Download citation
Download citation
link to html
The crystal structures of three conformationally locked esters, namely the centrosymmetric tetra­benzoate of all-axial perhydronaphthalene-2,3,4a,6,7,8a-­hexaol, viz. trans-4a,8a-dihy­droxy­per­hydro­naphthal­ene-2,3,6,7-tetrayl tetra­benzoate, C38H34O10, and the diacetate and dibenzoate of all-axial perhydronaphthalene-2,3,4a,8a-­tetraol, viz. (2R*,3R*,4aS*,8aS*)-4a,8a-di­hy­droxy­perhydro­naphthalene-2,3-diyl diacetate, C14H22O6, and (2R*,3R*,4aS*,8aS*)-4a,8a-dihydroxy­perhydro­naphthalene-2,3-diyl dibenzoate, C24H26O6, have been analyzed in order to examine the preference of their supra­molecular assemblies towards competing inter- and intra­molecular O-H...O hydrogen bonds. It was anticipated that the supra­molecular assembly of the esters under study would adopt two principal hydrogen-bonding modes, namely one that employs inter­molecular O-H...O hydrogen bonds (mode 1) and another that sacrifices those for intra­molecular O-H...O hydrogen bonds and settles for a crystal packing dictated by weak inter­molecular inter­actions alone (mode 2). Thus, while the mol­ecular assembly of the two crystalline diacyl derivatives conformed to a combination of hydrogen-bonding modes 1 and 2, the crystal packing in the tetra­benzoate preferred to follow mode 2 exclusively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109054870/tr3062sup1.cif
Contains datablocks global, IV, V, VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054870/tr3062IVsup2.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054870/tr3062Vsup3.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054870/tr3062VIsup4.hkl
Contains datablock VI

CCDC references: 746236; 746237; 746238

Comment top

We had envisaged in a recent communication that supramolecular assemblies of the all-axial tetraacyl derivatives (I) of the conformationally locked hexol (II) (Mehta, Sen & Ramesh, 2007; Mehta, Sen & Venkatesan, 2007), bearing chemodifferentiated secondary and tertiary OH groups, would evolve along two principal hydrogen-bonding modes (Mehta & Sen, 2009a). The first follows the hierarchy of the strength of the noncovalent interactions available in the ester (I) and opts for a crystal structure dictated mostly by intermolecular O—H···O hydrogen bonds, employing albeit the lesser accessible tertiary hydroxy groups (mode 1). The second scheme relegates the central OH moieties to function merely as intramolecular O—H···O hydrogen-bond donors to the ester O atoms and settles in consequence for a crystal packing dictated by weak intermolecular interactions alone (mode 2). It would be logical to believe that the pattern of hydrogen bonding observed experimentally in the crystal structures of such esters as (I) would eventually depend on (a) the crystallization conditions employed and (b) the extent to which the peripheral ester moieties can sequester the central hydroxy groups. For example, we have already demonstrated that the tetraacetate (III), which otherwise crystallizes along mode 1 when pure, can be goaded to follow mode 2 in a crystallization milieu, suitably doped with a molecular additive that inhibits mode 1 (Mehta & Sen, 2009b). In continuation, the present study compares the solid-state self-assemblies of the esters (IV)–(VI) with the intent of analyzing the scope of modulating the preferred hydrogen-bonding mode through variation in the steric environment around the central tertiary hydroxy groups. From a synthetic perspective, our choice of the OH-protecting functionalities, namely the acetyl and benzoyl, in (IV)–(VI) were governed by the ease in their introduction (even in a sterically encumbered position), purification and the well documented crystallizability of the esters thus obtained.

The diacetate (V) was prepared from the tetrol (VII) (Mehta, Sen & Ramesh, 2007) via base-mediated acetylation of the secondary hydroxy groups in an acetic anhydride–dimethylaminopyridine mixture. Benzoylation of the polyols (II) and (VII) was conveniently carried out in almost quantitative yield in the presence of benzoyl chloride and pyridine.

The tetrabenzoate (IV) crystallized as small cuboidal blocks, with well defined faces, at ambient temperature from its solution in a 2:1:1 chloroform–benzene–petroleum ether mixture. Its crystal structure was solved and refined in the centrosymmetric monoclinic space group P21/c (Z = 2), with the C2h symmetric tetrabenzoate molecules occupying the crystallographic inversion centers at (1/2, 1/2, 0) and (1/2, 0, 1/2) (Fig. 1). Following mode 2, the hydroxy groups in (IV) engage in intramolecular O—H···O hydrogen bonding, while intermolecular C—H···O hydrogen bonds link the tetrabenzoate molecules to form chains parallel to the c axis (Fig. 2 and Table 1).

Crystals of the diacetate (V), suitable for single-crystal X-ray diffraction analysis, were obtained as extremely thin needles by allowing a hot solution of (V) in 1:20 ethyl acetate–petroleum ether mixture to slowly attain ambient temperature. Packing in the centrosymmetric monoclinic space group P21/n (Z = 4), the C2 symmetric molecules of the diacetate (V) adopted a supramolecular assembly, which essentially followed a combination of both modes 1 and 2 (Fig. 3). Thus, one of the two tertiary hydroxy groups in (V) functions as both an intramolecular hydrogen-bond donor and an acceptor for intermolecular O—H···O hydrogen bonds that link the diacetate molecules into chains essentially along the [101] direction (Fig. 4 and Table 2). The molecular chains thus formed are held together by weak van der Waals interactions.

Obtaining crystals of the dibenzoate (VI) suitable for single-crystal X-ray diffraction analysis presented a particular challenge on account of its tendency to form flocculent microcrystalline masses in solution and its high solubility, even in solvents of low polarity such as petroleum ether. After several trials, the dibenzoate (VI) was obtained eventually as tiny scales by nucleating a saturated solution of (VI) in benzene, with the microcrystals obtained by slow evaporation of its dilute solution in petroleum ether. X-ray diffraction data collected on (VI) at 291 K revealed that the C2 symmetric dibenzoate crystallized in the centrosymmetric monoclinic space group P21/c (Z = 4), following an O—H···O hydrogen-bonding pattern akin to that observed for the diacetate (V) (Fig. 5). Thus, intermolecular O—H···O hydrogen bonds among the tertiary hydroxy groups, one of which participated additionally in intramolecular hydrogen bonding, linked the dibenzoate molecules into columnar architectures running parallel to the c axis (Fig. 6 and Table 3). These were in turn held in the crystal structure by weak van der Waals interactions.

We have therefore analyzed the solid-state self-assemblies of the tetrabenzoate (IV), derived from the conformationally locked hexol (II), and the diacyl derivatives, the diacetate (V) and the dibenzoate (VI), of the annulated polycyclitol (VII) (Mehta & Ramesh, 2000, 2001). As already alluded to, the present study was directed towards discerning a possible connection between the extent of steric shielding of the central OH groups by the flanking ester moieties, and the preference of supramolecular assemblies of crystalline esters of (II) for competing inter- and intramolecular O—H···O hydrogen bonds (Bilton et al., 2000; Baudron et al., 2004; Borho et al., 2006). Thus, while a pure sample of the tetraacetate (III) prefers to engage the tertiary OH groups as intermolecular O—H···O hydrogen bonding (mode 1), that of the tetrabenzoate (IV) conforms exclusively to mode 2 and relegates the hydroxy functionalities to serve as intramolecular O—H···O hydrogen-bond donors. The difference observed in the favored hydrogen-bonding mode in (III) and (IV) would appear to stem not only from the larger bulk of the phenyl group in (IV), as compared to the methyl in (III), but also from the ability of aromatic moiety in (IV) to engage in stronger C—H···O hydrogen bonds (Desiraju & Steiner, 1999). The individualistic nature of the self-assemblies of (III) and (IV) should be compared with the stark commonalities observed in the molecular packing of the diacyl derivatives (V) and (VI). Relieved of the constraints of the site symmetry and steric bulk of two acyl moieties, the esters (V) and (VI) exhibit crystal structures that follow a combination of modes 1 and 2. It is also interesting to note that this hydrogen-bonding preference and formation of the columnar architectures in the self-assemblies of (V) and (VI) not only optimizes the stronger O—H···O hydrogen bonds within each column, but also maximizes the weaker van der Waals interactions among the hydrophobic groups of adjacent columns (Alfonso et al., 2009; Mehta & Sen, 2005; 2008).

In summary, the conformationally locked trans-decalin framework, bearing spatially fixed and chemodifferentiated functionalities, has been employed as a probe for studying the effect that structural or functional variations in the substituents can have on the self-assembly process. In this vein, the present study highlights that O—H···O hydrogen-bonding preferences, and thus the mode of molecular packing in axial-rich polycyclitols, can be fine-tuned through suitable derivatization of the hydroxy groups.

Related literature top

For related literature, see: Alfonso et al. (2009); Baudron et al. (2004); Bilton et al. (2000); Borho et al. (2006); Desiraju & Steiner (1999); Mehta & Ramesh (2000, 2001); Mehta & Sen (2005, 2009a, 2009b); Mehta et al. (2007a, 2007b, 2008).

Experimental top

Freshly distilled benzoyl chloride (121 mg, 100 µl, 0.861 mmol) was added to a suspension of a finely ground sample (46 mg, 0.196 mmol) of the hexol (II) in dry dichloromethane (3 ml). The reaction mixture was stirred at ambient temperature for 2 h, after which time pyridine (155 mg, 160 µl, 1.966 mmol) was added dropwise and the reaction was allowed to proceed at ambient temperature for 8 h. During this interval, the heavy suspension of the hexol (II) in dichloromethane is gradually replaced by a lighter precipitate of pyridinium chloride, and the odor of benzoyl chloride becomes almost imperceptible. The reaction was quenched with saturated sodium bicarbonate solution and the product extracted with dichloromethane. The combined organic extracts were washed with dilute HCl solution and brine, and finally dried over anhydrous sodium sulfate. Evaporation of the solvent afforded the crude product, which was purified by column chromatography over silica gel using 30% ethyl acetate–petroleum ether to obtain the tetrabenzoate (IV) (125 mg, 98%) as a colorless solid.

A solution of the tetrol (VII) (25 mg, 0.124 mmol) and 4-dimethylaminopyridine (36 mg, 0.297 mmol) in acetic anhydride (0.5 ml) was stirred at ambient temperature for 3 h. The reaction was then cooled to 273 K and quenched with methanol (0.5 ml). The volatiles were removed under vacuum and the crude product obtained purified by column chromatography over silica gel using 60% ethyl acetate–petroleum ether to obtain the diacetate (V) (30 mg, 86%).

Freshly distilled benzoyl chloride (36 mg, 30 µl, 0.260 mmol), followed by pyridine (24 mg, 25 µl, 0.309 mmol), was added to a solution of the tetrol (VII) (25 mg, 0.124 mmol) in dichloromethane (2 ml) and the reaction mixture thus obtained was stirred at ambient temperature for 4 h. The reaction was then quenched with saturated sodium bicarbonate solution (1 ml) and the product extracted with dichloromethane. The combined organic extracts were washed with dilute HCl solution and brine, and finally dried over anhydrous sodium sulfate. Evaporation of the solvent and subsequent purification by column chromatography over silica gel using 20% ethyl acetate–petroleum ether gave the dibenzoate (VI) (50 mg, 99%) as a fluffy solid.

Refinement top

The methine (CH) and methylene (CH2) H atoms were then placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H distances in the range 0.97–0.98 Å and Uiso(H) = 1.2Ueq(C). The CH3 and OH hydrogen atoms were constrained to an ideal geometry with C—H distances as 0.96 Å and Uiso(H) = 1.5Ueq(C), and O—H distances fixed at 0.82 Å and Uiso(H) = 1.5Ueq(O). During refinement, each methyl and hydroxy group was however allowed to rotate freely about its C—C and C—O bond respectively.

Computing details top

For all compounds, data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the tetrabenzoate (IV), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate intramolecular O—H···O hydrogen bonds.
[Figure 2] Fig. 2. The molecular packing of (IV). H atoms not involved in hydrogen bonding have been omitted for clarity. Dotted lines indicate hydrogen bonds.
[Figure 3] Fig. 3. A view of the diacetate (V), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. The dashed line indicate the intramolecular O—H···O hydrogen bond.
[Figure 4] Fig. 4. The molecular packing of (V). H atoms bonded to C atoms have been omitted for clarity. Dotted lines indicate hydrogen bonds.
[Figure 5] Fig. 5. A view of the dibenzoate (VI), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate the intramolecular O—H···O hydrogen bond.
[Figure 6] Fig. 6. The molecular packing of (VI). H atoms bonded to C atoms have been omitted for clarity. Dotted lines indicate hydrogen bonds.
(IV) trans-4a,8a-dihydroxyperhydronaphthalene-2,3,6,7-tetrayl tetrabenzoate top
Crystal data top
C38H34O10F(000) = 684
Mr = 650.65Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3861 reflections
a = 9.734 (3) Åθ = 2.2–23.8°
b = 15.993 (5) ŵ = 0.10 mm1
c = 10.827 (4) ÅT = 291 K
β = 107.488 (5)°Block, colorless
V = 1607.6 (9) Å30.22 × 0.18 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2934 independent reflections
Radiation source: fine-focus sealed tube2036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1011
Tmin = 0.936, Tmax = 0.974k = 1919
11704 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.2642P]
where P = (Fo2 + 2Fc2)/3
2934 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C38H34O10V = 1607.6 (9) Å3
Mr = 650.65Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.734 (3) ŵ = 0.10 mm1
b = 15.993 (5) ÅT = 291 K
c = 10.827 (4) Å0.22 × 0.18 × 0.15 mm
β = 107.488 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2934 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2036 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.974Rint = 0.028
11704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
2934 reflectionsΔρmin = 0.18 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48156 (16)0.09392 (8)0.40374 (12)0.0599 (4)
O20.29469 (15)0.03688 (8)0.69171 (13)0.0592 (4)
O30.07062 (17)0.08962 (10)0.62210 (16)0.0802 (5)
O40.29810 (15)0.16315 (7)0.54800 (13)0.0604 (4)
O50.3790 (2)0.25002 (9)0.71653 (16)0.0803 (5)
C10.5413 (2)0.04191 (10)0.51518 (17)0.0481 (5)
C20.5195 (2)0.08112 (11)0.63599 (19)0.0553 (5)
C30.3638 (2)0.09310 (11)0.63177 (19)0.0545 (5)
C40.2672 (2)0.01788 (11)0.57900 (19)0.0556 (5)
C50.2983 (2)0.02671 (11)0.46721 (19)0.0539 (5)
C60.1870 (2)0.08621 (12)0.7022 (2)0.0555 (5)
C70.2308 (2)0.13406 (11)0.82507 (19)0.0492 (5)
C80.3719 (2)0.13784 (13)0.9022 (2)0.0605 (6)
C90.4080 (3)0.18120 (14)1.0169 (2)0.0690 (6)
C100.3032 (3)0.22025 (13)1.0567 (2)0.0683 (6)
C110.1634 (3)0.21684 (15)0.9816 (2)0.0771 (7)
C120.1261 (2)0.17392 (13)0.8658 (2)0.0682 (6)
C130.3106 (2)0.23858 (11)0.6057 (2)0.0536 (5)
C140.2316 (2)0.30486 (11)0.5172 (2)0.0522 (5)
C150.2349 (2)0.38539 (12)0.5669 (2)0.0642 (6)
C160.1609 (3)0.44842 (14)0.4886 (3)0.0805 (8)
C170.0828 (3)0.43186 (15)0.3623 (3)0.0853 (8)
C180.0811 (3)0.35360 (16)0.3130 (3)0.0858 (8)
C190.1559 (2)0.28931 (13)0.3901 (2)0.0684 (6)
H1O0.47080.14150.42730.090*
H2A0.56650.04620.70980.066*
H2B0.56700.13510.64990.066*
H30.36050.10490.71970.065*
H40.16610.03560.55290.067*
H5A0.25850.00600.38920.065*
H5B0.24910.08020.45460.065*
H80.44330.11080.87630.073*
H90.50370.18411.06770.083*
H100.32770.24901.13490.082*
H110.09260.24361.00850.093*
H120.03030.17180.81500.082*
H150.28690.39640.65250.077*
H160.16360.50240.52110.097*
H170.03090.47450.31040.102*
H180.02950.34320.22700.103*
H190.15500.23590.35610.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0767 (10)0.0391 (7)0.0543 (8)0.0075 (7)0.0050 (7)0.0126 (6)
O20.0580 (9)0.0542 (8)0.0592 (9)0.0001 (7)0.0084 (7)0.0151 (7)
O30.0619 (10)0.0792 (11)0.0804 (11)0.0117 (8)0.0074 (9)0.0170 (9)
O40.0752 (10)0.0385 (7)0.0586 (9)0.0100 (6)0.0067 (7)0.0028 (6)
O50.1138 (14)0.0513 (8)0.0615 (10)0.0012 (8)0.0047 (10)0.0035 (7)
C10.0571 (12)0.0339 (9)0.0434 (11)0.0027 (8)0.0001 (9)0.0066 (8)
C20.0657 (14)0.0377 (9)0.0506 (12)0.0006 (9)0.0002 (10)0.0018 (9)
C30.0664 (14)0.0399 (10)0.0505 (12)0.0062 (9)0.0073 (10)0.0060 (9)
C40.0569 (13)0.0462 (10)0.0571 (12)0.0051 (9)0.0070 (10)0.0112 (10)
C50.0575 (13)0.0407 (10)0.0529 (12)0.0030 (9)0.0003 (10)0.0055 (9)
C60.0567 (13)0.0425 (10)0.0639 (14)0.0014 (9)0.0132 (11)0.0005 (10)
C70.0539 (12)0.0388 (9)0.0546 (12)0.0035 (9)0.0156 (10)0.0007 (9)
C80.0538 (13)0.0638 (13)0.0649 (14)0.0026 (10)0.0193 (11)0.0148 (11)
C90.0610 (15)0.0782 (15)0.0635 (15)0.0062 (12)0.0121 (12)0.0151 (12)
C100.0849 (18)0.0609 (13)0.0616 (14)0.0055 (12)0.0255 (14)0.0130 (11)
C110.0762 (17)0.0725 (15)0.0899 (19)0.0086 (13)0.0360 (15)0.0171 (14)
C120.0578 (14)0.0629 (13)0.0803 (17)0.0084 (11)0.0151 (12)0.0059 (12)
C130.0590 (13)0.0422 (10)0.0593 (14)0.0007 (9)0.0174 (11)0.0000 (10)
C140.0492 (12)0.0420 (10)0.0681 (14)0.0026 (8)0.0217 (11)0.0049 (9)
C150.0634 (14)0.0449 (11)0.0886 (16)0.0029 (10)0.0291 (12)0.0004 (11)
C160.0739 (17)0.0437 (12)0.128 (2)0.0076 (11)0.0369 (17)0.0105 (14)
C170.0739 (18)0.0542 (15)0.125 (2)0.0132 (12)0.0253 (17)0.0347 (15)
C180.0836 (18)0.0730 (16)0.0884 (18)0.0065 (13)0.0069 (14)0.0247 (14)
C190.0733 (15)0.0481 (11)0.0783 (16)0.0053 (11)0.0145 (13)0.0086 (11)
Geometric parameters (Å, º) top
O1—C11.437 (2)C8—C91.372 (3)
O1—H1O0.8200C8—H80.9300
O2—C41.460 (2)C9—H90.9300
O2—C61.344 (2)C10—C91.371 (3)
O3—C61.203 (2)C10—C111.361 (3)
O4—C31.462 (2)C10—H100.9300
O4—C131.347 (2)C11—H110.9300
O5—C131.198 (2)C12—C111.379 (3)
C1—C21.522 (3)C12—H120.9300
C2—C31.515 (3)C14—C191.374 (3)
C2—H2A0.9700C14—C151.392 (3)
C2—H2B0.9700C14—C131.480 (3)
C3—H30.9800C15—C161.373 (3)
C4—C31.528 (3)C15—H150.9300
C4—H40.9800C16—C171.376 (4)
C5—C41.512 (3)C16—H160.9300
C5—H5A0.9700C17—C181.359 (4)
C5—H5B0.9700C17—H170.9300
C7—C61.482 (3)C18—H180.9300
C7—C121.382 (3)C19—C181.386 (3)
C8—C71.378 (3)C19—H190.9300
O1—C1—C2110.95 (14)C9—C8—H8119.7
O2—C4—C3102.83 (15)C9—C10—H10120.0
O2—C4—C5110.83 (15)C10—C9—C8120.2 (2)
O2—C6—C7110.95 (17)C10—C9—H9119.9
O2—C4—H4109.3C10—C11—C12120.4 (2)
O3—C6—O2123.70 (19)C10—C11—H11119.8
O3—C6—C7125.3 (2)C11—C10—C9119.9 (2)
O4—C3—C2111.26 (16)C11—C10—H10120.0
O4—C3—C4105.43 (15)C11—C12—C7120.1 (2)
O4—C13—C14112.58 (18)C11—C12—H12120.0
O4—C3—H3108.6C12—C7—C6118.91 (19)
O5—C13—O4123.15 (17)C12—C11—H11119.8
O5—C13—C14124.27 (18)C13—O4—C3115.89 (15)
C1—O1—H1O109.5C14—C15—H15120.2
C1—C2—H2A108.5C14—C19—C18119.7 (2)
C1—C2—H2B108.5C14—C19—H19120.1
C2—C3—C4114.17 (16)C15—C14—C13117.7 (2)
C2—C3—H3108.6C15—C16—C17120.1 (2)
C3—C2—C1115.00 (16)C15—C16—H16119.9
C3—C2—H2A108.5C16—C15—C14119.6 (2)
C3—C2—H2B108.5C16—C15—H15120.2
C3—C4—H4109.3C16—C17—H17119.8
C4—C3—H3108.6C17—C16—H16119.9
C4—C5—H5A108.6C17—C18—C19120.3 (3)
C4—C5—H5B108.6C17—C18—H18119.9
C5—C4—C3114.94 (18)C18—C17—C16120.4 (2)
C5—C4—H4109.3C18—C19—H19120.1
C6—O2—C4118.10 (15)C18—C17—H17119.8
C7—C8—H8119.7C19—C14—C15119.81 (19)
C7—C12—H12120.0C19—C14—C13122.44 (18)
C8—C7—C6122.16 (19)C19—C18—H18119.9
C8—C7—C12118.89 (19)H2A—C2—H2B107.5
C8—C9—H9119.9H5A—C5—H5B107.6
C9—C8—C7120.5 (2)
O1—C1—C2—C361.9 (2)C9—C8—C7—C6178.47 (19)
O2—C4—C3—O4155.50 (15)C9—C10—C11—C120.4 (4)
O2—C4—C3—C282.1 (2)C11—C10—C9—C80.8 (4)
C1—C2—C3—O474.70 (19)C12—C7—C6—O2166.18 (18)
C1—C2—C3—C444.5 (2)C12—C7—C6—O313.1 (3)
C3—O4—C13—O54.9 (3)C13—O4—C3—C289.4 (2)
C3—O4—C13—C14175.37 (17)C13—O4—C3—C4146.35 (17)
C4—O2—C6—O32.3 (3)C13—C14—C15—C16178.9 (2)
C4—O2—C6—C7177.00 (15)C13—C14—C19—C18178.4 (2)
C5—C4—C3—O484.0 (2)C14—C15—C16—C170.6 (4)
C5—C4—C3—C238.5 (2)C14—C19—C18—C170.3 (4)
C6—O2—C4—C588.1 (2)C15—C14—C13—O4179.03 (18)
C6—O2—C4—C3148.58 (17)C15—C14—C13—O51.2 (3)
C6—C7—C12—C11178.1 (2)C15—C14—C19—C181.3 (3)
C7—C8—C9—C100.9 (3)C15—C16—C17—C181.7 (4)
C7—C12—C11—C100.1 (4)C16—C17—C18—C191.2 (4)
C8—C7—C6—O211.6 (3)C19—C14—C13—O40.7 (3)
C8—C7—C6—O3169.1 (2)C19—C14—C13—O5179.1 (2)
C8—C7—C12—C110.3 (3)C19—C14—C15—C160.8 (3)
C9—C8—C7—C120.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.822.442.921 (2)118
C9—H9···O5i0.932.503.201 (3)132
Symmetry code: (i) x+1, y, z+2.
(V) (2R*,3R*,4aS*,8aS*)-4a,8a-dihydroxyperhydronaphthalene-2,3-diyl diacetate top
Crystal data top
C14H22O6F(000) = 616
Mr = 286.32Dx = 1.336 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 960 reflections
a = 9.888 (7) Åθ = 2.4–24.0°
b = 14.747 (10) ŵ = 0.10 mm1
c = 10.417 (7) ÅT = 291 K
β = 110.444 (10)°Needle, colorless
V = 1423.2 (17) Å30.32 × 0.09 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2636 independent reflections
Radiation source: fine-focus sealed tube2125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1111
Tmin = 0.955, Tmax = 0.996k = 1617
10468 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.374P]
where P = (Fo2 + 2Fc2)/3
2636 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H22O6V = 1423.2 (17) Å3
Mr = 286.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.888 (7) ŵ = 0.10 mm1
b = 14.747 (10) ÅT = 291 K
c = 10.417 (7) Å0.32 × 0.09 × 0.04 mm
β = 110.444 (10)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2636 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2125 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.996Rint = 0.026
10468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
2636 reflectionsΔρmin = 0.16 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08063 (11)0.17615 (7)0.22564 (11)0.0353 (3)
O20.22025 (12)0.08366 (7)0.05660 (10)0.0371 (3)
O30.55695 (11)0.10724 (8)0.34058 (11)0.0395 (3)
O40.43417 (11)0.21964 (9)0.48268 (11)0.0421 (3)
O50.19619 (17)0.17639 (10)0.12043 (13)0.0644 (4)
O60.63937 (15)0.02152 (10)0.20584 (15)0.0628 (4)
C10.21283 (15)0.22590 (10)0.28489 (14)0.0289 (3)
C20.29523 (16)0.22925 (10)0.18460 (15)0.0319 (4)
C30.34026 (17)0.13753 (11)0.14491 (15)0.0328 (4)
C40.40972 (16)0.07549 (11)0.26869 (16)0.0348 (4)
C50.33165 (17)0.07673 (11)0.37124 (16)0.0360 (4)
C60.30093 (16)0.17135 (11)0.41413 (15)0.0321 (4)
C70.22111 (19)0.16851 (13)0.51585 (17)0.0440 (4)
C80.1828 (2)0.26303 (14)0.55255 (18)0.0509 (5)
C90.0990 (2)0.31804 (13)0.42609 (18)0.0468 (4)
C100.17942 (18)0.32109 (11)0.32454 (16)0.0387 (4)
C110.16204 (18)0.10877 (13)0.07552 (16)0.0401 (4)
C120.0501 (2)0.04311 (14)0.15524 (19)0.0542 (5)
C130.66330 (18)0.07245 (12)0.30040 (17)0.0393 (4)
C140.80781 (19)0.10626 (15)0.3892 (2)0.0525 (5)
H1O0.02780.20300.15770.053*
H4O0.49440.20540.44860.063*
H2A0.23520.25970.10180.038*
H2B0.38120.26580.22510.038*
H30.40940.14750.09800.039*
H40.41260.01320.23680.042*
H5A0.38940.04380.45250.043*
H5B0.24080.04470.33180.043*
H7A0.28100.13810.59870.053*
H7B0.13320.13350.47670.053*
H8A0.12540.25730.61100.061*
H8B0.27080.29510.60370.061*
H9A0.08540.37930.45320.056*
H9B0.00460.29110.38220.056*
H10A0.26900.35430.36510.046*
H10B0.12110.35330.24270.046*
H12A0.03150.04640.12570.081*
H12B0.08930.01710.14060.081*
H12C0.02010.05770.25090.081*
H14A0.83820.07430.47490.079*
H14B0.80200.16990.40560.079*
H14C0.87640.09630.34420.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (6)0.0382 (7)0.0360 (6)0.0028 (5)0.0007 (4)0.0045 (5)
O20.0372 (6)0.0377 (7)0.0329 (6)0.0078 (5)0.0079 (5)0.0047 (5)
O30.0251 (6)0.0448 (7)0.0453 (6)0.0024 (5)0.0082 (5)0.0070 (5)
O40.0249 (6)0.0613 (8)0.0346 (6)0.0031 (5)0.0036 (5)0.0117 (5)
O50.0874 (11)0.0583 (9)0.0394 (7)0.0139 (8)0.0118 (7)0.0055 (6)
O60.0485 (8)0.0704 (10)0.0722 (9)0.0006 (7)0.0244 (7)0.0260 (8)
C10.0246 (8)0.0290 (8)0.0291 (7)0.0039 (6)0.0045 (6)0.0009 (6)
C20.0308 (8)0.0320 (9)0.0300 (8)0.0050 (7)0.0069 (6)0.0020 (6)
C30.0293 (8)0.0366 (9)0.0316 (8)0.0058 (7)0.0094 (7)0.0039 (7)
C40.0281 (8)0.0320 (9)0.0408 (9)0.0006 (7)0.0077 (7)0.0009 (7)
C50.0280 (8)0.0372 (9)0.0380 (8)0.0020 (7)0.0055 (7)0.0108 (7)
C60.0225 (8)0.0408 (9)0.0289 (7)0.0019 (7)0.0037 (6)0.0026 (7)
C70.0361 (9)0.0613 (12)0.0349 (8)0.0061 (8)0.0128 (7)0.0131 (8)
C80.0450 (10)0.0721 (14)0.0400 (9)0.0069 (9)0.0205 (8)0.0017 (9)
C90.0444 (10)0.0478 (11)0.0507 (10)0.0073 (8)0.0197 (8)0.0032 (9)
C100.0393 (10)0.0360 (9)0.0391 (9)0.0001 (7)0.0115 (7)0.0009 (7)
C110.0399 (10)0.0456 (11)0.0329 (8)0.0045 (8)0.0101 (7)0.0056 (8)
C120.0483 (11)0.0625 (13)0.0432 (10)0.0030 (9)0.0052 (9)0.0174 (9)
C130.0344 (9)0.0385 (10)0.0448 (9)0.0062 (7)0.0136 (8)0.0026 (8)
C140.0312 (9)0.0663 (13)0.0589 (11)0.0044 (9)0.0141 (8)0.0066 (10)
Geometric parameters (Å, º) top
O1—C11.4367 (18)C5—H5B0.9700
O1—H1O0.8200C6—C71.527 (2)
O2—C31.4570 (19)C7—C81.528 (3)
O2—C111.345 (2)C7—H7A0.9700
O3—C41.462 (2)C7—H7B0.9700
O3—C131.361 (2)C8—C91.522 (3)
O4—C61.4476 (19)C8—H8A0.9700
O4—H4O0.8200C8—H8B0.9700
O5—C111.199 (2)C9—C101.530 (2)
O6—C131.195 (2)C9—H9A0.9700
C1—C21.534 (2)C9—H9B0.9700
C1—C61.549 (2)C10—H10A0.9700
C1—C101.532 (2)C10—H10B0.9700
C2—C31.526 (2)C11—C121.487 (3)
C2—H2A0.9700C12—H12A0.9600
C2—H2B0.9700C12—H12B0.9600
C3—C41.534 (2)C12—H12C0.9600
C3—H30.9800C13—C141.491 (3)
C4—C51.521 (2)C14—H14A0.9600
C4—H40.9800C14—H14B0.9600
C5—C61.528 (2)C14—H14C0.9600
C5—H5A0.9700
O1—C1—C2110.11 (12)C6—C7—H7A109.1
O1—C1—C6105.03 (12)C6—C7—H7B109.1
O1—C1—C10109.53 (13)C7—C6—C5112.44 (14)
O2—C3—C2113.84 (13)C7—C6—C1110.32 (13)
O2—C3—C4103.43 (13)C9—C8—C7112.16 (15)
O2—C3—H3108.8C7—C8—H8A109.2
O2—C11—C12111.17 (16)C7—C8—H8B109.2
O3—C4—C3108.24 (13)C8—C7—H7A109.1
O3—C4—C5107.17 (13)C8—C7—H7B109.1
O3—C4—H4109.4C8—C9—C10110.93 (15)
O3—C13—C14111.06 (15)C8—C9—H9A109.5
O4—C6—C1108.18 (13)C8—C9—H9B109.5
O4—C6—C5110.73 (13)C9—C8—H8A109.2
O4—C6—C7105.85 (13)C9—C8—H8B109.2
O5—C11—O2123.37 (16)C9—C10—C1111.88 (14)
O5—C11—C12125.45 (17)C9—C10—H10A109.2
O6—C13—O3122.60 (16)C9—C10—H10B109.2
O6—C13—C14126.34 (16)C10—C1—C2111.72 (12)
C1—O1—H1O109.5C10—C1—C6110.51 (13)
C1—C2—H2A108.4C10—C9—H9A109.5
C1—C2—H2B108.4C10—C9—H9B109.5
C1—C10—H10A109.2C11—O2—C3117.32 (13)
C1—C10—H10B109.2C11—C12—H12A109.5
C2—C1—C6109.73 (13)C11—C12—H12B109.5
C2—C3—C4112.85 (13)C11—C12—H12C109.5
C2—C3—H3108.8C13—O3—C4117.38 (13)
C3—C2—C1115.52 (13)C13—C14—H14A109.5
C3—C2—H2A108.4C13—C14—H14B109.5
C3—C2—H2B108.4C13—C14—H14C109.5
C3—C4—H4109.4H2A—C2—H2B107.5
C4—C3—H3108.8H5A—C5—H5B107.6
C4—C5—C6114.70 (13)H7A—C7—H7B107.8
C4—C5—H5A108.6H8A—C8—H8B107.9
C4—C5—H5B108.6H9A—C9—H9B108.0
C5—C4—C3113.28 (14)H10A—C10—H10B107.9
C5—C4—H4109.4H12A—C12—H12B109.5
C5—C6—C1109.21 (13)H12A—C12—H12C109.5
C6—O4—H4O109.5H12B—C12—H12C109.5
C6—C5—H5A108.6H14A—C14—H14B109.5
C6—C5—H5B108.6H14A—C14—H14C109.5
C6—C7—C8112.46 (15)H14B—C14—H14C109.5
O1—C1—C2—C361.11 (16)C3—C4—C5—C649.63 (18)
O1—C1—C6—O4177.78 (11)C4—O3—C13—O63.8 (2)
O1—C1—C6—C561.63 (15)C4—O3—C13—C14176.05 (14)
O1—C1—C6—C762.43 (16)C4—C5—C6—O462.43 (17)
O1—C1—C10—C958.50 (17)C4—C5—C6—C156.58 (17)
O2—C3—C4—O3160.51 (11)C4—C5—C6—C7179.39 (13)
O2—C3—C4—C580.79 (16)C5—C6—C7—C8176.75 (13)
O3—C4—C5—C669.68 (16)C6—C1—C10—C956.74 (18)
O4—C6—C7—C862.23 (17)C6—C1—C2—C354.02 (16)
C1—C2—C3—O270.85 (17)C6—C7—C8—C954.0 (2)
C1—C2—C3—C446.66 (18)C7—C8—C9—C1053.5 (2)
C1—C6—C7—C854.57 (18)C8—C9—C10—C155.5 (2)
C2—C3—C4—O376.01 (16)C10—C1—C6—O459.74 (16)
C2—C3—C4—C542.68 (18)C10—C1—C6—C5179.67 (12)
C2—C1—C6—O463.89 (16)C10—C1—C6—C755.60 (17)
C2—C1—C6—C556.70 (15)C10—C1—C2—C3176.95 (12)
C2—C1—C6—C7179.24 (13)C11—O2—C3—C274.77 (17)
C2—C1—C10—C9179.22 (13)C11—O2—C3—C4162.41 (13)
C3—O2—C11—O56.1 (2)C13—O3—C4—C389.29 (17)
C3—O2—C11—C12174.98 (14)C13—O3—C4—C5148.21 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.822.072.882 (2)168
O4—H4O···O30.822.062.769 (2)145
Symmetry code: (i) x1/2, y+1/2, z1/2.
(VI) (2R*,3R*,4aS*,8aS*)-4a,8a-dihydroxyperhydronaphthalene-2,3-diyl dibenzoate top
Crystal data top
C24H26O6F(000) = 872
Mr = 410.45Dx = 1.271 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1000 reflections
a = 16.246 (3) Åθ = 2.5–18.9°
b = 11.167 (2) ŵ = 0.09 mm1
c = 11.829 (2) ÅT = 291 K
β = 92.219 (6)°Plate, colorless
V = 2144.4 (7) Å30.17 × 0.14 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3594 independent reflections
Radiation source: fine-focus sealed tube1295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.135
ϕ and ω scansθmax = 24.7°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1819
Tmin = 0.948, Tmax = 0.998k = 139
16433 measured reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0301P)2]
where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C24H26O6V = 2144.4 (7) Å3
Mr = 410.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.246 (3) ŵ = 0.09 mm1
b = 11.167 (2) ÅT = 291 K
c = 11.829 (2) Å0.17 × 0.14 × 0.02 mm
β = 92.219 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3594 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1295 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.998Rint = 0.135
16433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.92Δρmax = 0.13 e Å3
3594 reflectionsΔρmin = 0.14 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63935 (13)0.1604 (2)0.65077 (17)0.0536 (7)
O20.76313 (14)0.0177 (2)0.64898 (19)0.0553 (7)
O30.83403 (15)0.0756 (2)0.92780 (19)0.0573 (7)
O40.71244 (14)0.2561 (2)0.93423 (16)0.0540 (7)
O50.86186 (18)0.0115 (3)0.5231 (2)0.0815 (10)
O60.83388 (19)0.0858 (3)1.0427 (2)0.0853 (10)
C10.6929 (2)0.2253 (3)0.7298 (3)0.0440 (10)
C20.7829 (2)0.1918 (3)0.7105 (3)0.0477 (11)
C30.8053 (2)0.0615 (3)0.7314 (3)0.0510 (11)
C40.7767 (2)0.0168 (3)0.8457 (3)0.0524 (11)
C50.6882 (2)0.0516 (3)0.8667 (3)0.0538 (11)
C60.6679 (2)0.1834 (3)0.8490 (3)0.0450 (10)
C70.5778 (2)0.2122 (4)0.8650 (3)0.0618 (12)
C80.5582 (2)0.3466 (4)0.8485 (3)0.0715 (13)
C90.5871 (3)0.3918 (4)0.7338 (3)0.0708 (13)
C100.6777 (3)0.3597 (3)0.7160 (3)0.0580 (12)
C110.7962 (3)0.0300 (3)0.5464 (3)0.0525 (11)
C120.7406 (3)0.1008 (3)0.4684 (3)0.0462 (10)
C130.7692 (3)0.1332 (4)0.3643 (3)0.0669 (13)
C140.7193 (3)0.1947 (4)0.2863 (3)0.0717 (14)
C150.6399 (3)0.2219 (4)0.3124 (4)0.0776 (14)
C160.6106 (3)0.1886 (4)0.4151 (4)0.0901 (16)
C170.6612 (3)0.1280 (4)0.4928 (3)0.0685 (13)
C180.8586 (3)0.0122 (4)1.0214 (3)0.0552 (11)
C190.9196 (2)0.0818 (4)1.0927 (3)0.0456 (10)
C200.9576 (2)0.1844 (4)1.0560 (3)0.0647 (12)
C211.0118 (3)0.2474 (4)1.1266 (4)0.0918 (16)
C221.0287 (3)0.2079 (5)1.2354 (4)0.0831 (15)
C230.9920 (3)0.1075 (4)1.2727 (3)0.0730 (13)
C240.9374 (2)0.0450 (4)1.2027 (3)0.0685 (13)
H1O0.64930.18030.58600.080*
H4O0.76210.24480.92990.081*
H30.86510.05120.72760.061*
H2A0.79500.21150.63310.057*
H2B0.81800.24110.75960.057*
H40.78300.07030.85060.063*
H5A0.67620.03030.94380.065*
H5B0.65210.00470.81680.065*
H7A0.56330.18840.94050.074*
H7B0.54420.16600.81130.074*
H8A0.49930.35910.85260.086*
H8B0.58540.39220.90890.086*
H9A0.55290.35670.67350.085*
H9B0.58050.47810.73000.085*
H10A0.69240.38420.64070.070*
H10B0.71260.40310.77030.070*
H130.82280.11330.34620.080*
H140.73950.21740.21700.086*
H150.60590.26280.26050.093*
H160.55670.20690.43260.108*
H170.64100.10560.56210.082*
H200.94650.21160.98270.078*
H211.03690.31651.10060.110*
H221.06520.25011.28300.100*
H231.00350.08051.34600.088*
H240.91210.02331.22990.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0570 (18)0.0699 (18)0.0333 (14)0.0152 (15)0.0060 (12)0.0084 (13)
O20.0622 (19)0.0607 (19)0.0435 (15)0.0125 (16)0.0078 (13)0.0138 (14)
O30.075 (2)0.0507 (18)0.0452 (16)0.0081 (16)0.0171 (13)0.0024 (14)
O40.0587 (18)0.0637 (18)0.0390 (14)0.0084 (15)0.0053 (12)0.0098 (12)
O50.057 (2)0.125 (3)0.0631 (19)0.023 (2)0.0133 (15)0.0241 (18)
O60.118 (3)0.057 (2)0.078 (2)0.019 (2)0.0278 (17)0.0140 (17)
C10.057 (3)0.045 (3)0.030 (2)0.009 (2)0.0021 (18)0.0013 (18)
C20.053 (3)0.054 (3)0.035 (2)0.016 (2)0.0004 (18)0.0000 (18)
C30.050 (3)0.057 (3)0.046 (2)0.009 (2)0.0019 (19)0.012 (2)
C40.064 (3)0.049 (3)0.043 (2)0.009 (2)0.009 (2)0.002 (2)
C50.066 (3)0.061 (3)0.034 (2)0.013 (3)0.0014 (19)0.0006 (19)
C60.044 (3)0.056 (3)0.034 (2)0.010 (2)0.0017 (18)0.004 (2)
C70.058 (3)0.083 (4)0.045 (2)0.004 (3)0.0050 (19)0.008 (2)
C80.057 (3)0.094 (4)0.064 (3)0.011 (3)0.001 (2)0.018 (3)
C90.080 (4)0.063 (3)0.068 (3)0.008 (3)0.015 (2)0.013 (2)
C100.074 (4)0.059 (3)0.041 (2)0.006 (3)0.002 (2)0.001 (2)
C110.054 (3)0.057 (3)0.047 (3)0.002 (3)0.005 (2)0.004 (2)
C120.052 (3)0.045 (3)0.042 (2)0.002 (2)0.001 (2)0.007 (2)
C130.064 (3)0.083 (3)0.054 (3)0.010 (3)0.005 (2)0.021 (2)
C140.090 (4)0.069 (4)0.056 (3)0.026 (3)0.001 (3)0.022 (2)
C150.092 (4)0.065 (4)0.074 (3)0.006 (3)0.018 (3)0.022 (3)
C160.082 (4)0.114 (4)0.074 (3)0.038 (3)0.001 (3)0.017 (3)
C170.075 (4)0.078 (4)0.052 (3)0.025 (3)0.007 (2)0.014 (2)
C180.064 (3)0.049 (3)0.052 (3)0.008 (3)0.005 (2)0.001 (2)
C190.044 (3)0.049 (3)0.043 (2)0.009 (2)0.0008 (19)0.000 (2)
C200.060 (3)0.084 (4)0.050 (2)0.012 (3)0.003 (2)0.008 (2)
C210.085 (4)0.112 (4)0.078 (3)0.049 (3)0.015 (3)0.010 (3)
C220.078 (4)0.092 (4)0.078 (4)0.012 (3)0.015 (3)0.004 (3)
C230.086 (4)0.077 (4)0.054 (3)0.007 (3)0.024 (3)0.005 (3)
C240.081 (4)0.059 (3)0.064 (3)0.003 (3)0.020 (2)0.015 (2)
Geometric parameters (Å, º) top
O1—C11.447 (4)C9—H9A0.9700
O1—H1O0.8200C9—H9B0.9700
O2—C31.466 (4)C10—C91.537 (4)
O2—C111.353 (4)C10—H10A0.9700
O3—C41.473 (4)C10—H10B0.9700
O3—C181.361 (4)C12—C111.492 (5)
O4—C61.464 (4)C12—C131.382 (4)
O4—H4O0.8200C12—C171.366 (4)
O5—C111.205 (4)C13—H130.9300
O6—C181.197 (4)C14—C131.386 (5)
C1—C101.529 (5)C14—C151.373 (5)
C1—C61.554 (4)C14—H140.9300
C2—C11.534 (4)C15—C161.373 (5)
C2—H2A0.9700C15—H150.9300
C2—H2B0.9700C16—H160.9300
C3—C21.518 (4)C17—C161.386 (5)
C3—C41.530 (4)C17—H170.9300
C3—H30.9800C19—C201.380 (5)
C4—H40.9800C19—C241.384 (4)
C5—C41.519 (4)C19—C181.494 (5)
C5—C61.521 (4)C20—C211.383 (5)
C5—H5A0.9700C20—H200.9300
C5—H5B0.9700C21—H210.9300
C6—C71.518 (4)C22—C211.379 (5)
C7—C81.545 (5)C22—H220.9300
C7—H7A0.9700C23—C221.352 (5)
C7—H7B0.9700C23—H230.9300
C8—H8A0.9700C24—C231.379 (5)
C8—H8B0.9700C24—H240.9300
C9—C81.538 (4)
O1—C1—C2109.5 (3)C9—C8—H8A109.4
O1—C1—C6105.3 (3)C9—C8—H8B109.4
O1—C1—C10109.3 (3)C9—C10—H10A109.3
O2—C3—C2111.5 (3)C9—C10—H10B109.3
O2—C3—C4103.9 (3)C10—C1—C2112.0 (3)
O2—C3—H3109.7C10—C1—C6110.2 (3)
O2—C11—C12110.9 (4)C10—C9—C8111.7 (3)
O3—C4—C3103.4 (3)C10—C9—H9A109.3
O3—C4—C5110.9 (3)C10—C9—H9B109.3
O3—C4—H4110.0C11—O2—C3117.8 (3)
O3—C18—C19110.9 (4)C12—C13—C14120.9 (4)
O4—C6—C1108.5 (3)C12—C13—H13119.5
O4—C6—C5110.0 (3)C12—C17—C16120.6 (4)
O4—C6—C7104.5 (3)C12—C17—H17119.7
O5—C11—O2123.5 (3)C13—C12—C11118.2 (4)
O5—C11—C12125.7 (4)C13—C14—H14120.3
O6—C18—O3123.8 (4)C14—C13—H13119.5
O6—C18—C19125.3 (4)C14—C15—H15120.0
C1—O1—H1O109.5C15—C14—C13119.4 (4)
C1—C2—H2A108.4C15—C14—H14120.3
C1—C2—H2B108.4C15—C16—C17120.1 (4)
C1—C10—C9111.5 (3)C15—C16—H16119.9
C1—C10—H10A109.3C16—C15—C14120.0 (4)
C1—C10—H10B109.3C16—C15—H15120.0
C2—C1—C6110.3 (3)C16—C17—H17119.7
C2—C3—C4112.1 (3)C17—C12—C13118.9 (4)
C2—C3—H3109.7C17—C12—C11122.7 (4)
C3—C2—C1115.7 (3)C17—C16—H16119.9
C3—C2—H2A108.4C18—O3—C4117.6 (3)
C3—C2—H2B108.4C19—C20—C21121.0 (4)
C3—C4—H4110.0C19—C20—H20119.5
C4—C3—H3109.7C19—C24—H24119.3
C4—C5—C6115.3 (3)C20—C19—C24117.5 (4)
C4—C5—H5A108.5C20—C19—C18123.3 (4)
C4—C5—H5B108.5C20—C21—H21120.0
C5—C4—C3112.5 (3)C21—C20—H20119.5
C5—C4—H4110.0C21—C22—H22120.1
C5—C6—C1110.6 (3)C22—C21—C20120.0 (4)
C6—O4—H4O109.5C22—C21—H21120.0
C6—C5—H5A108.5C22—C23—C24120.4 (4)
C6—C5—H5B108.5C22—C23—H23119.8
C6—C7—C8112.6 (3)C23—C22—C21119.7 (4)
C6—C7—H7A109.1C23—C22—H22120.1
C6—C7—H7B109.1C23—C24—C19121.4 (4)
C7—C6—C1109.7 (3)C23—C24—H24119.3
C7—C6—C5113.2 (3)C24—C19—C18119.2 (4)
C7—C8—H8A109.4C24—C23—H23119.8
C7—C8—H8B109.4H2A—C2—H2B107.4
C8—C7—H7A109.1H5A—C5—H5B107.5
C8—C7—H7B109.1H7A—C7—H7B107.8
C8—C9—H9A109.3H8A—C8—H8B108.0
C8—C9—H9B109.3H9A—C9—H9B107.9
C9—C8—C7111.3 (3)H10A—C10—H10B108.0
O1—C1—C6—O4173.1 (3)C10—C1—C6—O455.3 (4)
O1—C1—C6—C566.1 (4)C10—C1—C6—C5176.1 (3)
O1—C1—C6—C759.5 (4)C10—C1—C6—C758.3 (4)
O1—C1—C10—C957.6 (4)C10—C9—C8—C751.7 (4)
O2—C3—C2—C166.3 (4)C11—O2—C3—C281.8 (4)
O2—C3—C4—O3166.5 (3)C11—O2—C3—C4157.2 (3)
O2—C3—C4—C573.8 (4)C11—C12—C13—C14177.3 (4)
O4—C6—C7—C859.5 (3)C11—C12—C17—C16176.6 (4)
C1—C6—C7—C856.7 (4)C12—C17—C16—C150.1 (7)
C1—C10—C9—C854.7 (4)C13—C12—C11—O2172.9 (3)
C2—C1—C6—O468.8 (4)C13—C12—C11—O57.1 (6)
C2—C1—C6—C552.0 (4)C13—C12—C17—C161.0 (6)
C2—C1—C6—C7177.5 (3)C13—C14—C15—C160.3 (7)
C2—C1—C10—C9179.1 (3)C14—C15—C16—C170.2 (7)
C2—C3—C4—O372.9 (4)C15—C14—C13—C121.2 (6)
C2—C3—C4—C546.8 (4)C17—C12—C11—O5168.5 (4)
C3—O2—C11—O57.1 (6)C17—C12—C11—O211.5 (5)
C3—O2—C11—C12172.9 (3)C17—C12—C13—C141.6 (6)
C3—C2—C1—O163.0 (4)C18—O3—C4—C3143.3 (3)
C3—C2—C1—C652.4 (4)C18—O3—C4—C595.9 (4)
C3—C2—C1—C10175.5 (3)C18—C19—C20—C21178.1 (4)
C4—O3—C18—O63.2 (6)C18—C19—C24—C23178.7 (4)
C4—O3—C18—C19177.1 (3)C19—C20—C21—C220.1 (7)
C4—C3—C2—C149.8 (4)C19—C24—C23—C220.8 (7)
C4—C5—C6—O466.5 (3)C20—C19—C18—O312.4 (5)
C4—C5—C6—C153.4 (4)C20—C19—C18—O6168.0 (4)
C4—C5—C6—C7177.0 (3)C20—C19—C24—C230.8 (6)
C5—C6—C7—C8179.2 (3)C23—C22—C21—C200.1 (7)
C6—C1—C10—C957.7 (4)C24—C19—C18—O3165.3 (3)
C6—C5—C4—O364.4 (4)C24—C19—C18—O614.3 (6)
C6—C5—C4—C350.8 (4)C24—C19—C20—C210.4 (6)
C6—C7—C8—C953.8 (4)C24—C23—C22—C210.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.822.223.013 (3)163
O4—H4O···O30.822.222.825 (2)131
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

(IV)(V)(VI)
Crystal data
Chemical formulaC38H34O10C14H22O6C24H26O6
Mr650.65286.32410.45
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)291291291
a, b, c (Å)9.734 (3), 15.993 (5), 10.827 (4)9.888 (7), 14.747 (10), 10.417 (7)16.246 (3), 11.167 (2), 11.829 (2)
β (°) 107.488 (5) 110.444 (10) 92.219 (6)
V3)1607.6 (9)1423.2 (17)2144.4 (7)
Z244
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.100.09
Crystal size (mm)0.22 × 0.18 × 0.150.32 × 0.09 × 0.040.17 × 0.14 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.936, 0.9740.955, 0.9960.948, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
11704, 2934, 2036 10468, 2636, 2125 16433, 3594, 1295
Rint0.0280.0260.135
(sin θ/λ)max1)0.6020.6060.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 1.03 0.042, 0.104, 1.03 0.047, 0.112, 0.92
No. of reflections293426363594
No. of parameters218185271
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.180.21, 0.160.13, 0.14

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.822.442.921 (2)118
C9—H9···O5i0.932.503.201 (3)132
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.822.072.882 (2)168
O4—H4O···O30.822.062.769 (2)145
Symmetry code: (i) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (VI) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.822.223.013 (3)163
O4—H4O···O30.822.222.825 (2)131
Symmetry code: (i) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds