Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new member of the polyaza­polycyclic family of compounds, namely N3,N6,2,5,7-penta­phenyl-2,5,7-triaza­bicyclo­[2.2.1]hep­tane-3,6-diamine xylene solvate, C34H31N5·C8H10, was synthesized for the first time and the crystal structure is reported. There are no hydrogen bonds joining the mol­ecules. All four chiral C atoms have the same absolute configurations. With regard to the four N-C-N groups, anomeric effects are observed to cause a reduction of C-N bond length and N-atom pyramidality.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109004818/uk3005sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109004818/uk3005Isup2.hkl
Contains datablock I

CCDC reference: 678813

Comment top

Polyazapolycyclics (Nielsen et al., 1979), an important precursor for the syntheses of high-density and energetic compounds (Nielsen et al. 1998), are constituted of saturated rings with multiple N atoms and are generally synthesized under catalytic reaction conditions. Several azanorbornane or azabicyclo[2,2,1]heptane (Archelas & Morin, 1984) and diazanorbornan derivatives (Alvaro et al., 2007) have been synthesized and characterized so far, but triazanorbornane derivatives have seldom been reported (Nitravati & Sikhibhushan, 1939, 1941; Alphen,1933). The synthesis and molecular structure of 2,5,7-triazabicyclo[2,2,1]heptanes have been presented in a few papers without using X-ray crystal structure analysis (Potts & Husain, 1972; Potts et al.,1974; Neunhoeffer & Fruhauf, 1969, 1970; Stanforth et al., 2002). In order to reveal the structural features of this norbornane-like triazacyclo[2,2,1]heptane skeleton, the crystal structure of the title compound, (I), was carried out.

Catalytic reaction of 1,1',2,2'-tetrakis(phenylamino)ethane (Kliegman & Barnes, 1970) in the presence of ethanol as solvent and glyoxal as catalyst led to the formation of (I), which is reported for the first time. Single crystals were formed by recrystallization from xylene solution.

There is one independent molecule and one xylene crystalline solvent molecule in the asymmetric unit. The crystal structure is racemic, so all S- and all R-configuration molecules are included. The molecular structure of (I) is shown in Fig. 1. The geometry is designated as a norbornane skeleton, which consists of a six-membered piperazine ring and a ring formed by an N atom bridging between the C1 and C4 positions. Despite the presence of two NH groups, N3 and N6, each carrying lone-pair electrons potentially available for hydrogen-bond formation, there are, in fact, no intra- or intermolecular C—H···N hydrogen bonds. As shown in the scheme, the skeleton has a good local twofold-axis symmetry, namely through the bridge N7 and almost perpendicular to the least-squares plane of the piperazine ring. It is noteworthy that the symmetry involves not only the skeleton but also the peripheral phenyl groups, except for that attached to the bridge atom N7.

The anomeric effect in N—C—N systems and its implications on structural stability, reactivity and conformational behavior have been studied extensively (Senderowitz et al., 1992). The occurrence of anomeric effects in a system influences many structural and electronic properties. The general concept of the anomeric effect involves a stabilizing interaction between a lone pair on N and an antiperiplanar σ* orbital of the adjacent C—N bond (nN σ*C—N), which is best described as `negative hyperconjugation' (Reed & Schleyer, 1988).

In (I), four unequal anomeric effects are observed in the N'—C—N" fragments, and these effects are manifested by the bond distances and N pyramidality. In the nN' σ*C—N" systems, the significance of the anomeric effect is indicated by the amount of geometrical deformation caused by the effect. Within the N'—C—N" unit, the N'—C bond is shorter than the C—N" bond. On the other hand, the pyramidality angle of N' (the sum of the three bond angles around N') is larger than that of N". These geometric parameters related to the anomeric effect are shown in Table 1. Among them, the nN5 σ*C—N7 system shows a prominent anomeric interaction and the largest bond-length difference is 0.021 (2) Å, which is comparable to that reported for an analogous molecule (ca 0.01 Å; Senderowitz et al., 1992).

Conversely, the pyramidality angle differences in the N'—C—N" units are not so indicative. The differences within the N5—C4—N7 and N7—C1—N2 systems are 23.6 (2) and 24.1 (2)°, respectively, and these are much larger than those for the N6—C6—N5 and N3—C3—N2 groups (2.9 and 4.3°, respectively). Moreover, the calculated pyramidality angles for atoms N3 and N6 are not accurate because they include H atoms, whose positions were determined from a difference Fourier synthesis. Thus the anomeric effect on the pyramidality angle is not clear in this molecule. It could be that the anomeric effect on the angle is buried among the steric effects caused by the crowding of the substituent groups, which would strongly affect the molecular structure.

Reflecting the local twofold-axis symmetry, the corresponding N atoms in this symmetric skeleton (N2 and N5, N3 and N6) have nearly the same pyramidality angles. The pyramidality angle of N7 [330.07 (17)°] is rather small, and the attached phenyl group inclines from the local twofold axis towards atoms N2, C3 and N3. Corresponding to this inclination, the C32—C31—N7 angle [122.92 (12)°] is distorted from the ideal angle of 120°, which is attributable to the short contact between the voluminous phenyl ring and the skeleton. For example, the H32A···H1A separation (atom C1 is the bridgehead) is only 2.282 Å. Same distortion is seen in another norbornane derivative [122.5 (4)°; Watson et al., 1990] for the phenyl ring on the bridging atom.

The angle at the bridging N atom, C1—N7—C4, is 93.96 (10)°. Although this bridge angle is comparable to those reported for norbornane and diazanorbornane (Davies et al., 1992), it still indicates of the presence ring presure [please clarify what is meant by this].

Related literature top

For related literature, see: Alphen (1933); Alvaro et al. (2007); Archelas & Morin (1984); Davies et al. (1992); Neunhoeffer & Fruhauf (1969); Nielsen et al. (1979, 1998); Nitravati & Sikhibhushan (1939); Potts & Husain (1972); Potts et al. (1974); Reed & Schleyer (1988); Senderowitz et al. (1992); Stanforth et al. (2002); Watson et al. (1990).

Experimental top

Aqueous glyoxal (40% w/w, 1.15 ml, 0.01 mol) was added dropwise to a stirred solution of 1,1',2,2'-tetrakis(phenylamino)ethane (3.94 g, 0.01 mol) in ethanol (50 ml) as solvent. The solution temperature was kept at 273 K during the reaction. The mixture was put aside for 24 h at a temperature of 278–283 K. The resulting white precipitate was filtered off and washed with cold ethanol to give 2.53 g (55% yield) of N3,N6,2,5,7-pentaphenyl-2,5,7-triazabicyclo[2,2,1]heptane-3,6-diamine (m.p. 428 K). 1H NMR (CDCl3): δH 6.59–7.30 (m, 25H, CHAr), 5.69 (s, 2H, CH), 4.93 (d, 2H, J = 10 Hz, CH), 3.69 (d, 2H, J = 10 Hz, NH) p.p.m. Addition of D2O to the NMR sample caused the NH signals to disappeared and the CH doublet quickly converted to a singlet. 13C NMR (CDCl3): δC 144.8, 144.2, 143.6, 129.3, 129.7, 122.1, 119.4, 118.7, 117.4, 113.7, 113.2 (CHAr), 76.0 (CH), 72.4 (CH) p.p.m.

Refinement top

The H atoms of the NH groups were located in a difference Fourier map and refined using rigid model with Uiso(H) values fixed at 1.2|Ueq(N). The C-bound H atoms were placed in calculated positions and refined using a riding model with fixed displacement parameters [Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for CH and CH3 H atoms, respectively].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. H atoms bound to C atoms have been omitted.
N3,N6,2,5,7-Pentaphenyl-2,5,7-triazabicyclo[2,2,1]heptane- 3,6-diamine xylene solvate top
Crystal data top
C34H31N5·C8H10F(000) = 1312
Mr = 615.80Dx = 1.230 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2274 reflections
a = 12.9790 (8) Åθ = 2.4–26.8°
b = 18.0643 (11) ŵ = 0.07 mm1
c = 14.1838 (8) ÅT = 100 K
β = 90.682 (2)°Plate, light-yellow
V = 3325.2 (3) Å30.21 × 0.18 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6265 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 30.1°, θmin = 1.8°
ϕ and ω scansh = 1818
37513 measured reflectionsk = 2525
9690 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.125H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.054P)2 + 0.65P]
where P = (Fo2 + 2Fc2)/3
9690 reflections(Δ/σ)max < 0.001
426 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C34H31N5·C8H10V = 3325.2 (3) Å3
Mr = 615.80Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.9790 (8) ŵ = 0.07 mm1
b = 18.0643 (11) ÅT = 100 K
c = 14.1838 (8) Å0.21 × 0.18 × 0.05 mm
β = 90.682 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6265 reflections with I > 2σ(I)
37513 measured reflectionsRint = 0.051
9690 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
9690 reflectionsΔρmin = 0.22 e Å3
426 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08017 (10)0.23478 (7)0.13062 (9)0.0222 (3)
H10.01850.25510.16330.027*
N20.05715 (8)0.19761 (6)0.04043 (7)0.0216 (2)
C30.14464 (10)0.14990 (7)0.01949 (9)0.0203 (3)
H30.18000.16740.03860.024*
C40.21279 (10)0.16615 (7)0.10870 (9)0.0199 (2)
H40.26540.12730.12350.024*
N50.25405 (8)0.24093 (6)0.10064 (8)0.0232 (2)
C60.16807 (11)0.29172 (7)0.11520 (9)0.0248 (3)
H60.15440.32150.05700.030*
N70.13637 (8)0.17847 (6)0.18370 (7)0.0204 (2)
C70.00767 (9)0.22662 (7)0.02940 (9)0.0196 (2)
C80.07693 (10)0.28382 (7)0.00886 (9)0.0239 (3)
H80.07620.30580.05200.029*
C90.14640 (11)0.30834 (7)0.07694 (10)0.0264 (3)
H90.19350.34670.06200.032*
C100.14826 (11)0.27773 (7)0.16652 (10)0.0269 (3)
H100.19620.29480.21270.032*
C110.07914 (11)0.22189 (7)0.18766 (9)0.0251 (3)
H110.07940.20100.24910.030*
C120.00941 (10)0.19598 (7)0.12034 (9)0.0221 (3)
H120.03720.15740.13590.027*
N30.11079 (8)0.07407 (6)0.00786 (8)0.0204 (2)
H3N0.06380.06130.04800.025*
C130.18058 (9)0.01903 (7)0.01788 (9)0.0196 (2)
C140.16269 (10)0.05423 (7)0.00897 (10)0.0248 (3)
H140.10540.06560.04740.030*
C150.22770 (12)0.11036 (8)0.01996 (11)0.0316 (3)
H150.21410.16000.00210.038*
C160.31267 (12)0.09454 (9)0.07491 (11)0.0355 (4)
H160.35780.13300.09400.043*
C170.33073 (12)0.02223 (9)0.10148 (11)0.0349 (3)
H170.38850.01120.13950.042*
C180.26597 (10)0.03464 (8)0.07365 (10)0.0266 (3)
H180.27960.08410.09250.032*
C190.33985 (10)0.25826 (8)0.04651 (9)0.0255 (3)
C200.40916 (11)0.20348 (8)0.01878 (10)0.0287 (3)
H200.39720.15340.03570.034*
C210.49555 (12)0.22175 (10)0.03348 (11)0.0368 (4)
H210.54200.18380.05170.044*
C220.51489 (13)0.29407 (11)0.05928 (12)0.0430 (4)
H220.57360.30600.09570.052*
C230.44762 (14)0.34856 (10)0.03131 (12)0.0430 (4)
H230.46070.39850.04840.052*
C240.36076 (12)0.33210 (8)0.02156 (10)0.0338 (3)
H240.31580.37060.04070.041*
N60.19078 (10)0.33972 (6)0.19409 (8)0.0293 (3)
H6N0.20650.31410.24450.035*
C250.14162 (10)0.40711 (7)0.21058 (10)0.0237 (3)
C260.13831 (10)0.43333 (8)0.30303 (10)0.0271 (3)
H260.16450.40350.35300.033*
C270.09744 (11)0.50221 (8)0.32283 (11)0.0322 (3)
H270.09560.51910.38620.039*
C280.05907 (11)0.54686 (8)0.25103 (12)0.0350 (4)
H280.03170.59440.26450.042*
C290.06147 (11)0.52081 (8)0.15963 (12)0.0335 (3)
H290.03490.55090.11010.040*
C300.10181 (11)0.45170 (8)0.13839 (11)0.0298 (3)
H300.10240.43480.07500.036*
C310.08365 (10)0.11447 (7)0.21679 (9)0.0207 (3)
C320.02321 (10)0.10652 (8)0.21077 (9)0.0251 (3)
H320.06430.14510.18480.030*
C330.06913 (11)0.04215 (8)0.24287 (10)0.0310 (3)
H330.14190.03690.23880.037*
C340.01044 (12)0.01435 (9)0.28066 (11)0.0348 (3)
H340.04250.05880.30100.042*
C350.09573 (12)0.00614 (8)0.28888 (11)0.0328 (3)
H350.13630.04470.31570.039*
C360.14240 (10)0.05823 (8)0.25789 (10)0.0258 (3)
H360.21480.06410.26470.031*
C370.27607 (12)0.10462 (10)0.65063 (12)0.0406 (4)
C380.34250 (13)0.13323 (12)0.72068 (13)0.0516 (5)
H380.40330.10680.73760.062*
C390.32040 (13)0.19952 (12)0.76539 (12)0.0494 (5)
H390.36710.21800.81180.059*
C400.23312 (13)0.23899 (10)0.74450 (11)0.0424 (4)
C410.16802 (12)0.21196 (9)0.67356 (11)0.0368 (4)
H410.10780.23900.65660.044*
C420.18987 (12)0.14637 (9)0.62744 (11)0.0361 (4)
H420.14470.12960.57880.043*
C430.29846 (16)0.03312 (11)0.60203 (15)0.0582 (5)
H43A0.23760.01740.56570.087*
H43B0.31580.00470.64910.087*
H43C0.35670.03980.55950.087*
C440.20722 (17)0.30908 (11)0.79704 (13)0.0580 (6)
H44A0.25780.31690.84800.087*
H44B0.13820.30470.82380.087*
H44C0.20890.35120.75350.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0264 (6)0.0213 (6)0.0187 (6)0.0049 (5)0.0053 (5)0.0029 (5)
N20.0235 (5)0.0225 (5)0.0186 (5)0.0065 (4)0.0050 (4)0.0033 (4)
C30.0217 (6)0.0186 (6)0.0205 (6)0.0017 (5)0.0017 (5)0.0006 (5)
C40.0203 (6)0.0186 (6)0.0208 (6)0.0007 (5)0.0024 (5)0.0018 (5)
N50.0268 (6)0.0188 (5)0.0239 (6)0.0016 (5)0.0032 (4)0.0013 (4)
C60.0330 (7)0.0195 (6)0.0217 (6)0.0028 (6)0.0082 (5)0.0008 (5)
N70.0210 (5)0.0198 (5)0.0203 (5)0.0027 (4)0.0033 (4)0.0001 (4)
C70.0199 (6)0.0198 (6)0.0190 (6)0.0003 (5)0.0028 (5)0.0004 (5)
C80.0290 (7)0.0208 (6)0.0218 (6)0.0024 (5)0.0050 (5)0.0020 (5)
C90.0294 (7)0.0189 (6)0.0308 (7)0.0040 (5)0.0074 (6)0.0004 (5)
C100.0311 (7)0.0231 (7)0.0262 (7)0.0003 (6)0.0116 (6)0.0043 (5)
C110.0308 (7)0.0243 (7)0.0201 (6)0.0031 (6)0.0045 (5)0.0002 (5)
C120.0230 (6)0.0219 (6)0.0213 (6)0.0001 (5)0.0018 (5)0.0013 (5)
N30.0179 (5)0.0197 (5)0.0238 (5)0.0002 (4)0.0022 (4)0.0017 (4)
C130.0180 (6)0.0203 (6)0.0204 (6)0.0005 (5)0.0035 (5)0.0029 (5)
C140.0227 (6)0.0232 (7)0.0284 (7)0.0031 (5)0.0049 (5)0.0011 (5)
C150.0363 (8)0.0208 (7)0.0374 (8)0.0019 (6)0.0112 (7)0.0032 (6)
C160.0341 (8)0.0314 (8)0.0409 (9)0.0124 (7)0.0044 (7)0.0117 (7)
C170.0274 (7)0.0384 (8)0.0390 (8)0.0035 (7)0.0072 (6)0.0082 (7)
C180.0252 (7)0.0248 (7)0.0299 (7)0.0016 (6)0.0051 (5)0.0027 (6)
C190.0276 (7)0.0290 (7)0.0197 (6)0.0077 (6)0.0086 (5)0.0036 (5)
C200.0272 (7)0.0347 (8)0.0241 (7)0.0062 (6)0.0032 (5)0.0049 (6)
C210.0281 (7)0.0538 (10)0.0283 (8)0.0077 (7)0.0024 (6)0.0065 (7)
C220.0326 (8)0.0626 (12)0.0336 (8)0.0183 (8)0.0051 (7)0.0144 (8)
C230.0475 (10)0.0449 (10)0.0364 (9)0.0260 (8)0.0144 (7)0.0181 (7)
C240.0414 (8)0.0298 (8)0.0298 (8)0.0102 (7)0.0120 (6)0.0066 (6)
N60.0437 (7)0.0202 (6)0.0239 (6)0.0039 (5)0.0129 (5)0.0015 (5)
C250.0241 (6)0.0188 (6)0.0282 (7)0.0043 (5)0.0045 (5)0.0003 (5)
C260.0258 (7)0.0270 (7)0.0285 (7)0.0060 (6)0.0010 (5)0.0011 (6)
C270.0269 (7)0.0312 (8)0.0387 (8)0.0054 (6)0.0066 (6)0.0090 (6)
C280.0253 (7)0.0240 (7)0.0558 (10)0.0011 (6)0.0089 (7)0.0046 (7)
C290.0305 (7)0.0243 (7)0.0455 (9)0.0012 (6)0.0021 (7)0.0067 (7)
C300.0347 (8)0.0235 (7)0.0311 (7)0.0013 (6)0.0050 (6)0.0019 (6)
C310.0224 (6)0.0225 (6)0.0172 (6)0.0001 (5)0.0006 (5)0.0028 (5)
C320.0230 (6)0.0317 (7)0.0208 (6)0.0017 (6)0.0008 (5)0.0053 (5)
C330.0228 (7)0.0402 (8)0.0302 (7)0.0054 (6)0.0046 (6)0.0083 (6)
C340.0354 (8)0.0310 (8)0.0381 (8)0.0081 (7)0.0115 (7)0.0008 (7)
C350.0340 (8)0.0288 (7)0.0359 (8)0.0011 (6)0.0051 (6)0.0066 (6)
C360.0229 (6)0.0273 (7)0.0272 (7)0.0009 (5)0.0008 (5)0.0034 (6)
C370.0313 (8)0.0476 (10)0.0429 (9)0.0056 (7)0.0034 (7)0.0233 (8)
C380.0312 (8)0.0770 (14)0.0464 (10)0.0079 (9)0.0061 (7)0.0350 (10)
C390.0383 (9)0.0752 (14)0.0343 (9)0.0257 (9)0.0099 (7)0.0185 (9)
C400.0462 (10)0.0529 (10)0.0280 (8)0.0219 (8)0.0048 (7)0.0163 (7)
C410.0326 (8)0.0431 (9)0.0345 (8)0.0118 (7)0.0036 (6)0.0125 (7)
C420.0287 (7)0.0457 (9)0.0338 (8)0.0110 (7)0.0035 (6)0.0126 (7)
C430.0523 (11)0.0581 (12)0.0645 (13)0.0095 (10)0.0117 (10)0.0212 (10)
C440.0793 (14)0.0602 (12)0.0345 (9)0.0315 (11)0.0096 (9)0.0081 (9)
Geometric parameters (Å, º) top
C1—N71.4562 (16)C22—C231.377 (3)
C1—N21.4722 (16)C22—H220.9500
C1—C61.5536 (19)C23—C241.393 (2)
C1—H11.0000C23—H230.9500
N2—C71.3941 (16)C24—H240.9500
N2—C31.4590 (16)N6—C251.3955 (17)
C3—N31.4474 (16)N6—H6N0.8744
C3—C41.5630 (17)C25—C261.3954 (19)
C3—H31.0000C25—C301.3970 (19)
C4—N51.4581 (16)C26—C271.383 (2)
C4—N71.4798 (16)C26—H260.9500
C4—H41.0000C27—C281.387 (2)
N5—C191.3957 (17)C27—H270.9500
N5—C61.4612 (17)C28—C291.380 (2)
C6—N61.4431 (17)C28—H280.9500
C6—H61.0000C29—C301.388 (2)
N7—C311.4257 (16)C29—H290.9500
C7—C81.4025 (18)C30—H300.9500
C7—C121.4036 (17)C31—C361.3938 (19)
C8—C91.3860 (18)C31—C321.3960 (18)
C8—H80.9500C32—C331.386 (2)
C9—C101.3856 (19)C32—H320.9500
C9—H90.9500C33—C341.378 (2)
C10—C111.3853 (19)C33—H330.9500
C10—H100.9500C34—C351.389 (2)
C11—C121.3889 (18)C34—H340.9500
C11—H110.9500C35—C361.385 (2)
C12—H120.9500C35—H350.9500
N3—C131.3965 (16)C36—H360.9500
N3—H3N0.8704C37—C421.386 (2)
C13—C141.3974 (18)C37—C381.406 (3)
C13—C181.3979 (18)C37—C431.494 (3)
C14—C151.384 (2)C38—C391.387 (3)
C14—H140.9500C38—H380.9500
C15—C161.388 (2)C39—C401.368 (3)
C15—H150.9500C39—H390.9500
C16—C171.380 (2)C40—C411.394 (2)
C16—H160.9500C40—C441.509 (3)
C17—C181.3878 (19)C41—C421.384 (2)
C17—H170.9500C41—H410.9500
C18—H180.9500C42—H420.9500
C19—C201.397 (2)C43—H43A0.9800
C19—C241.407 (2)C43—H43B0.9800
C20—C211.391 (2)C43—H43C0.9800
C20—H200.9500C44—H44A0.9800
C21—C221.381 (2)C44—H44B0.9800
C21—H210.9500C44—H44C0.9800
N7—C1—N2103.06 (10)C20—C21—H21119.5
N7—C1—C699.85 (10)C23—C22—C21118.82 (15)
N2—C1—C6108.75 (10)C23—C22—H22120.6
N7—C1—H1114.5C21—C22—H22120.6
N2—C1—H1114.5C22—C23—C24121.49 (15)
C6—C1—H1114.5C22—C23—H23119.3
C7—N2—C3122.82 (10)C24—C23—H23119.3
C7—N2—C1124.09 (10)C23—C24—C19119.82 (16)
C3—N2—C1107.21 (10)C23—C24—H24120.1
N3—C3—N2110.26 (10)C19—C24—H24120.1
N3—C3—C4115.99 (10)C25—N6—C6124.37 (11)
N2—C3—C499.12 (9)C25—N6—H6N115.3
N3—C3—H3110.3C6—N6—H6N111.1
N2—C3—H3110.3C26—C25—N6118.22 (12)
C4—C3—H3110.3C26—C25—C30118.55 (13)
N5—C4—N799.61 (10)N6—C25—C30123.09 (13)
N5—C4—C3108.38 (10)C27—C26—C25120.83 (14)
N7—C4—C3103.45 (10)C27—C26—H26119.6
N5—C4—H4114.6C25—C26—H26119.6
N7—C4—H4114.6C26—C27—C28120.63 (14)
C3—C4—H4114.6C26—C27—H27119.7
C19—N5—C4123.17 (11)C28—C27—H27119.7
C19—N5—C6123.54 (11)C29—C28—C27118.66 (14)
C4—N5—C6106.79 (10)C29—C28—H28120.7
N6—C6—N5109.73 (11)C27—C28—H28120.7
N6—C6—C1115.61 (11)C28—C29—C30121.56 (14)
N5—C6—C199.64 (10)C28—C29—H29119.2
N6—C6—H6110.5C30—C29—H29119.2
N5—C6—H6110.5C29—C30—C25119.77 (14)
C1—C6—H6110.5C29—C30—H30120.1
C31—N7—C1119.81 (10)C25—C30—H30120.1
C31—N7—C4116.30 (10)C36—C31—C32119.26 (12)
C1—N7—C493.97 (9)C36—C31—N7117.80 (11)
N2—C7—C8120.81 (11)C32—C31—N7122.94 (12)
N2—C7—C12120.51 (11)C33—C32—C31119.81 (13)
C8—C7—C12118.56 (12)C33—C32—H32120.1
C9—C8—C7120.26 (12)C31—C32—H32120.1
C9—C8—H8119.9C34—C33—C32120.74 (13)
C7—C8—H8119.9C34—C33—H33119.6
C10—C9—C8121.03 (13)C32—C33—H33119.6
C10—C9—H9119.5C33—C34—C35119.77 (14)
C8—C9—H9119.5C33—C34—H34120.1
C11—C10—C9119.00 (12)C35—C34—H34120.1
C11—C10—H10120.5C36—C35—C34120.00 (14)
C9—C10—H10120.5C36—C35—H35120.0
C10—C11—C12120.99 (12)C34—C35—H35120.0
C10—C11—H11119.5C35—C36—C31120.36 (13)
C12—C11—H11119.5C35—C36—H36119.8
C11—C12—C7120.14 (12)C31—C36—H36119.8
C11—C12—H12119.9C42—C37—C38117.01 (18)
C7—C12—H12119.9C42—C37—C43121.47 (17)
C13—N3—C3120.43 (10)C38—C37—C43121.52 (17)
C13—N3—H3N116.3C39—C38—C37120.81 (17)
C3—N3—H3N113.0C39—C38—H38119.6
N3—C13—C14119.51 (11)C37—C38—H38119.6
N3—C13—C18121.70 (12)C40—C39—C38121.75 (17)
C14—C13—C18118.73 (12)C40—C39—H39119.1
C15—C14—C13120.60 (13)C38—C39—H39119.1
C15—C14—H14119.7C39—C40—C41117.84 (18)
C13—C14—H14119.7C39—C40—C44121.27 (17)
C14—C15—C16120.46 (14)C41—C40—C44120.89 (17)
C14—C15—H15119.8C42—C41—C40120.98 (16)
C16—C15—H15119.8C42—C41—H41119.5
C17—C16—C15119.14 (13)C40—C41—H41119.5
C17—C16—H16120.4C41—C42—C37121.54 (16)
C15—C16—H16120.4C41—C42—H42119.2
C16—C17—C18121.17 (14)C37—C42—H42119.2
C16—C17—H17119.4C37—C43—H43A109.5
C18—C17—H17119.4C37—C43—H43B109.5
C17—C18—C13119.90 (13)H43A—C43—H43B109.5
C17—C18—H18120.0C37—C43—H43C109.5
C13—C18—H18120.0H43A—C43—H43C109.5
N5—C19—C20121.10 (12)H43B—C43—H43C109.5
N5—C19—C24120.56 (14)C40—C44—H44A109.5
C20—C19—C24118.29 (13)C40—C44—H44B109.5
C21—C20—C19120.51 (14)H44A—C44—H44B109.5
C21—C20—H20119.7C40—C44—H44C109.5
C19—C20—H20119.7H44A—C44—H44C109.5
C22—C21—C20121.06 (16)H44B—C44—H44C109.5
C22—C21—H21119.5
N7—C1—N2—C7171.35 (11)C14—C15—C16—C170.9 (2)
C6—C1—N2—C783.33 (14)C15—C16—C17—C180.5 (2)
N7—C1—N2—C335.18 (13)C16—C17—C18—C130.1 (2)
C6—C1—N2—C370.14 (12)N3—C13—C18—C17176.89 (13)
C7—N2—C3—N383.24 (14)C14—C13—C18—C170.2 (2)
C1—N2—C3—N3122.87 (11)C4—N5—C19—C2018.77 (18)
C7—N2—C3—C4154.60 (11)C6—N5—C19—C20166.70 (12)
C1—N2—C3—C40.71 (12)C4—N5—C19—C24163.68 (12)
N3—C3—C4—N5170.34 (10)C6—N5—C19—C2415.75 (19)
N2—C3—C4—N571.72 (12)N5—C19—C20—C21178.63 (12)
N3—C3—C4—N784.57 (12)C24—C19—C20—C211.0 (2)
N2—C3—C4—N733.37 (11)C19—C20—C21—C220.1 (2)
N7—C4—N5—C19171.54 (11)C20—C21—C22—C230.8 (2)
C3—C4—N5—C1980.71 (14)C21—C22—C23—C240.4 (2)
N7—C4—N5—C635.99 (12)C22—C23—C24—C190.7 (2)
C3—C4—N5—C671.75 (12)N5—C19—C24—C23179.03 (13)
C19—N5—C6—N686.22 (15)C20—C19—C24—C231.4 (2)
C4—N5—C6—N6121.44 (11)N5—C6—N6—C25160.49 (12)
C19—N5—C6—C1152.00 (11)C1—C6—N6—C2587.84 (16)
C4—N5—C6—C10.34 (12)C6—N6—C25—C26154.66 (13)
N7—C1—C6—N680.18 (13)C6—N6—C25—C3029.8 (2)
N2—C1—C6—N6172.30 (10)N6—C25—C26—C27175.20 (13)
N7—C1—C6—N537.28 (11)C30—C25—C26—C270.6 (2)
N2—C1—C6—N570.24 (11)C25—C26—C27—C280.2 (2)
N2—C1—N7—C3169.98 (13)C26—C27—C28—C290.7 (2)
C6—C1—N7—C31177.99 (10)C27—C28—C29—C300.5 (2)
N2—C1—N7—C453.50 (11)C28—C29—C30—C250.3 (2)
C6—C1—N7—C458.53 (10)C26—C25—C30—C290.8 (2)
N5—C4—N7—C31175.54 (10)N6—C25—C30—C29174.73 (13)
C3—C4—N7—C3172.78 (12)C1—N7—C31—C36172.93 (11)
N5—C4—N7—C158.29 (10)C4—N7—C31—C3661.07 (15)
C3—C4—N7—C153.39 (11)C1—N7—C31—C327.92 (18)
C3—N2—C7—C8166.66 (12)C4—N7—C31—C32119.77 (13)
C1—N2—C7—C817.16 (19)C36—C31—C32—C332.02 (19)
C3—N2—C7—C1217.33 (18)N7—C31—C32—C33178.85 (12)
C1—N2—C7—C12166.83 (12)C31—C32—C33—C340.1 (2)
N2—C7—C8—C9175.07 (12)C32—C33—C34—C351.6 (2)
C12—C7—C8—C91.02 (19)C33—C34—C35—C360.9 (2)
C7—C8—C9—C100.7 (2)C34—C35—C36—C311.2 (2)
C8—C9—C10—C110.1 (2)C32—C31—C36—C352.7 (2)
C9—C10—C11—C120.7 (2)N7—C31—C36—C35178.16 (12)
C10—C11—C12—C70.4 (2)C42—C37—C38—C391.4 (2)
N2—C7—C12—C11175.62 (12)C43—C37—C38—C39179.74 (16)
C8—C7—C12—C110.47 (19)C37—C38—C39—C401.0 (2)
N2—C3—N3—C13176.38 (10)C38—C39—C40—C412.5 (2)
C4—C3—N3—C1372.03 (15)C38—C39—C40—C44176.89 (15)
C3—N3—C13—C14152.73 (12)C39—C40—C41—C421.5 (2)
C3—N3—C13—C1830.17 (18)C44—C40—C41—C42177.82 (15)
N3—C13—C14—C15176.51 (12)C40—C41—C42—C370.9 (2)
C18—C13—C14—C150.68 (19)C38—C37—C42—C412.3 (2)
C13—C14—C15—C161.0 (2)C43—C37—C42—C41178.82 (15)

Experimental details

Crystal data
Chemical formulaC34H31N5·C8H10
Mr615.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.9790 (8), 18.0643 (11), 14.1838 (8)
β (°) 90.682 (2)
V3)3325.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.21 × 0.18 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
37513, 9690, 6265
Rint0.051
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.01
No. of reflections9690
No. of parameters426
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Geometric parameters relating anomeric interactions in the N'—C—N" unit of (I) (Å, °) top
ParametersnN3 σ*C—N2inN7 σ*C—N2nN5 σ*C—N7nN6 σ*C—N5
N'—C1.4474 (16)1.4562 (16)1.4581 (16)1.4431 (17)
C—N''1.4590 (16)1.4722 (16)1.4798 (16)1.4612 (17)
N'—C—N''110.26 (10)103.06 (10)99.61 (10)109.73 (11)
Pyr N'349.7330.08 (17)353.50 (18)350.8
Pyr N''354.12 (17)354.12 (17)330.08 (17)353.50 (18)
Notes: (i) nN' σ*C-N"; (ii) pyramidality of the N atoms (the sum of the three angles around N; s.u. values are estimated from the sum of s.u. values when they are available).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds