research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carbon dioxide capture from air leading to bis­­[N-(5-methyl-1H-pyrazol-3-yl-κN2)carbamato-κO]copper(II) tetra­hydrate

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bDepartment of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Peremogy Pr. 37, 03056 Kyiv, Ukraine, cInnovation Development Center ABN, Pirogov str. 2/37, 01030 Kyiv, Ukraine, and dDepartment of Inorganic polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: valerii_sirenko@knu.ua

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 18 September 2023; accepted 28 September 2023; online 5 October 2023)

A mononuclear square-planar CuII complex of (5-methyl-1H-pyrazol-3-yl)carbamate, [Cu(C5H6N3O2)2]·4H2O, was synthesized using a one-pot reaction from 5-methyl-3-pyrazolamine and copper(II) acetate in water under ambient conditions. The adsorption of carbon dioxide from air was facilitated by the addition of di­ethano­lamine to the reaction mixture. While di­ethano­lamine is not a component of the final product, it plays a pivotal role in the reaction by creating an alkaline environment, thereby enabling the adsorption of atmos­pheric carbon dioxide. The central copper(II) atom is in an (N2O2) square-planar coordination environment formed by two N atoms and two O atoms of two equivalent (5-methyl-1H-pyrazol-3-yl)carbamate ligands. Additionally, there are co-crystallized water mol­ecules within the crystal structure of this compound. These co-crystallized water mol­ecules are linked to the CuII mononuclear complex by O—H⋯O hydrogen bonds. According to Hirshfeld surface analysis, the most frequently observed weak inter­molecular inter­actions are H⋯O/O⋯H (33.6%), H⋯C/C⋯H (11.3%) and H⋯N/N⋯H (9.0%) contacts.

1. Chemical context

Currently, global warming stands out as the most significant environmental concern, leading to climate change and giving rise to a range of effects, including elevated sea levels, prolonged droughts, intensified hurricanes, and a surge in extreme weather occurrences (Ochedi et al., 2021[Ochedi, F. O., Yu, J., Yu, H., Liu, Y. & Hussain, A. (2021). Environ. Chem. Lett. 19, 77-109.]). The primary cause of global warming in recent decades can be attributed to the heightened levels of greenhouse gases in the atmosphere, with particular emphasis on the concentration of CO2 (Aghaie et al., 2018[Aghaie, M., Rezaei, N. & Zendehboudi, S. (2018). Renew. Sustain. Energy Rev. 96, 502-525.]). Power plants, comprising more than 40% of CO2 emissions, with coal-fired facilities accounting for 73% of fossil fuel-based power plant emissions (Cannone et al., 2021[Cannone, S. F., Lanzini, A. & Santarelli, M. (2021). Energies 14, 387.]; Mikkelsen et al., 2010[Mikkelsen, M., Jørgensen, M. & Krebs, F. C. (2010). Energy Environ. Sci. 3, 43-81.]), are a significant contributor to the carbon footprint. Given the widespread use of fossil fuels, particularly coal, there is a strong need to develop effective methods for capturing and mitigating CO2 emissions from power plant flue gases, to help stabilize the atmospheric CO2 level (Wang et al., 2017[Wang, Y., Zhao, L., Otto, A., Robinius, M. & Stolten, D. (2017). Energy Procedia, 114, 650-665.]).

Various technologies, including adsorption (Milner et al., 2017[Milner, P. J., Siegelman, R. L., Forse, A. C., Gonzalez, M. I., Runčevski, T., Martell, J. D., Reimer, J. A. & Long, J. R. (2017). J. Am. Chem. Soc. 139, 13541-13553.]), absorption (Conway et al., 2013[Conway, W., Fernandes, D., Beyad, Y., Burns, R., Lawrance, G., Puxty, G. & Maeder, M. (2013). J. Phys. Chem. A, 117, 806-813.]), membrane separations (Sreedhar et al., 2017[Sreedhar, I., Vaidhiswaran, R., Kamani, B. M. & Venugopal, A. (2017). Renew. Sustain. Energy Rev. 68, 659-684.]), cryogenic distillation (Song et al., 2019[Song, C., Liu, Q., Deng, S., Li, H. & Kitamura, Y. (2019). Renew. Sustain. Energy Rev. 101, 265-278.]), and chemical looping (Kronberger et al., 2004[Kronberger, B., Johansson, E., Löffler, G., Mattisson, T., Lyngfelt, A. & Hofbauer, H. (2004). Chem. Eng. Technol. 27, 1318-1326.]), are currently under research and development for capturing CO2 from flue-gas streams. One potential strategy for reducing carbon emissions in the future involves the utilization of carbon capture and sequestration (CCS) materials.

The process of CCS entails the specific separation and subsequent storage of CO2 taken from exhaust gas mixtures, which predominantly consist of N2, CO2, H2O, and O2, preventing their release into the atmosphere. Following this, the collected CO2 is transported for either utilization or long-term storage. Amine scrubbing-based chemical capture methods have garnered significant focus and inter­est (Tang et al., 2005[Tang, Y., Kassel, W. S., Zakharov, L. N., Rheingold, A. L. & Kemp, R. A. (2005). Inorg. Chem. 44, 359-364.]; Mani et al., 2006[Mani, F., Peruzzini, M. & Stoppioni, P. (2006). Green Chem. 8, 995-1000.]).

One of the methods for reducing carbon dioxide levels in the environment involves capturing it through the formation of carbamates (Conway et al., 2011[Conway, W., Wang, X., Fernandes, D., Burns, R., Lawrance, G., Puxty, G. & Maeder, M. (2011). J. Phys. Chem. A, 115, 14340-14349.]; McCann et al., 2009[McCann, N., Phan, D., Wang, X., Conway, W., Burns, R., Attalla, M., Puxty, G. & Maeder, M. (2009). J. Phys. Chem. A, 113, 5022-5029.]; Zhang et al., 2017[Zhang, R., Yang, Q., Liang, Z., Puxty, G., Mulder, R. J., Cosgriff, J. E., Yu, H., Yang, X. & Xue, Y. (2017). Energy Fuels, 31, 11099-11108.]). Besides, carbamates can be used as catalysts or useful inter­mediates in the synthesis of other, more-valuable chemicals (Dell'Amico et al., 2003[Dell'Amico, D. B., Calderazzo, F., Labella, L., Marchetti, F. & Pampaloni, G. (2003). Chem. Rev. 103, 3857-3898.]). Given the necessity of capturing CO2 to address broader societal needs, in this article we report the synthesis, crystal structure and Hirshfeld surface analysis of a new mononuclear copper(II) complex with (5-methyl-1H-pyrazol-3-yl)carbamic acid – [Cu(5-MeHpzCarb)2]·4H2O.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/c, and has a crystal structure built upon neutral mononuclear [Cu(5-MeHpzCarb)2] units (Fig. 1[link]). Co-crystallized water mol­ecules are present in a 1:4 ratio to the complex as inter­stitial mol­ecules. The asymmetric unit includes one copper site (SOF is 0.5, Wyckoff position 2a), one (5-methyl-1H-pyrazol-3-yl)carbamate ligand and two co-crystallized water mol­ecules.

[Figure 1]
Figure 1
Representation of the [Cu(5-MeHpzCarb)2] complex and co-crystallized water mol­ecules, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. Symmetry codes: (i) −x, −y, −z; (ii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z.

The CuII ion displays a square-planar coordination environment (N2O2) formed by two nitro­gen atoms of pyrazole rings and two oxygen atoms of carboxyl­ate group of (5-methyl-1H-pyrazol-3-yl)carbamate ligands. The Cu1—N1 distances are 1.931 (2) Å while the Cu1–O1 distances are shorter and account to 1.9140 (17) Å. The O1–Cu1–O1i and N1—Cu1—N1i bond angles are 180°, which is typical for a square-planar arrangement (Fig. 1[link]). At the same time, the N1—Cu1—O1i and N1—Cu1—O1 bond angles slightly deviate from the ideal value of 90°, which is the result of the formation of the six-membered chelate rings. Selected bond lengths and bond angles are given in Table 1[link]. The Cu1 atom lies within the plane defined by N1—O1—N1i—O1i. Additionally, the Cu atom lies within the planes of the aromatic rings, whereas O1 and O1i are slightly above the plane, with an O1(O1i)-to-plane distance of 0.182 (3) Å.

Table 1
Selected bond lengths and bond angles (Å, °)

Cu1—O1 1.9140 (17) Cu1—N1 1.931 (2)
N1i—Cu1—N1 180.0 O1—Cu1—N1i 91.08 (8)
O1—Cu1—N1 88.92 (8) N2—N1—Cu1 126.70 (16)
Symmetry codes: (i) −x, −y, −z

In the crystal structure, monomeric [Cu(5-MeHpzCarb)2] units form layers with Cu1 centres lying in the ab plane. The plane-normal-to-plane-normal angle between the horizontal N1—O1—N1i—O1i planes of two adjacent layers is 74.762 (2)°.

3. Supra­molecular features

All the components of the structure are associated via inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, as well as weak C—H⋯O contacts (Figs. 2[link], 3[link]). ππ contacts are also observed between neutral [Cu(5-MeHpzCarb)2] mol­ecular complexes (Fig. 2[link]). The co-crystallized water mol­ecules are inter­leaved with the supra­molecular layers of the neutral [Cu(5-MeHpzCarb)2] complexes along the c-axis. The O4 water mol­ecule participates in four hydrogen bonds, two where it acts as a donor (O4—H4E⋯O2ii and O4—H4D⋯O3i, see Table 2[link] for details), and two as acceptor (O3—H3B⋯O4 and N2—H2⋯O4iii, see Table 2[link] for details). At the same time, the O3 water mol­ecule participates in three hydrogen bonds, two where it acts as a donor (O3—H3A⋯O2 and O3—H3B⋯O4, see Table 2[link] for details) and one as acceptor (O4—H4D⋯O3i, see Table 2[link] for details). In addition, the O3 water mol­ecule participates in a weak C2—H2A⋯O3iv contact with a C2⋯O3 distance of 3.340 (4) Å. According to this, the co-crystallized water mol­ecules play an important role in providing cohesion between the neutral [Cu(5-MeHpzCarb)2] mol­ecular complexes. Geometric parameters for inter­molecular hydrogen bonds are given in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4D⋯O3i 0.87 1.80 2.664 (3) 171
O4—H4E⋯O1ii 0.87 2.44 2.930 (3) 116
O4—H4E⋯O2ii 0.87 2.02 2.873 (3) 167
N2—H2⋯O4iii 0.88 1.99 2.863 (3) 169
N3—H3⋯O2iv 0.88 2.02 2.889 (3) 169
O3—H3A⋯O2 0.87 1.89 2.756 (3) 176
O3—H3B⋯O4 0.87 1.92 2.783 (3) 169
C2—H2A⋯O3iv 0.95 2.43 3.340 (4) 159
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Partial crystal packing of [Cu(5-MeHpzCarb)2]·4H2O showing inter­molecular ππ and N—H⋯O contacts as green and red dashed lines, respectively.
[Figure 3]
Figure 3
Partial crystal packing of [Cu(5-MeHpzCarb)2]·4H2O showing the five-membered supra­molecular ring formed by four water mol­ecules and the carboxyl group of the (5-methyl-1H-pyrazol-3-yl)carbamate ligand.

Inter­estingly, four water mol­ecules and the carboxyl group form a five-membered supra­molecular ring (Fig. 3[link]). In addition, ππ inter­actions are observed between the [Cu(5-MeHpzCarb)2] neutral complexes. The plane-to-plane distance for these ππ contacts is 3.324 (3) Å with the plane-to-plane shift being 1.498 (5) Å. It is also worth noting very weak C—H⋯π contacts between two contiguous [Cu(5-MeHpzCarb)2] units with a carbon-atom-to-plane distance of 3.586 (4) Å.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer 21.5 software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.6468 (red) to 1.1041 (blue) a.u. There are eight red spots on the dnorm surface (Fig. 4[link]a). Visualizations were performed using a red–white–blue colour scheme, where red highlights shorter contacts, white is used for contacts around vdW separation, and blue depicts longer contacts. The red spots on the 3D dnorm Hirshfeld surfaces indicate the direction and strength of the inter­molecular E—H⋯O hydrogen bonds (where E = N, O), as well as weak C—H⋯O and C—H⋯π contacts. The overall two-dimensional fingerprint plots for the selected inter­actions are shown in Fig. 4[link]b.

[Figure 4]
Figure 4
(a) Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions; (b) two-dimensional fingerprint plots, showing the contributions of different types of inter­actions.

The most significant contributions to the overall crystal packing are from H⋯H (32.2%), H⋯O/O⋯H (33.6%), H⋯C/C⋯H (11.3%), H⋯N/N⋯H (9.0%) and C⋯N/N⋯C (4.1%) inter­actions. The H⋯O/O⋯H contacts form a pair of spikes on the sides of the corresponding two-dimensional plot, which are indicative of strong inter­molecular inter­actions between atoms. At the same time, the H⋯N/N⋯H and H⋯C/C⋯H contacts form less pronounced spikes, indicating that these inter­actions are weaker.

5. Database survey

A search of the Cambridge Structure Database (CSD version 5.44, last update June 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the structure has never been published before. 51 structures for the Cu(pyrazole)2(CO2)2 moiety [four-coordinated copper atom with an N2O2 coordination environment] were found. Most similar to the title compound, complexes forming a four-coordinated N2O2 coordination environment, are trans-bis­(3,5-di­methyl­pyrazole)­bis­(pivalato)copper(II) (DEFSAJ; Zhou et al., 2006[Zhou, J.-H., Liu, Z., Li, Y.-Z., Song, Y., Chen, X.-T. & You, X.-Z. (2006). J. Coord. Chem. 59, 147-156.]), bis­(1H-indazole-3-carboxyl­ato)copper(II) (ETOVUH; Qin et al., 2017[Qin, G.-F., Qin, Q.-Y., Long, B.-F., Wei, D.-P., Xu, Y.-H., Bao, S.-J. & Yin, X.-H. (2017). J. Iran. Chem. Soc. 14, 1227-1234.]), trans-bis­(4-nitro­benzoato-O)bis­(3,5-di­methyl­pyrazole-N)copper(II) (KOKGIB; Sarma & Baruah, 2008[Sarma, R. & Baruah, J. B. (2008). J. Coord. Chem. 61, 3329-3335.]) and bis­(di­methyl­ammonium) bis­(μ2-3,5-di­carboxyl­atopyrazolato)dicopper(II) (ALERIU; Demir et al., 2016[Demir, S., Çepni, H. M., Hołyńska, M. & Kavanoz, M. (2016). Z. Naturforsch. 71, 305-310.]).

6. Synthesis and crystallization

5-Methyl-3-pyrazolamine (0.015 g, 1.54 × 10 −4 mol), copper(II) acetate (0.28 g, 1.54 × 10 −4 mol) and di­ethano­lamine (0.032 g, 3.08 × 10 −4 mol) were mixed together, and dissolved in water. After 3 days, clear, light-violet crystals were collected by filtration, dried for less than a minute, and then placed under crystallographic oil for further measurements.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms of N(p, c)—H, Cp—H and Ow—H groups (p = pyrazole, c = carbamide, w = water) were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for Cp—H groups, N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N) for N(p, c)—H groups and O—H = 0.87 Å and Uiso(H) = 1.5Ueq(O) for Ow—H groups. Methyl H atoms were positioned geometrically and were allowed to ride on C atoms and rotate around the C—C bond, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the CH3 groups.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C5H6N3O2)2]·4H2O
Mr 415.86
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 8.4623 (2), 5.64870 (16), 17.4536 (4)
β (°) 98.786 (2)
V3) 824.51 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.39
Crystal size (mm) 0.15 × 0.15 × 0.15
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.638, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5223, 1634, 1401
Rint 0.042
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.05
No. of reflections 1634
No. of parameters 116
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.57
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.93a (Rigaku OD, 2023); cell refinement: CrysAlis PRO 1.171.42.93a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.93a (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015a); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

Bis[N-(5-methyl-1H-pyrazol-3-yl-κN2)carbamato-κO]copper(II) tetrahydrate top
Crystal data top
[Cu(C5H6N3O2)2]·4H2OF(000) = 430
Mr = 415.86Dx = 1.675 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.4623 (2) ÅCell parameters from 2285 reflections
b = 5.64870 (16) Åθ = 5.1–72.3°
c = 17.4536 (4) ŵ = 2.39 mm1
β = 98.786 (2)°T = 200 K
V = 824.51 (4) Å3Block, clear light violet
Z = 20.15 × 0.15 × 0.15 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1401 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.042
ω scansθmax = 76.8°, θmin = 5.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
h = 1010
Tmin = 0.638, Tmax = 1.000k = 64
5223 measured reflectionsl = 1622
1634 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.4306P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1634 reflectionsΔρmax = 0.45 e Å3
116 parametersΔρmin = 0.57 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.0000000.0000000.0000000.0327 (2)
O40.6601 (3)0.2829 (4)0.29517 (11)0.0518 (6)
H4D0.6631970.1604980.2651760.078*
H4E0.7337470.3770680.2829860.078*
N20.2338 (3)0.3798 (4)0.05018 (12)0.0354 (5)
H20.2531490.3260010.0980180.042*
N10.1348 (2)0.2716 (4)0.00870 (11)0.0331 (5)
N30.0507 (3)0.3550 (4)0.14235 (11)0.0362 (5)
H30.0591040.4550340.1801690.043*
O30.3513 (3)0.4313 (5)0.30719 (12)0.0567 (6)
H3A0.2804570.3349400.2829980.085*
H3B0.4427270.3658200.3031280.085*
C10.1376 (3)0.4090 (5)0.07052 (14)0.0327 (5)
C20.2365 (3)0.6047 (5)0.05156 (15)0.0368 (6)
H2A0.2573940.7298960.0849610.044*
C40.4112 (3)0.7265 (6)0.07931 (17)0.0455 (7)
H4A0.3889860.7077210.1324630.068*
H4B0.3980690.8930050.0639090.068*
H4C0.5210480.6762410.0766750.068*
C30.2977 (3)0.5781 (5)0.02590 (15)0.0360 (6)
C50.0462 (3)0.1642 (5)0.16088 (13)0.0339 (6)
O10.0677 (2)0.0130 (3)0.10968 (10)0.0391 (5)
O20.1152 (2)0.1456 (4)0.22973 (9)0.0400 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0378 (3)0.0405 (4)0.0182 (3)0.0035 (2)0.0012 (2)0.0008 (2)
O40.0577 (12)0.0586 (14)0.0355 (10)0.0059 (11)0.0042 (9)0.0031 (9)
N20.0403 (11)0.0409 (13)0.0228 (10)0.0015 (10)0.0020 (8)0.0030 (9)
N10.0363 (11)0.0417 (12)0.0200 (9)0.0032 (9)0.0003 (8)0.0016 (9)
N30.0442 (12)0.0438 (13)0.0196 (9)0.0015 (10)0.0016 (8)0.0031 (9)
O30.0618 (14)0.0628 (14)0.0418 (12)0.0098 (12)0.0036 (10)0.0008 (11)
C10.0341 (12)0.0392 (14)0.0245 (11)0.0040 (11)0.0036 (9)0.0001 (11)
C20.0393 (13)0.0412 (15)0.0296 (12)0.0004 (12)0.0046 (10)0.0009 (11)
C40.0419 (14)0.0491 (18)0.0435 (15)0.0032 (13)0.0004 (12)0.0085 (13)
C30.0352 (12)0.0391 (14)0.0336 (13)0.0027 (11)0.0048 (10)0.0041 (12)
C50.0409 (13)0.0417 (14)0.0187 (11)0.0064 (12)0.0031 (9)0.0000 (10)
O10.0478 (11)0.0465 (12)0.0205 (9)0.0065 (8)0.0028 (8)0.0009 (7)
O20.0491 (10)0.0501 (11)0.0183 (8)0.0039 (9)0.0026 (7)0.0022 (8)
Geometric parameters (Å, º) top
Cu1—N11.931 (2)N3—C51.363 (4)
Cu1—N1i1.931 (2)O3—H3A0.8697
Cu1—O11.9140 (17)O3—H3B0.8700
Cu1—O1i1.9140 (17)C1—C21.396 (4)
O4—H4D0.8701C2—H2A0.9500
O4—H4E0.8698C2—C31.380 (4)
N2—H20.8800C4—H4A0.9800
N2—N11.367 (3)C4—H4B0.9800
N2—C31.341 (4)C4—H4C0.9800
N1—C11.333 (3)C4—C31.490 (4)
N3—H30.8800C5—O11.269 (3)
N3—C11.387 (3)C5—O21.258 (3)
N1i—Cu1—N1180.0N1—C1—C2110.7 (2)
O1i—Cu1—N1i88.92 (8)N3—C1—C2127.2 (2)
O1i—Cu1—N191.08 (8)C1—C2—H2A127.2
O1—Cu1—N188.92 (8)C3—C2—C1105.5 (2)
O1—Cu1—N1i91.08 (8)C3—C2—H2A127.2
O1—Cu1—O1i180.0H4A—C4—H4B109.5
H4D—O4—H4E104.5H4A—C4—H4C109.5
N1—N2—H2124.3H4B—C4—H4C109.5
C3—N2—H2124.3C3—C4—H4A109.5
C3—N2—N1111.5 (2)C3—C4—H4B109.5
N2—N1—Cu1126.70 (16)C3—C4—H4C109.5
C1—N1—Cu1127.60 (17)N2—C3—C2107.0 (2)
C1—N1—N2105.3 (2)N2—C3—C4121.7 (2)
C1—N3—H3116.4C2—C3—C4131.4 (3)
C5—N3—H3116.4O1—C5—N3120.7 (2)
C5—N3—C1127.2 (2)O2—C5—N3117.9 (2)
H3A—O3—H3B104.5O2—C5—O1121.4 (3)
N1—C1—N3122.1 (2)C5—O1—Cu1132.59 (17)
Cu1—N1—C1—N37.3 (4)C1—N3—C5—O11.3 (4)
Cu1—N1—C1—C2172.53 (18)C1—N3—C5—O2179.9 (2)
N2—N1—C1—N3179.7 (2)C1—C2—C3—N21.3 (3)
N2—N1—C1—C20.4 (3)C1—C2—C3—C4179.3 (3)
N1—N2—C3—C21.1 (3)C3—N2—N1—Cu1173.46 (18)
N1—N2—C3—C4179.4 (2)C3—N2—N1—C10.5 (3)
N1—C1—C2—C31.1 (3)C5—N3—C1—N10.0 (4)
N3—C1—C2—C3179.1 (3)C5—N3—C1—C2179.9 (3)
N3—C5—O1—Cu15.3 (4)O2—C5—O1—Cu1173.44 (18)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O3ii0.871.802.664 (3)171
O4—H4E···O1iii0.872.442.930 (3)116
O4—H4E···O2iii0.872.022.873 (3)167
N2—H2···O4iv0.881.992.863 (3)169
N3—H3···O2v0.882.022.889 (3)169
O3—H3A···O20.871.892.756 (3)176
O3—H3B···O40.871.922.783 (3)169
C2—H2A···O3v0.952.433.340 (4)159
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y+1/2, z1/2; (v) x, y+1/2, z+1/2.
Selected bond lengths and bond angles (Å, °) top
Cu1—O11.9140 (17)Cu1—N11.931 (2)
N1i—Cu1—N1180.0O1—Cu1—N1i91.08 (8)
O1—Cu1—N188.92 (8)N2—N1—Cu1126.70 (16)
Symmetry codes: (i) -x, -y, -z
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037-09 to Taras Shevchenko National University of Kyiv).

References

First citationAghaie, M., Rezaei, N. & Zendehboudi, S. (2018). Renew. Sustain. Energy Rev. 96, 502–525.  Web of Science CrossRef CAS Google Scholar
First citationCannone, S. F., Lanzini, A. & Santarelli, M. (2021). Energies 14, 387.  Web of Science CrossRef Google Scholar
First citationConway, W., Fernandes, D., Beyad, Y., Burns, R., Lawrance, G., Puxty, G. & Maeder, M. (2013). J. Phys. Chem. A, 117, 806–813.  Web of Science CrossRef CAS PubMed Google Scholar
First citationConway, W., Wang, X., Fernandes, D., Burns, R., Lawrance, G., Puxty, G. & Maeder, M. (2011). J. Phys. Chem. A, 115, 14340–14349.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDell'Amico, D. B., Calderazzo, F., Labella, L., Marchetti, F. & Pampaloni, G. (2003). Chem. Rev. 103, 3857–3898.  Web of Science PubMed Google Scholar
First citationDemir, S., Çepni, H. M., Hołyńska, M. & Kavanoz, M. (2016). Z. Naturforsch. 71, 305–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKronberger, B., Johansson, E., Löffler, G., Mattisson, T., Lyngfelt, A. & Hofbauer, H. (2004). Chem. Eng. Technol. 27, 1318–1326.  Web of Science CrossRef CAS Google Scholar
First citationMani, F., Peruzzini, M. & Stoppioni, P. (2006). Green Chem. 8, 995–1000.  Web of Science CrossRef CAS Google Scholar
First citationMcCann, N., Phan, D., Wang, X., Conway, W., Burns, R., Attalla, M., Puxty, G. & Maeder, M. (2009). J. Phys. Chem. A, 113, 5022–5029.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMikkelsen, M., Jørgensen, M. & Krebs, F. C. (2010). Energy Environ. Sci. 3, 43–81.  Web of Science CrossRef CAS Google Scholar
First citationMilner, P. J., Siegelman, R. L., Forse, A. C., Gonzalez, M. I., Runčevski, T., Martell, J. D., Reimer, J. A. & Long, J. R. (2017). J. Am. Chem. Soc. 139, 13541–13553.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOchedi, F. O., Yu, J., Yu, H., Liu, Y. & Hussain, A. (2021). Environ. Chem. Lett. 19, 77–109.  Web of Science CrossRef CAS Google Scholar
First citationQin, G.-F., Qin, Q.-Y., Long, B.-F., Wei, D.-P., Xu, Y.-H., Bao, S.-J. & Yin, X.-H. (2017). J. Iran. Chem. Soc. 14, 1227–1234.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSarma, R. & Baruah, J. B. (2008). J. Coord. Chem. 61, 3329–3335.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, C., Liu, Q., Deng, S., Li, H. & Kitamura, Y. (2019). Renew. Sustain. Energy Rev. 101, 265–278.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreedhar, I., Vaidhiswaran, R., Kamani, B. M. & Venugopal, A. (2017). Renew. Sustain. Energy Rev. 68, 659–684.  Web of Science CrossRef CAS Google Scholar
First citationTang, Y., Kassel, W. S., Zakharov, L. N., Rheingold, A. L. & Kemp, R. A. (2005). Inorg. Chem. 44, 359–364.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, Y., Zhao, L., Otto, A., Robinius, M. & Stolten, D. (2017). Energy Procedia, 114, 650–665.  CrossRef CAS Google Scholar
First citationZhang, R., Yang, Q., Liang, Z., Puxty, G., Mulder, R. J., Cosgriff, J. E., Yu, H., Yang, X. & Xue, Y. (2017). Energy Fuels, 31, 11099–11108.  Web of Science CrossRef CAS Google Scholar
First citationZhou, J.-H., Liu, Z., Li, Y.-Z., Song, Y., Chen, X.-T. & You, X.-Z. (2006). J. Coord. Chem. 59, 147–156.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds