yl)methyl]amine-κ3N,N',N''}nickel(II)) bis{triaquabis[(pyridin-2-yl)methyl]amine-κ3N,N',N''}nickel(II)} benzene-1,2,4,5-tetracarboxylate hexahydrate top
Crystal data top
[Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O'Z = 1
Mr = 1784.32F(000) = 928
Triclinic, P1Dx = 1.598 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8485 (6) ÅCell parameters from 6234 reflections
b = 10.7208 (6) Åθ = 2.3–26.1°
c = 19.4924 (11) ŵ = 1.10 mm1
α = 85.008 (1)°T = 298 K
β = 82.823 (1)°Plate, blue
γ = 65.2930 (8)°0.41 × 0.37 × 0.07 mm
V = 1853.65 (19) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
7916 independent reflections
Radiation source: fine-focus sealed tube6969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
CCD rotation images, thin slices scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
h = 1212
Tmin = 0.65, Tmax = 0.93k = 1313
15507 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.4178P]
where P = (Fo2 + 2Fc2)/3
7916 reflections(Δ/σ)max = 0.001
562 parametersΔρmax = 0.60 e Å3
24 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O'γ = 65.2930 (8)°
Mr = 1784.32V = 1853.65 (19) Å3
Triclinic, P1Z = 1
a = 9.8485 (6) ÅMo Kα radiation
b = 10.7208 (6) ŵ = 1.10 mm1
c = 19.4924 (11) ÅT = 298 K
α = 85.008 (1)°0.41 × 0.37 × 0.07 mm
β = 82.823 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7916 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
6969 reflections with I > 2σ(I)
Tmin = 0.65, Tmax = 0.93Rint = 0.015
15507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03224 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.60 e Å3
7916 reflectionsΔρmin = 0.31 e Å3
562 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.86938 (2)0.65317 (2)0.387961 (11)0.02431 (7)
Ni20.73509 (2)0.30305 (2)0.105617 (11)0.02524 (7)
N110.89448 (17)0.83613 (15)0.39166 (8)0.0292 (3)
N211.09898 (17)0.57239 (17)0.39571 (8)0.0327 (3)
H21N1.117 (2)0.5022 (16)0.4229 (10)0.039*
N310.93585 (17)0.65210 (15)0.28392 (8)0.0297 (3)
C110.7954 (2)0.9644 (2)0.37731 (11)0.0382 (4)
H110.70410.97690.36260.046*
C210.8235 (3)1.0778 (2)0.38356 (12)0.0518 (6)
H210.75191.16560.37410.062*
C310.9595 (4)1.0592 (3)0.40408 (14)0.0619 (7)
H310.98121.13420.40910.074*
C411.0623 (3)0.9284 (3)0.41701 (13)0.0551 (6)
H411.15550.91370.43030.066*
C511.0275 (2)0.8184 (2)0.41032 (10)0.0365 (4)
C611.1339 (2)0.6735 (2)0.42659 (13)0.0473 (5)
H61A1.23540.66140.40970.057*
H61B1.13010.65730.47640.057*
C711.1790 (2)0.5274 (3)0.32723 (12)0.0512 (6)
H71A1.21400.42840.32600.061*
H71B1.26660.54830.32090.061*
C811.0852 (2)0.5931 (2)0.26809 (11)0.0376 (4)
C911.1482 (3)0.5879 (3)0.20003 (12)0.0556 (6)
H911.25180.54550.18970.067*
C1011.0558 (3)0.6462 (3)0.14788 (12)0.0571 (6)
H1011.09630.64380.10200.068*
C1110.9027 (3)0.7082 (2)0.16443 (11)0.0483 (5)
H1110.83810.74850.13010.058*
C1210.8475 (2)0.7092 (2)0.23289 (10)0.0368 (4)
H1210.74420.75150.24420.044*
N120.92631 (17)0.17616 (15)0.15501 (8)0.0292 (3)
N220.70576 (19)0.42348 (16)0.18884 (9)0.0336 (4)
H22N0.666 (2)0.5074 (11)0.1768 (11)0.040*
N320.62005 (17)0.21498 (16)0.17317 (8)0.0311 (3)
C121.0065 (2)0.0405 (2)0.15041 (10)0.0349 (4)
H120.98600.00490.11730.042*
C221.1178 (2)0.0348 (2)0.19231 (11)0.0407 (5)
H221.17060.12910.18780.049*
C321.1496 (2)0.0323 (2)0.24112 (11)0.0453 (5)
H321.22570.01590.26960.054*
C421.0669 (2)0.1719 (2)0.24712 (12)0.0451 (5)
H421.08610.21900.27980.054*
C520.9548 (2)0.2409 (2)0.20384 (10)0.0344 (4)
C620.8572 (2)0.3926 (2)0.20759 (12)0.0426 (5)
H62A0.85010.42170.25410.051*
H62B0.90240.44320.17630.051*
C720.6044 (3)0.3974 (2)0.24439 (12)0.0466 (5)
H72A0.50920.47750.24740.056*
H72B0.64700.38590.28800.056*
C820.5750 (2)0.2728 (2)0.23503 (10)0.0342 (4)
C920.5004 (2)0.2221 (2)0.28741 (11)0.0448 (5)
H920.47180.26180.33040.054*
C1020.4694 (3)0.1133 (3)0.27522 (13)0.0523 (6)
H1020.41710.08010.30950.063*
C1120.5162 (3)0.0529 (3)0.21160 (13)0.0490 (6)
H1120.49750.02180.20240.059*
C1220.5915 (2)0.1072 (2)0.16249 (11)0.0390 (5)
H1220.62410.06690.11970.047*
O130.38940 (14)0.72407 (13)0.07835 (7)0.0322 (3)
O230.56320 (17)0.73292 (15)0.13791 (7)0.0423 (3)
O330.68113 (15)0.62855 (13)0.02583 (8)0.0366 (3)
O430.85608 (15)0.70986 (15)0.03987 (10)0.0522 (4)
C130.38596 (19)1.02223 (17)0.05253 (9)0.0266 (4)
H130.30841.03800.08780.032*
C230.49120 (18)0.88841 (17)0.04133 (9)0.0237 (3)
C330.60597 (18)0.86647 (17)0.01208 (9)0.0245 (3)
C430.48171 (19)0.77153 (17)0.08953 (9)0.0265 (4)
C530.72385 (19)0.72304 (17)0.02725 (10)0.0280 (4)
O140.46858 (16)0.69176 (14)0.45087 (8)0.0393 (3)
O240.64556 (13)0.72099 (13)0.37746 (6)0.0294 (3)
O340.81310 (14)0.65154 (12)0.49520 (6)0.0298 (3)
O440.82825 (16)0.75958 (14)0.58413 (7)0.0406 (3)
C140.40566 (19)0.99632 (18)0.45498 (9)0.0246 (3)
H140.34190.99370.42430.030*
C240.53018 (18)0.87609 (17)0.46901 (9)0.0231 (3)
C340.62721 (18)0.87996 (17)0.51503 (9)0.0229 (3)
C440.55201 (18)0.75083 (17)0.43124 (9)0.0250 (3)
C540.76667 (19)0.75516 (17)0.53266 (9)0.0255 (3)
O1W0.89054 (16)0.44803 (13)0.38595 (7)0.0355 (3)
H1WA0.9691 (13)0.3815 (17)0.3980 (11)0.043*
H1WB0.8181 (14)0.427 (2)0.4012 (11)0.043*
O2W0.52974 (16)0.43747 (14)0.07384 (9)0.0416 (4)
H2WA0.471 (2)0.410 (2)0.0592 (12)0.050*
H2WB0.489 (2)0.5225 (10)0.0753 (13)0.050*
O3W0.77663 (15)0.17377 (13)0.02531 (7)0.0309 (3)
H3WA0.7214 (17)0.206 (2)0.0069 (8)0.037*
H3WB0.8619 (11)0.1694 (16)0.0105 (10)0.037*
O4W0.84376 (16)0.40591 (15)0.04555 (9)0.0445 (4)
H4WA0.798 (2)0.4736 (18)0.0202 (11)0.053*
H4WB0.9340 (12)0.392 (2)0.0418 (12)0.053*
O5W0.62544 (19)0.41145 (16)0.42080 (8)0.0485 (4)
H5WA0.572 (2)0.4963 (10)0.4270 (12)0.058*
H5WB0.602 (3)0.3695 (19)0.4556 (9)0.058*
O6W0.4270 (2)0.7324 (2)0.27846 (10)0.0684 (5)
H6WA0.464 (3)0.742 (3)0.2376 (6)0.082*
H6WB0.499 (2)0.708 (3)0.3036 (11)0.082*
O7W0.92981 (16)0.88579 (15)0.02230 (8)0.0403 (3)
H7WA0.8597 (17)0.9619 (10)0.0243 (12)0.048*
H7WB0.907 (2)0.8344 (17)0.0004 (11)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02213 (12)0.02136 (12)0.02693 (13)0.00661 (9)0.00231 (9)0.00046 (9)
Ni20.02518 (12)0.02285 (12)0.02769 (13)0.00958 (9)0.00516 (9)0.00117 (9)
N110.0310 (8)0.0272 (8)0.0304 (8)0.0134 (7)0.0018 (6)0.0002 (6)
N210.0271 (8)0.0314 (9)0.0338 (9)0.0072 (7)0.0058 (7)0.0062 (7)
N310.0297 (8)0.0268 (8)0.0300 (8)0.0098 (6)0.0010 (6)0.0003 (6)
C110.0406 (11)0.0301 (10)0.0405 (11)0.0124 (9)0.0022 (9)0.0026 (8)
C210.0727 (17)0.0290 (11)0.0500 (13)0.0191 (11)0.0010 (12)0.0005 (9)
C310.097 (2)0.0496 (15)0.0613 (16)0.0513 (16)0.0092 (15)0.0011 (12)
C410.0644 (16)0.0653 (17)0.0583 (15)0.0474 (14)0.0157 (12)0.0029 (12)
C510.0399 (11)0.0415 (11)0.0344 (10)0.0231 (9)0.0053 (8)0.0021 (8)
C610.0366 (11)0.0508 (13)0.0588 (14)0.0194 (10)0.0206 (10)0.0066 (11)
C710.0279 (10)0.0614 (15)0.0439 (12)0.0003 (10)0.0001 (9)0.0002 (11)
C810.0327 (10)0.0352 (11)0.0376 (11)0.0088 (9)0.0024 (8)0.0005 (8)
C910.0420 (13)0.0657 (16)0.0452 (13)0.0129 (12)0.0128 (10)0.0034 (12)
C1010.0656 (17)0.0691 (17)0.0309 (12)0.0259 (14)0.0069 (11)0.0001 (11)
C1110.0587 (14)0.0528 (14)0.0345 (11)0.0250 (12)0.0087 (10)0.0093 (10)
C1210.0385 (11)0.0343 (10)0.0359 (10)0.0136 (9)0.0071 (8)0.0045 (8)
N120.0299 (8)0.0273 (8)0.0310 (8)0.0120 (6)0.0063 (6)0.0016 (6)
N220.0387 (9)0.0221 (8)0.0371 (9)0.0083 (7)0.0084 (7)0.0021 (7)
N320.0295 (8)0.0302 (8)0.0315 (8)0.0106 (7)0.0045 (6)0.0026 (6)
C120.0358 (10)0.0310 (10)0.0347 (10)0.0106 (8)0.0036 (8)0.0008 (8)
C220.0338 (10)0.0341 (11)0.0442 (12)0.0057 (9)0.0028 (9)0.0047 (9)
C320.0334 (10)0.0536 (14)0.0415 (12)0.0093 (10)0.0143 (9)0.0074 (10)
C420.0417 (12)0.0544 (14)0.0423 (12)0.0192 (11)0.0163 (10)0.0026 (10)
C520.0339 (10)0.0344 (10)0.0378 (10)0.0157 (8)0.0078 (8)0.0012 (8)
C620.0483 (12)0.0344 (11)0.0503 (13)0.0177 (10)0.0179 (10)0.0065 (9)
C720.0544 (14)0.0396 (12)0.0405 (12)0.0148 (10)0.0049 (10)0.0124 (9)
C820.0288 (9)0.0320 (10)0.0328 (10)0.0046 (8)0.0017 (8)0.0019 (8)
C920.0370 (11)0.0519 (13)0.0341 (11)0.0096 (10)0.0012 (9)0.0046 (9)
C1020.0456 (13)0.0656 (16)0.0481 (14)0.0295 (12)0.0046 (10)0.0206 (12)
C1120.0519 (13)0.0531 (14)0.0531 (14)0.0337 (12)0.0106 (11)0.0129 (11)
C1220.0431 (11)0.0409 (11)0.0385 (11)0.0226 (10)0.0069 (9)0.0031 (9)
O130.0347 (7)0.0292 (7)0.0381 (7)0.0186 (6)0.0081 (6)0.0060 (5)
O230.0504 (9)0.0413 (8)0.0423 (8)0.0238 (7)0.0234 (7)0.0157 (6)
O330.0299 (7)0.0215 (6)0.0593 (9)0.0103 (5)0.0099 (6)0.0004 (6)
O430.0217 (7)0.0294 (8)0.1024 (14)0.0077 (6)0.0034 (8)0.0149 (8)
C130.0226 (8)0.0248 (9)0.0318 (9)0.0097 (7)0.0009 (7)0.0011 (7)
C230.0226 (8)0.0213 (8)0.0288 (9)0.0104 (7)0.0058 (7)0.0025 (7)
C330.0202 (8)0.0203 (8)0.0329 (9)0.0076 (7)0.0058 (7)0.0003 (7)
C430.0274 (9)0.0213 (8)0.0283 (9)0.0081 (7)0.0018 (7)0.0006 (7)
C530.0247 (9)0.0216 (8)0.0358 (10)0.0074 (7)0.0050 (7)0.0002 (7)
O140.0398 (8)0.0343 (7)0.0493 (8)0.0221 (6)0.0054 (6)0.0079 (6)
O240.0229 (6)0.0324 (7)0.0296 (7)0.0075 (5)0.0013 (5)0.0059 (5)
O340.0325 (7)0.0212 (6)0.0277 (6)0.0028 (5)0.0039 (5)0.0008 (5)
O440.0393 (8)0.0311 (7)0.0415 (8)0.0002 (6)0.0194 (6)0.0053 (6)
C140.0232 (8)0.0262 (9)0.0246 (8)0.0101 (7)0.0048 (6)0.0004 (7)
C240.0204 (8)0.0206 (8)0.0252 (8)0.0064 (6)0.0010 (6)0.0009 (6)
C340.0201 (8)0.0207 (8)0.0247 (8)0.0056 (6)0.0018 (6)0.0000 (6)
C440.0209 (8)0.0212 (8)0.0296 (9)0.0045 (7)0.0064 (7)0.0001 (7)
C540.0237 (8)0.0223 (8)0.0268 (9)0.0063 (7)0.0028 (7)0.0017 (7)
O1W0.0334 (7)0.0256 (7)0.0435 (8)0.0085 (6)0.0046 (6)0.0010 (6)
O2W0.0345 (8)0.0258 (7)0.0665 (10)0.0102 (6)0.0232 (7)0.0028 (7)
O3W0.0305 (7)0.0307 (7)0.0309 (7)0.0112 (6)0.0068 (5)0.0000 (5)
O4W0.0260 (7)0.0390 (8)0.0642 (10)0.0131 (6)0.0082 (7)0.0239 (7)
O5W0.0579 (10)0.0347 (8)0.0489 (9)0.0187 (8)0.0117 (8)0.0067 (7)
O6W0.0612 (12)0.0782 (14)0.0539 (11)0.0149 (11)0.0140 (9)0.0025 (10)
O7W0.0400 (8)0.0335 (8)0.0486 (9)0.0154 (6)0.0061 (7)0.0041 (7)
Geometric parameters (Å, º) top
Ni1—O242.0437 (12)C32—H320.9300
Ni1—N312.0512 (15)C42—C521.385 (3)
Ni1—N212.0764 (16)C42—H420.9300
Ni1—N112.0852 (15)C52—C621.507 (3)
Ni1—O342.0950 (13)C62—H62A0.9700
Ni1—O1W2.1241 (13)C62—H62B0.9700
Ni2—O4W2.0448 (13)C72—C821.510 (3)
Ni2—N322.0528 (16)C72—H72A0.9700
Ni2—O2W2.0668 (13)C72—H72B0.9700
Ni2—O3W2.0695 (13)C82—C921.388 (3)
Ni2—N222.0778 (16)C92—C1021.370 (3)
Ni2—N122.0995 (15)C92—H920.9300
N11—C511.335 (2)C102—C1121.385 (4)
N11—C111.342 (2)C102—H1020.9300
N21—C611.460 (3)C112—C1221.375 (3)
N21—C711.472 (3)C112—H1120.9300
N21—H21N0.850 (9)C122—H1220.9300
N31—C1211.336 (2)O13—C431.260 (2)
N31—C811.342 (2)O23—C431.244 (2)
C11—C211.373 (3)O33—C531.246 (2)
C11—H110.9300O43—C531.244 (2)
C21—C311.375 (4)C13—C231.391 (2)
C21—H210.9300C13—C33i1.397 (2)
C31—C411.367 (4)C13—H130.9300
C31—H310.9300C23—C331.394 (2)
C41—C511.379 (3)C23—C431.527 (2)
C41—H410.9300C33—C13i1.397 (2)
C51—C611.500 (3)C33—C531.517 (2)
C61—H61A0.9700O14—C441.240 (2)
C61—H61B0.9700O24—C441.273 (2)
C71—C811.503 (3)O34—C541.269 (2)
C71—H71A0.9700O44—C541.249 (2)
C71—H71B0.9700C14—C34ii1.391 (2)
C81—C911.388 (3)C14—C241.393 (2)
C91—C1011.378 (4)C14—H140.9300
C91—H910.9300C24—C341.405 (2)
C101—C1111.378 (3)C24—C441.511 (2)
C101—H1010.9300C34—C14ii1.391 (2)
C111—C1211.376 (3)C34—C541.515 (2)
C111—H1110.9300O1W—H1WA0.847 (9)
C121—H1210.9300O1W—H1WB0.845 (9)
N12—C121.338 (2)O2W—H2WA0.835 (9)
N12—C521.346 (2)O2W—H2WB0.830 (9)
N22—C721.469 (3)O3W—H3WA0.836 (9)
N22—C621.473 (3)O3W—H3WB0.837 (9)
N22—H22N0.842 (9)O4W—H4WA0.833 (9)
N32—C1221.337 (3)O4W—H4WB0.833 (9)
N32—C821.342 (2)O5W—H5WA0.850 (9)
C12—C221.375 (3)O5W—H5WB0.843 (9)
C12—H120.9300O6W—H6WA0.849 (10)
C22—C321.379 (3)O6W—H6WB0.846 (10)
C22—H220.9300O7W—H7WA0.820 (9)
C32—C421.380 (3)O7W—H7WB0.837 (9)
O24—Ni1—N3195.65 (6)C122—N32—C82118.79 (17)
O24—Ni1—N21176.24 (6)C122—N32—Ni2127.29 (14)
N31—Ni1—N2182.88 (6)C82—N32—Ni2113.88 (13)
O24—Ni1—N11102.50 (6)N12—C12—C22123.12 (19)
N31—Ni1—N1188.32 (6)N12—C12—H12118.4
N21—Ni1—N1180.95 (6)C22—C12—H12118.4
O24—Ni1—O3487.32 (5)C12—C22—C32118.7 (2)
N31—Ni1—O34177.01 (5)C12—C22—H22120.6
N21—Ni1—O3494.17 (6)C32—C22—H22120.6
N11—Ni1—O3490.80 (5)C22—C32—C42118.95 (19)
O24—Ni1—O1W88.92 (5)C22—C32—H32120.5
N31—Ni1—O1W90.39 (6)C42—C32—H32120.5
N21—Ni1—O1W87.62 (6)C32—C42—C52119.2 (2)
N11—Ni1—O1W168.58 (6)C32—C42—H42120.4
O34—Ni1—O1W89.92 (5)C52—C42—H42120.4
O4W—Ni2—N32174.15 (7)N12—C52—C42121.82 (19)
O4W—Ni2—O2W91.77 (6)N12—C52—C62115.34 (17)
N32—Ni2—O2W87.28 (6)C42—C52—C62122.84 (18)
O4W—Ni2—O3W89.55 (6)N22—C62—C52110.56 (15)
N32—Ni2—O3W96.25 (6)N22—C62—H62A109.5
O2W—Ni2—O3W92.61 (6)C52—C62—H62A109.5
O4W—Ni2—N2290.77 (7)N22—C62—H62B109.5
N32—Ni2—N2283.48 (7)C52—C62—H62B109.5
O2W—Ni2—N2291.06 (6)H62A—C62—H62B108.1
O3W—Ni2—N22176.31 (6)N22—C72—C82114.44 (16)
O4W—Ni2—N1293.58 (6)N22—C72—H72A108.6
N32—Ni2—N1286.57 (6)C82—C72—H72A108.6
O2W—Ni2—N12170.22 (6)N22—C72—H72B108.6
O3W—Ni2—N1295.61 (6)C82—C72—H72B108.6
N22—Ni2—N1280.70 (6)H72A—C72—H72B107.6
C51—N11—C11118.44 (17)N32—C82—C92121.1 (2)
C51—N11—Ni1113.61 (13)N32—C82—C72117.32 (17)
C11—N11—Ni1127.95 (14)C92—C82—C72121.54 (19)
C61—N21—C71115.25 (19)C102—C92—C82119.4 (2)
C61—N21—Ni1108.77 (12)C102—C92—H92120.3
C71—N21—Ni1108.88 (12)C82—C92—H92120.3
C61—N21—H21N109.8 (15)C92—C102—C112119.7 (2)
C71—N21—H21N108.7 (15)C92—C102—H102120.1
Ni1—N21—H21N104.9 (15)C112—C102—H102120.1
C121—N31—C81118.80 (17)C122—C112—C102117.7 (2)
C121—N31—Ni1126.87 (13)C122—C112—H112121.1
C81—N31—Ni1114.23 (13)C102—C112—H112121.1
N11—C11—C21122.5 (2)N32—C122—C112123.3 (2)
N11—C11—H11118.7N32—C122—H122118.4
C21—C11—H11118.7C112—C122—H122118.4
C11—C21—C31118.8 (2)C23—C13—C33i121.54 (16)
C11—C21—H21120.6C23—C13—H13119.2
C31—C21—H21120.6C33i—C13—H13119.2
C41—C31—C21118.9 (2)C13—C23—C33118.50 (15)
C41—C31—H31120.6C13—C23—C43119.30 (15)
C21—C31—H31120.6C33—C23—C43122.14 (15)
C31—C41—C51119.8 (2)C23—C33—C13i119.95 (15)
C31—C41—H41120.1C23—C33—C53121.16 (15)
C51—C41—H41120.1C13i—C33—C53118.89 (15)
N11—C51—C41121.5 (2)O23—C43—O13125.05 (17)
N11—C51—C61116.53 (17)O23—C43—C23117.32 (15)
C41—C51—C61121.9 (2)O13—C43—C23117.60 (15)
N21—C61—C51112.56 (16)O43—C53—O33125.45 (17)
N21—C61—H61A109.1O43—C53—C33116.74 (15)
C51—C61—H61A109.1O33—C53—C33117.81 (15)
N21—C61—H61B109.1C44—O24—Ni1119.20 (11)
C51—C61—H61B109.1C54—O34—Ni1125.34 (11)
H61A—C61—H61B107.8C34ii—C14—C24122.74 (16)
N21—C71—C81113.87 (16)C34ii—C14—H14118.6
N21—C71—H71A108.8C24—C14—H14118.6
C81—C71—H71A108.8C14—C24—C34118.73 (15)
N21—C71—H71B108.8C14—C24—C44116.35 (15)
C81—C71—H71B108.8C34—C24—C44124.91 (15)
H71A—C71—H71B107.7C14ii—C34—C24118.54 (15)
N31—C81—C91121.2 (2)C14ii—C34—C54118.87 (15)
N31—C81—C71116.60 (18)C24—C34—C54122.59 (15)
C91—C81—C71122.08 (19)O14—C44—O24124.36 (16)
C101—C91—C81119.3 (2)O14—C44—C24117.95 (15)
C101—C91—H91120.3O24—C44—C24117.36 (15)
C81—C91—H91120.3O44—C54—O34123.66 (16)
C91—C101—C111119.2 (2)O44—C54—C34117.88 (15)
C91—C101—H101120.4O34—C54—C34118.45 (15)
C111—C101—H101120.4Ni1—O1W—H1WA120.3 (14)
C121—C111—C101118.5 (2)Ni1—O1W—H1WB120.8 (14)
C121—C111—H111120.8H1WA—O1W—H1WB106.1 (13)
C101—C111—H111120.8Ni2—O2W—H2WA122.1 (14)
N31—C121—C111122.9 (2)Ni2—O2W—H2WB128.8 (15)
N31—C121—H121118.5H2WA—O2W—H2WB109.0 (14)
C111—C121—H121118.5Ni2—O3W—H3WA116.2 (15)
C12—N12—C52118.14 (16)Ni2—O3W—H3WB97.6 (13)
C12—N12—Ni2128.48 (13)H3WA—O3W—H3WB107.7 (13)
C52—N12—Ni2112.71 (12)Ni2—O4W—H4WA121.5 (15)
C72—N22—C62115.19 (17)Ni2—O4W—H4WB129.7 (15)
C72—N22—Ni2109.51 (12)H4WA—O4W—H4WB108.7 (15)
C62—N22—Ni2106.37 (12)H5WA—O5W—H5WB105.7 (14)
C72—N22—H22N107.9 (16)H6WA—O6W—H6WB105.7 (15)
C62—N22—H22N107.6 (16)H7WA—O7W—H7WB109.3 (14)
Ni2—N22—H22N110.3 (16)
O24—Ni1—N11—C51169.15 (13)N12—Ni2—N32—C12294.24 (17)
N31—Ni1—N11—C5195.43 (13)O2W—Ni2—N32—C8288.96 (13)
N21—Ni1—N11—C5112.38 (13)O3W—Ni2—N32—C82178.71 (13)
O34—Ni1—N11—C5181.72 (13)N22—Ni2—N32—C822.42 (13)
O1W—Ni1—N11—C5111.8 (4)N12—Ni2—N32—C8283.44 (13)
O24—Ni1—N11—C1111.38 (17)C52—N12—C12—C221.1 (3)
N31—Ni1—N11—C1184.03 (17)Ni2—N12—C12—C22170.96 (15)
N21—Ni1—N11—C11167.09 (17)N12—C12—C22—C320.6 (3)
O34—Ni1—N11—C1198.82 (16)C12—C22—C32—C421.3 (3)
O1W—Ni1—N11—C11167.6 (3)C22—C32—C42—C520.3 (3)
N31—Ni1—N21—C61112.18 (14)C12—N12—C52—C422.1 (3)
N11—Ni1—N21—C6122.76 (13)Ni2—N12—C52—C42173.49 (16)
O34—Ni1—N21—C6167.39 (14)C12—N12—C52—C62178.17 (18)
O1W—Ni1—N21—C61157.13 (14)Ni2—N12—C52—C626.8 (2)
N31—Ni1—N21—C7114.15 (15)C32—C42—C52—N121.4 (3)
N11—Ni1—N21—C71103.57 (15)C32—C42—C52—C62178.9 (2)
O34—Ni1—N21—C71166.28 (15)C72—N22—C62—C5280.8 (2)
O1W—Ni1—N21—C7176.54 (15)Ni2—N22—C62—C5240.7 (2)
O24—Ni1—N31—C12112.69 (16)N12—C52—C62—N2232.6 (3)
N21—Ni1—N31—C121170.79 (17)C42—C52—C62—N22147.7 (2)
N11—Ni1—N31—C12189.70 (16)C62—N22—C72—C82107.2 (2)
O1W—Ni1—N31—C121101.65 (16)Ni2—N22—C72—C8212.6 (2)
O24—Ni1—N31—C81171.06 (14)C122—N32—C82—C920.2 (3)
N21—Ni1—N31—C815.45 (14)Ni2—N32—C82—C92177.70 (15)
N11—Ni1—N31—C8186.54 (14)C122—N32—C82—C72177.90 (18)
O1W—Ni1—N31—C8182.11 (14)Ni2—N32—C82—C724.2 (2)
C51—N11—C11—C212.4 (3)N22—C72—C82—N3211.7 (3)
Ni1—N11—C11—C21178.11 (16)N22—C72—C82—C92170.26 (19)
N11—C11—C21—C311.2 (3)N32—C82—C92—C1021.4 (3)
C11—C21—C31—C410.5 (4)C72—C82—C92—C102176.6 (2)
C21—C31—C41—C510.9 (4)C82—C92—C102—C1121.7 (3)
C11—N11—C51—C412.0 (3)C92—C102—C112—C1220.8 (3)
Ni1—N11—C51—C41178.51 (18)C82—N32—C122—C1120.8 (3)
C11—N11—C51—C61179.36 (18)Ni2—N32—C122—C112178.38 (16)
Ni1—N11—C51—C611.1 (2)C102—C112—C122—N320.5 (3)
C31—C41—C51—N110.3 (4)C33i—C13—C23—C330.6 (3)
C31—C41—C51—C61177.6 (2)C33i—C13—C23—C43176.80 (15)
C71—N21—C61—C5192.9 (2)C13—C23—C33—C13i0.5 (3)
Ni1—N21—C61—C5129.7 (2)C43—C23—C33—C13i176.73 (15)
N11—C51—C61—N2121.2 (3)C13—C23—C33—C53179.70 (16)
C41—C51—C61—N21161.5 (2)C43—C23—C33—C533.0 (2)
C61—N21—C71—C81102.0 (2)C13—C23—C43—O2396.9 (2)
Ni1—N21—C71—C8120.5 (2)C33—C23—C43—O2380.4 (2)
C121—N31—C81—C911.5 (3)C13—C23—C43—O1381.3 (2)
Ni1—N31—C81—C91178.03 (18)C33—C23—C43—O13101.4 (2)
C121—N31—C81—C71178.55 (19)C23—C33—C53—O43137.43 (19)
Ni1—N31—C81—C714.9 (2)C13i—C33—C53—O4342.3 (2)
N21—C71—C81—N3117.5 (3)C23—C33—C53—O3342.3 (2)
N21—C71—C81—C91165.4 (2)C13i—C33—C53—O33137.96 (18)
N31—C81—C91—C1010.9 (4)N31—Ni1—O24—C44173.47 (13)
C71—C81—C91—C101177.9 (2)N11—Ni1—O24—C4483.95 (13)
C81—C91—C101—C1110.1 (4)O34—Ni1—O24—C446.28 (13)
C91—C101—C111—C1210.2 (4)O1W—Ni1—O24—C4496.25 (13)
C81—N31—C121—C1111.2 (3)O24—Ni1—O34—C5482.65 (14)
Ni1—N31—C121—C111177.28 (16)N21—Ni1—O34—C54100.82 (14)
C101—C111—C121—N310.4 (3)N11—Ni1—O34—C5419.83 (14)
O4W—Ni2—N12—C12112.57 (17)O1W—Ni1—O34—C54171.57 (14)
N32—Ni2—N12—C1273.28 (16)C34ii—C14—C24—C340.4 (3)
O3W—Ni2—N12—C1222.67 (17)C34ii—C14—C24—C44178.86 (16)
N22—Ni2—N12—C12157.23 (17)C14—C24—C34—C14ii0.4 (3)
O4W—Ni2—N12—C5277.12 (14)C44—C24—C34—C14ii178.70 (16)
N32—Ni2—N12—C5297.02 (14)C14—C24—C34—C54179.04 (15)
O3W—Ni2—N12—C52167.02 (13)C44—C24—C34—C540.7 (3)
N22—Ni2—N12—C5213.07 (13)Ni1—O24—C44—O14118.09 (17)
O4W—Ni2—N22—C72170.62 (14)Ni1—O24—C44—C2468.69 (17)
N32—Ni2—N22—C728.30 (14)C14—C24—C44—O1474.9 (2)
O2W—Ni2—N22—C7278.84 (14)C34—C24—C44—O14106.7 (2)
N12—Ni2—N22—C7295.87 (14)C14—C24—C44—O2498.72 (18)
O4W—Ni2—N22—C6264.30 (13)C34—C24—C44—O2479.6 (2)
N32—Ni2—N22—C62116.78 (13)Ni1—O34—C54—O44124.30 (17)
O2W—Ni2—N22—C62156.09 (13)Ni1—O34—C54—C3456.8 (2)
N12—Ni2—N22—C6229.21 (13)C14ii—C34—C54—O4415.3 (2)
O2W—Ni2—N32—C12293.37 (17)C24—C34—C54—O44165.23 (17)
O3W—Ni2—N32—C1221.04 (17)C14ii—C34—C54—O34165.70 (16)
N22—Ni2—N32—C122175.25 (17)C24—C34—C54—O3413.7 (2)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21N···O34iii0.85 (2)2.15 (2)2.978 (2)166 (2)
O1W—H1WA···O44iii0.85 (2)1.99 (2)2.827 (2)170 (2)
O1W—H1WB···O5W0.85 (2)1.96 (2)2.793 (3)167 (2)
O5W—H5WA···O140.85 (1)1.98 (1)2.821 (2)172 (2)
O5W—H5WB···O14iv0.84 (2)2.02 (2)2.852 (2)167 (2)
C21—H21···O5Wv0.932.593.375 (3)142
C31—H31···O44vi0.932.593.435 (4)151
N22—H22N···O230.84 (2)2.30 (1)3.139 (2)177 (3)
O2W—H2WA···O33vii0.84 (2)1.91 (2)2.742 (2)173 (2)
O2W—H2WB···O130.83 (1)1.97 (1)2.797 (2)179 (3)
O3W—H3WA···O13vii0.84 (2)1.79 (2)2.627 (2)177 (2)
O3W—H3WB···O7Wviii0.84 (1)1.92 (1)2.742 (2)167 (2)
O4W—H4WA···O330.83 (2)1.81 (2)2.642 (2)173 (2)
O4W—H4WB···O43viii0.83 (2)1.89 (2)2.677 (2)158 (2)
O6W—H6WA···O230.85 (2)2.05 (2)2.896 (2)171 (3)
O7W—H7WA···O3Wv0.82 (1)2.07 (1)2.816 (2)151 (2)
O7W—H7WB···O430.84 (2)1.87 (2)2.705 (2)174 (2)
C12—H12···O7Wix0.932.513.435 (3)176
O6W—H6WB···O240.85 (2)2.21 (2)3.025 (2)160 (3)
C72—H72B···O5W0.972.603.490 (3)153
Symmetry codes: (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z; (vi) x+2, y+2, z+1; (vii) x+1, y+1, z; (viii) x+2, y+1, z; (ix) x, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni(C9H6O4)(C12H13N3)(H2O)][Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O'
Mr454.121784.32
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)150298
a, b, c (Å)18.233 (3), 10.4511 (14), 20.898 (3)9.8485 (6), 10.7208 (6), 19.4924 (11)
α, β, γ (°)90, 93.081 (2), 9085.008 (1), 82.823 (1), 65.2930 (8)
V3)3976.3 (9)1853.65 (19)
Z81
Radiation typeMo KαMo Kα
µ (mm1)1.021.10
Crystal size (mm)0.39 × 0.13 × 0.120.41 × 0.37 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS in SAINT-NT; Bruker, 2002)
Multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
Tmin, Tmax0.86, 0.880.65, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
15811, 4399, 3562 15507, 7916, 6969
Rint0.0280.015
(sin θ/λ)max1)0.6560.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.125, 1.43 0.032, 0.087, 1.09
No. of reflections43997916
No. of parameters280562
No. of restraints424
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.370.60, 0.31

Computer programs: SMART (Bruker, 2001), SAINT-NT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) for (I) top
Ni1—N312.062 (2)Ni1—N112.088 (2)
Ni1—O222.0674 (18)Ni1—O1W2.098 (2)
Ni1—O32i2.068 (2)Ni1—N212.106 (2)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O120.84 (2)1.79 (2)2.603 (3)162 (2)
C82—H82A···O220.992.242.916 (3)124
C121—H121···O32i0.952.553.110 (4)118
O1W—H1WA···O42i0.84 (2)1.814 (15)2.632 (3)163 (3)
C71—H71B···O22ii0.992.543.205 (4)125
C121—H121···O12i0.952.333.114 (4)139
C22—H22···O12iii0.952.493.309 (3)144
C52—H52···O42iv0.952.483.191 (3)131
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1/2; (iv) x+1/2, y+3/2, z+1.
Selected bond lengths (Å) for (II) top
Ni1—O242.0437 (12)Ni2—O4W2.0448 (13)
Ni1—N312.0512 (15)Ni2—N322.0528 (16)
Ni1—N212.0764 (16)Ni2—O2W2.0668 (13)
Ni1—N112.0852 (15)Ni2—O3W2.0695 (13)
Ni1—O342.0950 (13)Ni2—N222.0778 (16)
Ni1—O1W2.1241 (13)Ni2—N122.0995 (15)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N21—H21N···O34i0.85 (2)2.147 (17)2.978 (2)166 (2)
O1W—H1WA···O44i0.847 (17)1.988 (16)2.827 (2)170.4 (18)
O1W—H1WB···O5W0.846 (18)1.962 (18)2.793 (3)166.6 (19)
O5W—H5WA···O140.850 (11)1.978 (11)2.821 (2)171.8 (19)
O5W—H5WB···O14ii0.84 (2)2.02 (2)2.852 (2)167.4 (17)
C21—H21···O5Wiii0.932.593.375 (3)142
C31—H31···O44iv0.932.593.435 (4)151
N22—H22N···O230.84 (2)2.296 (12)3.139 (2)177 (3)
O2W—H2WA···O33v0.84 (2)1.91 (2)2.742 (2)173 (2)
O2W—H2WB···O130.830 (10)1.968 (10)2.797 (2)179 (3)
O3W—H3WA···O13v0.835 (17)1.792 (17)2.627 (2)177.1 (19)
O3W—H3WB···O7Wvi0.837 (14)1.921 (14)2.742 (2)166.7 (15)
O4W—H4WA···O330.833 (19)1.814 (19)2.642 (2)173 (2)
O4W—H4WB···O43vi0.832 (15)1.889 (17)2.677 (2)157.6 (19)
O6W—H6WA···O230.850 (17)2.054 (16)2.896 (2)171 (3)
O7W—H7WA···O3Wiii0.820 (12)2.069 (10)2.816 (2)151.2 (16)
O7W—H7WB···O430.840 (19)1.87 (2)2.705 (2)174 (2)
C12—H12···O7Wvii0.932.513.435 (3)176
O6W—H6WB···O240.85 (2)2.21 (2)3.025 (2)160 (3)
C72—H72B···O5W0.972.603.490 (3)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+2, y+2, z+1; (v) x+1, y+1, z; (vi) x+2, y+1, z; (vii) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds