Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complexes, [Co(C5H9N)3(C21H21O3P)2]ClO4·2CH2Cl2, (I), and [Co(C5H9N)3(C21H21O3P)2](ClO4)2·2CH2Cl2, (II), respectively, crystallize in the hexa­gonal space group P63/m and the monoclinic space group P21/n, respectively. The cation of complex (I) has D3h site symmetry around the Co atom and the overall symmetry is C3h. Complex (II) is best described as having a distorted trigonal-bipyramidal coordination, with a Co site symmetry of Cs. Compounds (I) and (II) form an analogous pair of five-coordinate CoI and CoII complexes with the same ligands, making it possible to establish (i) if the Co site coordination for both complexes is indeed trigonal-bipyramidal, as initially assumed, and (ii) if significant structural differences occur when the oxidation state of the metal is changed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109054626/tr3058sup1.cif
Contains datablocks global, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054626/tr3058Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054626/tr3058IIsup3.hkl
Contains datablock II

CCDC references: 774023; 774024

Comment top

Numerous tris(alkylisocyanide)bis(triarylphosphine)cobalt (I) perchlorate complexes, [Co(CNR)3(PR'3)2]ClO4, have been reported in the literature (Becker et al.,1986, 1991, 1995). Many, but not all, of these CoI complexes can be converted to the analogous five-coordinate CoII complexes, [Co(CNR)3(PR'3)2](ClO4)2, through oxidation with AgClO4 (Becker, 2000). Routine characterization has been reported for these complexes, but structural determinations are lacking. Coordination structures for both the CoI and CoII complexes are expected to be trigonal– bipyramidal. IR data for ν(–NC), in solution and solid state, suggest that the CoII complexes could have D3h symmetry for the CNR ligands (i.e. one band), while the CoI complexes may be distorted from idealized trigonal–bipyramidal coordination (i.e. two or three bands), but IR patterns are by no means conclusive for structural determination. There is disagreement in the literature over this assignment, however, particularly with respect to the interpretation of the quasi-reversible cyclic voltammograms (Hanzlik et al., 1980; Becker et al., 1995) which were later shown to be reversible (Ahmad et al., 2003).

A crystallographic investigation of these complexes seems merited for several reasons. Very few crystal structures are known for phosphine-substituted pentakis(organoisocyanide)cobalt(I) complexes, those few being with arylisocyanide, not alkylisocyanide, ligands, and, to our knowledge, no analogous structure for CoII has been reported. Five-coordination for both CoI and CoII complexes with identical ligands poses several questions: (i) are both coordination structures trigonal–bipyramidal, as usually assumed, and if so, (ii) are there any significant differences in coordination structure? Is one structure closer to idealized D3h Co site symmetry than the other, and if so, is it the CoI or the CoII complex? These questions can only be answered by a crystallographic study. [Co(CNCMe3)3{P(C6H4OMe-p)3}2]ClO4, (I), and [Co(CNCMe3)3{P(C6H4OMe-p)3}2](ClO4)2, (II), have been selected as an appropriate pair of complexes for this study.

Complex (I) is observed to crystallize in the hexagonal space group P63/m with six effectively equivalent molecules but three crystallographically independent structures in the unit cell. Where there is significant differences in bond lengths and angles quoted, the three independent values and/or average have been given. The molecular structure is shown in Figs. 1 and 2, with selected bond lengths and bond angles listed in Table 1. The site symmetry around the Co atom is effectively D3h (point group) symmetry. The entire Co(C NC)3 moiety is planar with three equivalent Co—C bonds and C—Co—C bond angles of 120.000 (10)°, three almost equivalent CN bonds with Co—C N bond angles close to the idealized 180.0° [averaging 179.16 (1)°] and three almost equivalent N—C bonds again with CN—C bond angles approaching 180° [averaging 177.97 (1)°]. This gives an effective σh through the entire Co(CNC)3 unit. The linear P—Co—P bonds are perpendicular to the CoC3 plane, forming the threefold rotation axis. Through the proper alignment of both the nine –CMe3 and six –C6H4OMe-p groups, the P1—Co1—P1 axis is also a crystallographic threefold rotation axis. The upper and lower P(C6H4OMe-p)3 rings are exactly eclipsed but are not properly 60° staggered (rather 43.8, 76.2° asymmetrically staggered) between the Co—CN bonds, preventing three σvs, and reducing the (point group) symmetry for the [Co(CNCMe3)3{P(C6H4OMe-p)3}2]+ cation overall to C3h. This is, nevertheless, still a very symmetrical ion.

The Co—P bond averaging 2.1783 (6) Å is shorter than that which is normally expected for a Co—P single bond [Cambridge Structural Database (CSD), Conquest 1.11, Allen, 2002], giving support for some degree of dππ* back-bonding, although less than the very short Co—P bond [i.e. 2.052 (5) Å] observed in HCo(PF3)4 (Frenz & Ibers, 1970). The averaged Co—C bond [1.826 (6) Å] is also quite short, supportive of the more extensive back-bonding expected to the organoisocyanide ligands. The perchlorate ion shows some distortion, with an average Cl—O bond length 1.416 (4) Å and average O—Cl—O bond angle 108.67 (5)°. There is no evidence for hydrogen bonding with either the ClO4- anion or the CH2Cl2 molecule.

Complex (II) is observed to crystallize in the monoclinic space group P21/n. The molecular structure is shown in Figs. 3 and 4, with selected bond lengths and bond angles listed in Table 2. The cation is best described as distorted trigonal–bipyramidal. The actual site symmetry around the Co atom is low, i.e. Cs. The CoC3 moiety appears to be approximately planar, in which case highest site symmetry is Cs, otherwise it is only C1. Three nonequivalent Co—C bonds form equatorial bond angles of 107.96 (11), 109.76 (10) and 142.27 (11)°, instead of the idealized 120.0°. The Co—CN bond angles [averaging 174.3 (2)°] and CN—C angles [averaging 177.5 (9)°], however, are reasonably close to linear. The CN bond lengths and N—C bond lengths appear normal for these bonds.

In structure (II) the averaged Co—P bond length of 2.2526 (7) Å is also rather short for a Co—P single bond, though not as shortened as seen for (I). Although the ionic radius for CoII is smaller than CoI, the Co2+ ion requires far less dπ π* electronic stabilization so the Co—P bond in (II) could be expected to be longer than in (I). The Co—C bond length is also shorter in (I) compared to (II), i.e. 1.826 (6) versus 1.888 (2) Å (averaged), while the CN bond lengths show slight increase [i.e. 1.159 (5) versus 1.145 (9) Å (averaged)] as would also be expected. A general insensitivity of the CN bond length to apparent bond order, however, has been observed (Cotton et al., 1965). The two perchlorate anions are nonequivalent and somewhat distorted. The averaged Cl—O bond length is 1.394 (8) Å in one, 1.406 (3) Å, in the other, but the averaged O—Cl—O bond angles are 109.4 (9) and 109.4 (8)°, respectively. Again there is no evidence for hydrogen bonding with either the ClO4- anions or the CH2Cl2 molecules in (II) as well as in (I). This may explain why the solvated CH2Cl2 is normally so readily lost shortly after preparation of these complexes.

In this pair of complexes, then, the IR data notwithstanding, the five-coordinate CoI complex, (I), has been shown to have rigorous trigonal–bipyramidal Co coordination (D3h) while the analogous five-coordinate CoII complex, (II), has distorted trigonal–bipyramidal coordination (Cs). Two disubstituted arylisocyanide CoI complexes from the literature show similarity with (I): [Co(CNC6H4NO2-p)3{PhP(OEt)2}2]ClO4 (III) (Graziani et al., 1976), and [Co(CNC6H4F-p)3{P(OCH3)3}2]BF4 (IV) (Loghry et al., 1978). Structural comparisons with these complexes are shown in Table 3. Although (III) and (IV) are clearly trigonal–bipyramidal structures, they do not exhibit the high level of coordination symmetry around the Co atom shown by (I). No analogous structures for disubstituted five-coordinate CoII organoisocyanide complexes could be found in the literature.

Related literature top

For related literature, see: Ahmad et al. (2003); Becker (2000); Becker & Barqawi (1995); Becker et al. (1986, 1991); Frenz & Ibers (1970); Graziani et al. (1976); Hanzlik et al. (1980); Loghry & Simonsen (1978).

Experimental top

Complexes (I) and (II) have been synthesized, and routinely characterized, as previously reported: (I) by reaction of excess triarylphosphine with [Co(CNCMe3)4H2O](ClO4)2 (Becker et al., 1986) and (II) by AgClO4 oxidation of (I) (Becker, 2000). X-ray quality crystals of (I), as the solvate [Co(CNCMe3)3{P(C6H4OMe-p)3}2]ClO4.2CH2Cl2, were obtained by slow evaporation of CH2Cl2/C6H12 solution at room temperature and the crystals of (II), also as a dichloromethane solvate [Co(CNCMe3)3{P(C6H4OMe-p)3}2](ClO4)2.2.08CH2Cl2, were obtained by diffusion of C6H12 into CH2Cl2 solution at room temperature.

Refinement top

For both compounds, all H atoms were refined using a riding model, with a C—H distance of 0.98Å and with Uiso(H) = 1.5Ueq(C). The highest residual peak for (I) was 1.614Å from atom Cl1 and for (II) was 0.900Å from atom C36. The methyl disorder of compound (I) seen on C31 was apparent in the structure, hence atoms C32A/C34A and atoms C32B/C33A where refined with complementary occupancies. The orientational disorder was refined over two positions using an EADP restraint (SHELXTL; Sheldrick, 2008); the final occupancy was 0.545 (5) for C32A/C34A and 0.454 (5) for C32B/C33A. The apparent solvent disorder in structure (II) was seen on dichloromethane atoms C58/C58A, and hence atoms Cl3A/Cl4A and Cl3B/Cl4B were refined with complementary occupancies. The orientational disorder was refined over two positions using bond length (DFIX) restraints [1.73 (2)Å] for the C—Cl bond lengths as well as EADP restraints for C58/C58A (SHELXTL; Sheldrick, 2008); the final occupancy was 0.489 (8) for Cl3A/Cl4A and 0.511 (8) for Cl3B/Cl4B. For satisfactory convergence it was also necessary to fix the coordinates of atoms C58, C58A, Cl4A and Cl4B during refinement. The further solvent disorder seen on C59 and C60A–D with its respective Cl atoms were refined with occupancies having been refined as a restrained linear sum of the free variables. These partial molecules have a sum of occupancies of 1.08 (CH2Cl2) (using a SUMP restraint), hence giving rise to discrepancies in the reported molecular weight and densities of the crystal.

Structure description top

Numerous tris(alkylisocyanide)bis(triarylphosphine)cobalt (I) perchlorate complexes, [Co(CNR)3(PR'3)2]ClO4, have been reported in the literature (Becker et al.,1986, 1991, 1995). Many, but not all, of these CoI complexes can be converted to the analogous five-coordinate CoII complexes, [Co(CNR)3(PR'3)2](ClO4)2, through oxidation with AgClO4 (Becker, 2000). Routine characterization has been reported for these complexes, but structural determinations are lacking. Coordination structures for both the CoI and CoII complexes are expected to be trigonal– bipyramidal. IR data for ν(–NC), in solution and solid state, suggest that the CoII complexes could have D3h symmetry for the CNR ligands (i.e. one band), while the CoI complexes may be distorted from idealized trigonal–bipyramidal coordination (i.e. two or three bands), but IR patterns are by no means conclusive for structural determination. There is disagreement in the literature over this assignment, however, particularly with respect to the interpretation of the quasi-reversible cyclic voltammograms (Hanzlik et al., 1980; Becker et al., 1995) which were later shown to be reversible (Ahmad et al., 2003).

A crystallographic investigation of these complexes seems merited for several reasons. Very few crystal structures are known for phosphine-substituted pentakis(organoisocyanide)cobalt(I) complexes, those few being with arylisocyanide, not alkylisocyanide, ligands, and, to our knowledge, no analogous structure for CoII has been reported. Five-coordination for both CoI and CoII complexes with identical ligands poses several questions: (i) are both coordination structures trigonal–bipyramidal, as usually assumed, and if so, (ii) are there any significant differences in coordination structure? Is one structure closer to idealized D3h Co site symmetry than the other, and if so, is it the CoI or the CoII complex? These questions can only be answered by a crystallographic study. [Co(CNCMe3)3{P(C6H4OMe-p)3}2]ClO4, (I), and [Co(CNCMe3)3{P(C6H4OMe-p)3}2](ClO4)2, (II), have been selected as an appropriate pair of complexes for this study.

Complex (I) is observed to crystallize in the hexagonal space group P63/m with six effectively equivalent molecules but three crystallographically independent structures in the unit cell. Where there is significant differences in bond lengths and angles quoted, the three independent values and/or average have been given. The molecular structure is shown in Figs. 1 and 2, with selected bond lengths and bond angles listed in Table 1. The site symmetry around the Co atom is effectively D3h (point group) symmetry. The entire Co(C NC)3 moiety is planar with three equivalent Co—C bonds and C—Co—C bond angles of 120.000 (10)°, three almost equivalent CN bonds with Co—C N bond angles close to the idealized 180.0° [averaging 179.16 (1)°] and three almost equivalent N—C bonds again with CN—C bond angles approaching 180° [averaging 177.97 (1)°]. This gives an effective σh through the entire Co(CNC)3 unit. The linear P—Co—P bonds are perpendicular to the CoC3 plane, forming the threefold rotation axis. Through the proper alignment of both the nine –CMe3 and six –C6H4OMe-p groups, the P1—Co1—P1 axis is also a crystallographic threefold rotation axis. The upper and lower P(C6H4OMe-p)3 rings are exactly eclipsed but are not properly 60° staggered (rather 43.8, 76.2° asymmetrically staggered) between the Co—CN bonds, preventing three σvs, and reducing the (point group) symmetry for the [Co(CNCMe3)3{P(C6H4OMe-p)3}2]+ cation overall to C3h. This is, nevertheless, still a very symmetrical ion.

The Co—P bond averaging 2.1783 (6) Å is shorter than that which is normally expected for a Co—P single bond [Cambridge Structural Database (CSD), Conquest 1.11, Allen, 2002], giving support for some degree of dππ* back-bonding, although less than the very short Co—P bond [i.e. 2.052 (5) Å] observed in HCo(PF3)4 (Frenz & Ibers, 1970). The averaged Co—C bond [1.826 (6) Å] is also quite short, supportive of the more extensive back-bonding expected to the organoisocyanide ligands. The perchlorate ion shows some distortion, with an average Cl—O bond length 1.416 (4) Å and average O—Cl—O bond angle 108.67 (5)°. There is no evidence for hydrogen bonding with either the ClO4- anion or the CH2Cl2 molecule.

Complex (II) is observed to crystallize in the monoclinic space group P21/n. The molecular structure is shown in Figs. 3 and 4, with selected bond lengths and bond angles listed in Table 2. The cation is best described as distorted trigonal–bipyramidal. The actual site symmetry around the Co atom is low, i.e. Cs. The CoC3 moiety appears to be approximately planar, in which case highest site symmetry is Cs, otherwise it is only C1. Three nonequivalent Co—C bonds form equatorial bond angles of 107.96 (11), 109.76 (10) and 142.27 (11)°, instead of the idealized 120.0°. The Co—CN bond angles [averaging 174.3 (2)°] and CN—C angles [averaging 177.5 (9)°], however, are reasonably close to linear. The CN bond lengths and N—C bond lengths appear normal for these bonds.

In structure (II) the averaged Co—P bond length of 2.2526 (7) Å is also rather short for a Co—P single bond, though not as shortened as seen for (I). Although the ionic radius for CoII is smaller than CoI, the Co2+ ion requires far less dπ π* electronic stabilization so the Co—P bond in (II) could be expected to be longer than in (I). The Co—C bond length is also shorter in (I) compared to (II), i.e. 1.826 (6) versus 1.888 (2) Å (averaged), while the CN bond lengths show slight increase [i.e. 1.159 (5) versus 1.145 (9) Å (averaged)] as would also be expected. A general insensitivity of the CN bond length to apparent bond order, however, has been observed (Cotton et al., 1965). The two perchlorate anions are nonequivalent and somewhat distorted. The averaged Cl—O bond length is 1.394 (8) Å in one, 1.406 (3) Å, in the other, but the averaged O—Cl—O bond angles are 109.4 (9) and 109.4 (8)°, respectively. Again there is no evidence for hydrogen bonding with either the ClO4- anions or the CH2Cl2 molecules in (II) as well as in (I). This may explain why the solvated CH2Cl2 is normally so readily lost shortly after preparation of these complexes.

In this pair of complexes, then, the IR data notwithstanding, the five-coordinate CoI complex, (I), has been shown to have rigorous trigonal–bipyramidal Co coordination (D3h) while the analogous five-coordinate CoII complex, (II), has distorted trigonal–bipyramidal coordination (Cs). Two disubstituted arylisocyanide CoI complexes from the literature show similarity with (I): [Co(CNC6H4NO2-p)3{PhP(OEt)2}2]ClO4 (III) (Graziani et al., 1976), and [Co(CNC6H4F-p)3{P(OCH3)3}2]BF4 (IV) (Loghry et al., 1978). Structural comparisons with these complexes are shown in Table 3. Although (III) and (IV) are clearly trigonal–bipyramidal structures, they do not exhibit the high level of coordination symmetry around the Co atom shown by (I). No analogous structures for disubstituted five-coordinate CoII organoisocyanide complexes could be found in the literature.

For related literature, see: Ahmad et al. (2003); Becker (2000); Becker & Barqawi (1995); Becker et al. (1986, 1991); Frenz & Ibers (1970); Graziani et al. (1976); Hanzlik et al. (1980); Loghry & Simonsen (1978).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I) (30% probability displacement ellipsoids). H atoms and disorder omitted for clarity.
[Figure 2] Fig. 2. A packing diagram for (I). Solvent and H atoms omitted for clarity
[Figure 3] Fig. 3. A view of (II) (30% probability displacement ellipsoids). H atoms and disorder omitted for clarity.
[Figure 4] Fig. 4. A packing diagram for (II). Solvent and H atoms omitted for clarity
(I) Tris(tert-butyl isocyanide)bis[tris(4-methoxyphenyl)phosphine]cobalt(I) perchlorate dichloromethane disolvate top
Crystal data top
[Co(C5H9N)3(C21H21O3P)2]ClO4·2(CH2Cl2)Dx = 1.332 Mg m3
Mr = 1282.32Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 7171 reflections
Hall symbol: -P 6cθ = 2.6–28.3°
a = 21.7568 (3) ŵ = 0.58 mm1
c = 23.3983 (6) ÅT = 173 K
V = 9591.9 (3) Å3Hexagonal, yellow
Z = 60.38 × 0.38 × 0.1 mm
F(000) = 4020
Data collection top
CCD area detector
diffractometer
4167 reflections with I > 2σ(I)
φ and ω scansRint = 0.058
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 26.0°, θmin = 1.1°
Tmin = 0.809, Tmax = 0.944h = 2524
46534 measured reflectionsk = 2626
6456 independent reflectionsl = 2728
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0695P)2 + 16.3243P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.152(Δ/σ)max = 0.001
S = 0.97Δρmax = 1.07 e Å3
6456 reflectionsΔρmin = 0.58 e Å3
390 parameters
Crystal data top
[Co(C5H9N)3(C21H21O3P)2]ClO4·2(CH2Cl2)Z = 6
Mr = 1282.32Mo Kα radiation
Hexagonal, P63/mµ = 0.58 mm1
a = 21.7568 (3) ÅT = 173 K
c = 23.3983 (6) Å0.38 × 0.38 × 0.1 mm
V = 9591.9 (3) Å3
Data collection top
CCD area detector
diffractometer
6456 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4167 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.944Rint = 0.058
46534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0695P)2 + 16.3243P]
where P = (Fo2 + 2Fc2)/3
6456 reflectionsΔρmax = 1.07 e Å3
390 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.57951 (16)0.28994 (16)0.62264 (12)0.0221 (6)
C20.52705 (17)0.30234 (17)0.64370 (14)0.0275 (7)
H20.53580.32950.67760.033*
C30.46170 (18)0.27565 (18)0.61607 (14)0.0310 (7)
H30.42670.28550.63040.037*
C40.44879 (17)0.23489 (17)0.56771 (14)0.0298 (8)
C50.49963 (18)0.21963 (19)0.54749 (15)0.0334 (8)
H50.48970.18990.5150.04*
C60.56455 (17)0.24743 (17)0.57442 (13)0.0280 (7)
H60.59940.23740.55990.034*
O10.38749 (13)0.20628 (14)0.53635 (11)0.0432 (7)
C70.3371 (2)0.2278 (2)0.55046 (17)0.0472 (10)
H7A0.32110.21420.590.071*
H7B0.29630.20460.52460.071*
H7C0.35940.27940.54650.071*
C80.7582 (2)0.3524 (2)0.750.0211 (9)
N10.8165 (2)0.3648 (2)0.750.0304 (9)
C90.8899 (2)0.3808 (3)0.750.0289 (10)
C100.9359 (3)0.4616 (3)0.750.0457 (14)
H10A0.91880.48150.72050.069*0.5
H10B0.98530.47510.7420.069*0.5
H10C0.93310.48010.78750.069*0.5
C110.9005 (2)0.3484 (2)0.69623 (16)0.0439 (10)
H11A0.86950.29680.69740.066*
H11B0.95010.360.69380.066*
H11C0.88870.36760.66270.066*
P10.66670.33330.65677 (5)0.0182 (3)
Co10.66670.33330.750.0175 (2)
C120.06759 (15)0.08358 (15)0.62508 (12)0.0194 (6)
C130.09576 (16)0.08764 (17)0.57080 (13)0.0255 (7)
H130.08040.04550.54920.031*
C140.14572 (17)0.15222 (18)0.54803 (13)0.0279 (7)
H140.16380.15430.51070.033*
C150.16947 (17)0.21403 (17)0.57956 (14)0.0263 (7)
C160.14373 (17)0.21131 (17)0.63387 (14)0.0275 (7)
H160.16050.25330.6560.033*
C170.09276 (17)0.14608 (16)0.65579 (13)0.0239 (7)
H170.07460.14430.6930.029*
O20.21914 (13)0.27510 (12)0.55329 (10)0.0358 (6)
C180.2456 (2)0.33995 (19)0.58458 (17)0.0448 (10)
H18A0.20650.34860.59310.067*
H18B0.28150.37930.56170.067*
H18C0.2670.33640.62040.067*
C190.0561 (2)0.0970 (2)0.750.0200 (9)
N20.0908 (2)0.1582 (2)0.750.0259 (8)
C200.1388 (2)0.2345 (2)0.750.0286 (10)
C210.2137 (3)0.2461 (3)0.750.0411 (13)
H21A0.21760.21580.77920.062*0.5
H21B0.24750.2960.75850.062*0.5
H21C0.22430.23390.71240.062*0.5
C220.1240 (2)0.2645 (2)0.69642 (16)0.0420 (9)
H22A0.13130.24240.66260.063*
H22B0.15640.31590.6950.063*
H22C0.07490.25460.69720.063*
P2000.65699 (5)0.0164 (3)
Co2000.750.0161 (2)
C230.37638 (16)0.62157 (16)0.62489 (12)0.0227 (7)
C240.36941 (17)0.56103 (17)0.65066 (14)0.0277 (7)
H240.34240.54420.68480.033*
C250.40075 (18)0.52423 (18)0.62799 (14)0.0297 (7)
H250.39520.48280.64630.036*
C260.44008 (18)0.54894 (18)0.57828 (14)0.0301 (8)
C270.4482 (2)0.6098 (2)0.55204 (14)0.0359 (8)
H270.47550.62680.51810.043*
C280.41658 (18)0.64566 (18)0.57524 (14)0.0300 (7)
H280.42240.68730.5570.036*
O30.47361 (15)0.51787 (14)0.55222 (10)0.0417 (6)
C290.4710 (2)0.4579 (2)0.57982 (17)0.0443 (10)
H29A0.48920.47080.61890.066*
H29B0.50030.44310.55850.066*
H29C0.42190.41870.58090.066*
C300.3115 (2)0.7374 (2)0.750.0221 (9)
C310.2790 (3)0.8378 (3)0.750.0531 (10)
C32A0.2012 (6)0.8071 (6)0.750.0531 (10)0.544 (5)
H32A0.1810.77750.71590.08*0.272 (3)
H32B0.18990.84540.74970.08*0.544 (5)
H32C0.1810.7780.78430.08*0.272 (3)
C34A0.3141 (4)0.8853 (4)0.6974 (4)0.0531 (10)0.544 (5)
H34A0.36510.9020.69770.08*0.544 (5)
H34B0.30670.92610.69870.08*0.544 (5)
H34C0.29280.8580.66250.08*0.544 (5)
C33A0.2323 (5)0.8255 (5)0.6979 (4)0.0531 (10)0.456 (5)
H33A0.26020.83330.66310.08*0.456 (5)
H33B0.21410.85860.69880.08*0.456 (5)
H33C0.19240.77670.69840.08*0.456 (5)
C32B0.3453 (7)0.9029 (7)0.750.0531 (10)0.456 (5)
H32D0.37140.90620.71490.08*0.228 (3)
H32E0.37330.90430.78330.08*0.228 (3)
H32F0.33650.94290.75180.08*0.456 (5)
N30.2961 (2)0.7814 (2)0.750.0307 (9)
P30.33330.66670.65694 (5)0.0186 (3)
Co30.33330.66670.750.0178 (2)
C350.2752 (2)0.3176 (2)0.42498 (17)0.0466 (10)
H35A0.26220.33830.39270.056*
H35B0.2460.31510.45830.056*
Cl20.25520 (7)0.23061 (6)0.40648 (4)0.0574 (3)
Cl30.36438 (6)0.37316 (7)0.44143 (5)0.0644 (3)
Cl10.00736 (8)0.65908 (7)0.750.0453 (4)
O40.0645 (3)0.6441 (3)0.750.0901 (18)
O50.0351 (2)0.7339 (2)0.750.0631 (12)
O60.0306 (3)0.6302 (2)0.69993 (19)0.1110 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (16)0.0231 (16)0.0173 (15)0.0107 (13)0.0006 (12)0.0031 (12)
C20.0286 (17)0.0302 (18)0.0240 (16)0.0148 (15)0.0021 (14)0.0036 (14)
C30.0269 (17)0.0345 (19)0.0336 (18)0.0169 (15)0.0009 (14)0.0016 (15)
C40.0243 (17)0.0277 (17)0.0308 (18)0.0079 (14)0.0043 (14)0.0052 (14)
C50.0341 (19)0.0339 (19)0.0277 (18)0.0138 (16)0.0085 (15)0.0087 (15)
C60.0280 (17)0.0324 (18)0.0231 (16)0.0147 (15)0.0005 (14)0.0033 (14)
O10.0312 (14)0.0484 (16)0.0458 (15)0.0167 (12)0.0178 (12)0.0082 (13)
C70.031 (2)0.061 (3)0.048 (2)0.022 (2)0.0100 (18)0.010 (2)
C80.025 (2)0.024 (2)0.014 (2)0.0119 (19)00
N10.028 (2)0.044 (2)0.024 (2)0.022 (2)00
C90.020 (2)0.038 (3)0.032 (3)0.017 (2)00
C100.042 (3)0.038 (3)0.051 (3)0.015 (3)00
C110.035 (2)0.059 (3)0.043 (2)0.027 (2)0.0016 (17)0.0089 (19)
P10.0197 (4)0.0197 (4)0.0153 (6)0.0098 (2)00
Co10.0196 (3)0.0196 (3)0.0135 (5)0.00978 (16)00
C120.0201 (15)0.0214 (15)0.0166 (14)0.0103 (13)0.0009 (12)0.0028 (12)
C130.0263 (16)0.0271 (17)0.0199 (15)0.0111 (14)0.0005 (13)0.0014 (13)
C140.0257 (17)0.0334 (18)0.0174 (15)0.0094 (15)0.0045 (13)0.0019 (14)
C150.0240 (16)0.0263 (17)0.0250 (16)0.0100 (14)0.0007 (13)0.0078 (13)
C160.0296 (17)0.0212 (16)0.0283 (17)0.0101 (14)0.0017 (14)0.0006 (13)
C170.0297 (17)0.0240 (16)0.0189 (15)0.0141 (14)0.0047 (13)0.0026 (13)
O20.0367 (14)0.0255 (12)0.0316 (13)0.0053 (11)0.0078 (11)0.0060 (10)
C180.049 (2)0.0244 (19)0.042 (2)0.0040 (17)0.0051 (18)0.0067 (16)
C190.024 (2)0.028 (3)0.0110 (19)0.015 (2)00
N20.030 (2)0.023 (2)0.0210 (19)0.0103 (18)00
C200.027 (2)0.020 (2)0.033 (3)0.007 (2)00
C210.029 (3)0.037 (3)0.047 (3)0.009 (2)00
C220.045 (2)0.035 (2)0.042 (2)0.0170 (18)0.0009 (17)0.0116 (17)
P20.0193 (4)0.0193 (4)0.0107 (6)0.0097 (2)00
Co20.0190 (3)0.0190 (3)0.0102 (4)0.00950 (16)00
C230.0243 (16)0.0275 (17)0.0187 (15)0.0147 (14)0.0010 (12)0.0026 (13)
C240.0294 (17)0.0282 (17)0.0248 (16)0.0139 (15)0.0088 (14)0.0039 (14)
C250.0360 (19)0.0276 (17)0.0278 (18)0.0178 (15)0.0047 (15)0.0014 (14)
C260.0361 (19)0.0344 (19)0.0252 (17)0.0216 (16)0.0024 (15)0.0046 (14)
C270.046 (2)0.047 (2)0.0228 (17)0.0295 (19)0.0154 (15)0.0067 (15)
C280.041 (2)0.0327 (18)0.0230 (17)0.0232 (16)0.0044 (15)0.0022 (14)
O30.0588 (17)0.0491 (16)0.0345 (14)0.0401 (14)0.0144 (12)0.0033 (12)
C290.061 (3)0.051 (2)0.041 (2)0.042 (2)0.0080 (19)0.0021 (19)
C300.024 (2)0.027 (2)0.014 (2)0.012 (2)00
C310.058 (2)0.042 (2)0.071 (3)0.034 (2)00
C32A0.058 (2)0.042 (2)0.071 (3)0.034 (2)00
C34A0.058 (2)0.042 (2)0.071 (3)0.034 (2)00
C33A0.058 (2)0.042 (2)0.071 (3)0.034 (2)00
C32B0.058 (2)0.042 (2)0.071 (3)0.034 (2)00
N30.040 (2)0.030 (2)0.028 (2)0.022 (2)00
P30.0206 (4)0.0206 (4)0.0147 (6)0.0103 (2)00
Co30.0197 (3)0.0197 (3)0.0139 (5)0.00985 (16)00
C350.057 (3)0.050 (2)0.036 (2)0.030 (2)0.0070 (19)0.0071 (18)
Cl20.0823 (8)0.0566 (7)0.0363 (5)0.0369 (6)0.0018 (5)0.0034 (5)
Cl30.0580 (7)0.0611 (7)0.0575 (7)0.0173 (6)0.0048 (5)0.0179 (6)
Cl10.0661 (9)0.0437 (8)0.0333 (7)0.0329 (7)00
O40.112 (5)0.092 (4)0.107 (4)0.081 (4)00
O50.069 (3)0.039 (2)0.085 (3)0.030 (2)00
O60.156 (4)0.082 (3)0.100 (3)0.063 (3)0.074 (3)0.032 (2)
Geometric parameters (Å, º) top
Co1—C8i1.820 (4)C20—C221.521 (4)
Co2—C19ii1.834 (4)C20—C22iv1.521 (4)
Co3—C30iii1.824 (5)C21—H21A0.98
P1—Co12.1814 (13)C21—H21B0.98
P2—Co22.1762 (12)C21—H21C0.98
P3—Co32.1774 (13)C22—H22A0.98
C8—N11.157 (6)C22—H22B0.98
C19—N21.158 (6)C22—H22C0.98
C30—N31.162 (6)P2—C12vi1.831 (3)
N1—C91.455 (6)P2—C12ii1.831 (3)
N2—C201.453 (6)Co2—C19ii1.834 (4)
N3—C311.449 (7)Co2—C19vi1.834 (4)
C1—C21.388 (4)Co2—P2iv2.1762 (12)
C1—C61.390 (4)C23—C241.386 (4)
C1—P11.826 (3)C23—C281.389 (4)
C2—C31.397 (5)C23—P31.822 (3)
C2—H20.95C24—C251.390 (4)
C3—C41.377 (5)C24—H240.95
C3—H30.95C25—C261.384 (5)
C4—O11.369 (4)C25—H250.95
C4—C51.387 (5)C26—O31.362 (4)
C5—C61.380 (5)C26—C271.388 (5)
C5—H50.95C27—C281.384 (5)
C6—H60.95C27—H270.95
O1—C71.429 (5)C28—H280.95
C7—H7A0.98O3—C291.432 (4)
C7—H7B0.98C29—H29A0.98
C7—H7C0.98C29—H29B0.98
C8—Co11.820 (4)C29—H29C0.98
C9—C111.515 (4)C30—Co31.824 (5)
C9—C11iv1.515 (4)C31—C32B1.429 (15)
C9—C101.527 (7)C31—C32A1.478 (13)
C10—H10A0.98C31—C33Aiv1.523 (10)
C10—H10B0.98C31—C33A1.523 (10)
C10—H10C0.98C31—C34Aiv1.541 (9)
C11—H11A0.98C31—C34A1.541 (9)
C11—H11B0.98C32A—H32A0.98
C11—H11C0.98C32A—H32B0.98
P1—C1v1.826 (3)C32A—H32C0.98
P1—C1i1.826 (3)C34A—H34A0.98
Co1—C8v1.820 (4)C34A—H34B0.98
Co1—P1iv2.1814 (13)C34A—H34C0.98
C12—C171.386 (4)C33A—H33A0.98
C12—C131.394 (4)C33A—H33B0.98
C12—P21.831 (3)C33A—H33C0.98
C13—C141.383 (4)C32B—H32D0.98
C13—H130.95C32B—H32E0.98
C14—C151.388 (5)C32B—H32F0.98
C14—H140.95P3—C23vii1.822 (3)
C15—O21.369 (4)P3—C23iii1.822 (3)
C15—C161.378 (5)Co3—C30vii1.824 (5)
C16—C171.390 (4)Co3—P3iv2.1774 (13)
C16—H160.95C35—Cl31.741 (4)
C17—H170.95C35—Cl21.772 (4)
O2—C181.430 (4)C35—H35A0.99
C18—H18A0.98C35—H35B0.99
C18—H18B0.98Cl1—O6iv1.389 (4)
C18—H18C0.98Cl1—O41.434 (5)
C19—Co21.834 (4)Cl1—O51.426 (4)
C20—C211.518 (7)Cl1—O61.389 (4)
N1—C8—Co1179.7 (4)H22A—C22—H22C109.5
N2—C19—Co2179.2 (4)H22B—C22—H22C109.5
N3—C30—Co3178.6 (4)C12vi—P2—C12104.51 (11)
C8—N1—C9179.7 (5)C12vi—P2—C12ii104.51 (11)
C19—N2—C20175.8 (4)C12—P2—C12ii104.51 (11)
C30—N3—C31178.4 (5)C12vi—P2—Co2114.06 (9)
C8—Co1—C8i120.0000 (10)C12—P2—Co2114.06 (9)
C8—Co1—C8v120.000 (2)C12ii—P2—Co2114.06 (9)
C19ii—Co2—C19120.0000 (10)C19ii—Co2—C19vi120.0000 (10)
C30—Co3—C30iii120.0000 (10)C19—Co2—C19vi120
P1iv—Co1—P1180.0000 (10)C19ii—Co2—P290
P2—Co2—P2iv180C19—Co2—P290
P3iv—Co3—P3180C19vi—Co2—P290
C2—C1—C6118.4 (3)C19ii—Co2—P2iv90
C2—C1—P1119.1 (2)C19—Co2—P2iv90
C6—C1—P1122.4 (2)C19vi—Co2—P2iv90
C1—C2—C3121.3 (3)C24—C23—C28118.1 (3)
C1—C2—H2119.3C24—C23—P3119.4 (2)
C3—C2—H2119.3C28—C23—P3122.5 (2)
C4—C3—C2119.0 (3)C23—C24—C25121.9 (3)
C4—C3—H3120.5C23—C24—H24119
C2—C3—H3120.5C25—C24—H24119
O1—C4—C3124.9 (3)C26—C25—C24118.9 (3)
O1—C4—C5114.9 (3)C26—C25—H25120.6
C3—C4—C5120.3 (3)C24—C25—H25120.6
C6—C5—C4120.2 (3)O3—C26—C25124.3 (3)
C6—C5—H5119.9O3—C26—C27115.6 (3)
C4—C5—H5119.9C25—C26—C27120.1 (3)
C5—C6—C1120.7 (3)C28—C27—C26120.2 (3)
C5—C6—H6119.7C28—C27—H27119.9
C1—C6—H6119.7C26—C27—H27119.9
C4—O1—C7117.3 (3)C27—C28—C23120.8 (3)
O1—C7—H7A109.5C27—C28—H28119.6
O1—C7—H7B109.5C23—C28—H28119.6
H7A—C7—H7B109.5C26—O3—C29117.7 (3)
O1—C7—H7C109.5O3—C29—H29A109.5
H7A—C7—H7C109.5O3—C29—H29B109.5
H7B—C7—H7C109.5H29A—C29—H29B109.5
N1—C9—C11107.0 (3)O3—C29—H29C109.5
N1—C9—C11iv107.0 (3)H29A—C29—H29C109.5
C11—C9—C11iv112.3 (4)H29B—C29—H29C109.5
N1—C9—C10106.6 (4)N3—C31—C32B106.3 (7)
C11—C9—C10111.8 (3)N3—C31—C32A109.8 (6)
C11iv—C9—C10111.8 (3)C32B—C31—C32A143.9 (8)
C9—C10—H10A109.5N3—C31—C33Aiv106.4 (4)
C9—C10—H10B109.5C32B—C31—C33Aiv115.3 (5)
H10A—C10—H10B109.5C32A—C31—C33Aiv53.6 (4)
C9—C10—H10C109.5N3—C31—C33A106.4 (4)
H10A—C10—H10C109.5C32B—C31—C33A115.3 (5)
H10B—C10—H10C109.5C32A—C31—C33A53.6 (4)
C9—C11—H11A109.5C33Aiv—C31—C33A106.3 (9)
C9—C11—H11B109.5N3—C31—C34Aiv108.5 (4)
H11A—C11—H11B109.5C32B—C31—C34Aiv54.5 (4)
C9—C11—H11C109.5C32A—C31—C34Aiv112.0 (5)
H11A—C11—H11C109.5C33Aiv—C31—C34Aiv62.8 (5)
H11B—C11—H11C109.5C33A—C31—C34Aiv145.1 (6)
C1v—P1—C1i102.31 (12)N3—C31—C34A108.5 (4)
C1v—P1—C1102.31 (12)C32B—C31—C34A54.5 (4)
C1i—P1—C1102.31 (12)C32A—C31—C34A112.0 (5)
C1v—P1—Co1115.93 (10)C33Aiv—C31—C34A145.1 (6)
C1i—P1—Co1115.93 (10)C33A—C31—C34A62.8 (5)
C1—P1—Co1115.93 (10)C34Aiv—C31—C34A105.9 (7)
C8i—Co1—C8v120.000 (2)C31—C32A—H32A109.5
C8—Co1—P1iv90C31—C32A—H32B109.5
C8i—Co1—P1iv90H32A—C32A—H32B109.5
C8v—Co1—P1iv90C31—C32A—H32C109.5
C8—Co1—P190H32A—C32A—H32C109.5
C8i—Co1—P190H32B—C32A—H32C109.5
C8v—Co1—P190C31—C34A—H34A109.5
C17—C12—C13117.7 (3)C31—C34A—H34B109.5
C17—C12—P2119.4 (2)H34A—C34A—H34B109.5
C13—C12—P2122.9 (2)C31—C34A—H34C109.5
C14—C13—C12120.9 (3)H34A—C34A—H34C109.5
C14—C13—H13119.6H34B—C34A—H34C109.5
C12—C13—H13119.6C31—C33A—H33A109.5
C13—C14—C15120.2 (3)C31—C33A—H33B109.5
C13—C14—H14119.9C31—C33A—H33C109.5
C15—C14—H14119.9C31—C32B—H32D109.5
O2—C15—C16124.2 (3)C31—C32B—H32E109.5
O2—C15—C14115.6 (3)H32D—C32B—H32E109.5
C16—C15—C14120.2 (3)C31—C32B—H32F109.5
C15—C16—C17118.9 (3)H32D—C32B—H32F109.5
C15—C16—H16120.5H32E—C32B—H32F109.5
C17—C16—H16120.5C23vii—P3—C23iii104.24 (11)
C12—C17—C16122.2 (3)C23vii—P3—C23104.24 (12)
C12—C17—H17118.9C23iii—P3—C23104.24 (12)
C16—C17—H17118.9C23vii—P3—Co3114.30 (10)
C15—O2—C18117.4 (3)C23iii—P3—Co3114.30 (10)
O2—C18—H18A109.5C23—P3—Co3114.30 (10)
O2—C18—H18B109.5C30—Co3—C30vii120.0000 (10)
H18A—C18—H18B109.5C30iii—Co3—C30vii120.0000 (10)
O2—C18—H18C109.5C30—Co3—P3iv90
H18A—C18—H18C109.5C30iii—Co3—P3iv90
H18B—C18—H18C109.5C30vii—Co3—P3iv90
N2—C20—C21106.8 (4)C30—Co3—P390
N2—C20—C22107.7 (3)C30iii—Co3—P390
C21—C20—C22111.6 (3)C30vii—Co3—P390
N2—C20—C22iv107.7 (3)Cl3—C35—Cl2112.8 (2)
C21—C20—C22iv111.6 (3)Cl3—C35—H35A109
C22—C20—C22iv111.0 (4)Cl2—C35—H35A109
C20—C21—H21A109.5Cl3—C35—H35B109
C20—C21—H21B109.5Cl2—C35—H35B109
H21A—C21—H21B109.5H35A—C35—H35B107.8
C20—C21—H21C109.5O6—Cl1—O6iv115.0 (5)
H21A—C21—H21C109.5O5—Cl1—O4109.8 (3)
H21B—C21—H21C109.5O6—Cl1—O4106.5 (2)
C20—C22—H22A109.5O6—Cl1—O5109.4 (2)
C20—C22—H22B109.5O6iv—Cl1—O5109.4 (2)
H22A—C22—H22B109.5O6iv—Cl1—O4106.5 (2)
C20—C22—H22C109.5
C6—C1—C2—C32.8 (5)C17—C12—P2—C12ii150.7 (3)
P1—C1—C2—C3174.2 (3)C13—C12—P2—C12ii28.9 (3)
C1—C2—C3—C41.5 (5)C17—C12—P2—Co225.5 (3)
C2—C3—C4—O1179.2 (3)C13—C12—P2—Co2154.1 (2)
C2—C3—C4—C51.2 (5)C12vi—P2—Co2—C19ii45.55 (16)
O1—C4—C5—C6177.9 (3)C12—P2—Co2—C19ii74.45 (16)
C3—C4—C5—C62.5 (5)C12ii—P2—Co2—C19ii165.55 (16)
C4—C5—C6—C11.2 (5)C12vi—P2—Co2—C1974.45 (16)
C2—C1—C6—C51.4 (5)C12—P2—Co2—C19165.55 (16)
P1—C1—C6—C5175.4 (3)C12ii—P2—Co2—C1945.55 (16)
C3—C4—O1—C78.5 (5)C12vi—P2—Co2—C19vi165.55 (16)
C5—C4—O1—C7171.9 (3)C12—P2—Co2—C19vi45.55 (16)
C2—C1—P1—C1v170.9 (2)C12ii—P2—Co2—C19vi74.45 (16)
C6—C1—P1—C1v12.3 (3)C28—C23—C24—C250.6 (5)
C2—C1—P1—C1i83.4 (3)P3—C23—C24—C25179.7 (3)
C6—C1—P1—C1i93.4 (2)C23—C24—C25—C260.1 (5)
C2—C1—P1—Co143.7 (3)C24—C25—C26—O3179.5 (3)
C6—C1—P1—Co1139.5 (2)C24—C25—C26—C270.4 (5)
C1v—P1—Co1—C841.50 (17)O3—C26—C27—C28179.6 (3)
C1i—P1—Co1—C878.50 (17)C25—C26—C27—C280.4 (6)
C1—P1—Co1—C8161.50 (17)C26—C27—C28—C230.1 (6)
C1v—P1—Co1—C8i78.50 (17)C24—C23—C28—C270.6 (5)
C1i—P1—Co1—C8i161.50 (17)P3—C23—C28—C27179.7 (3)
C1—P1—Co1—C8i41.50 (17)C25—C26—O3—C293.5 (5)
C1v—P1—Co1—C8v161.50 (17)C27—C26—O3—C29175.7 (3)
C1i—P1—Co1—C8v41.50 (17)C24—C23—P3—C23vii88.9 (3)
C1—P1—Co1—C8v78.50 (17)C28—C23—P3—C23vii91.4 (2)
C17—C12—C13—C141.7 (5)C24—C23—P3—C23iii162.1 (3)
P2—C12—C13—C14178.7 (2)C28—C23—P3—C23iii17.6 (3)
C12—C13—C14—C151.1 (5)C24—C23—P3—Co336.6 (3)
C13—C14—C15—O2179.7 (3)C28—C23—P3—Co3143.1 (2)
C13—C14—C15—C160.4 (5)C23vii—P3—Co3—C3076.20 (17)
O2—C15—C16—C17179.4 (3)C23iii—P3—Co3—C3043.80 (17)
C14—C15—C16—C171.4 (5)C23—P3—Co3—C30163.80 (17)
C13—C12—C17—C160.7 (5)C23vii—P3—Co3—C30iii43.80 (17)
P2—C12—C17—C16179.6 (2)C23iii—P3—Co3—C30iii163.80 (17)
C15—C16—C17—C120.8 (5)C23—P3—Co3—C30iii76.20 (17)
C16—C15—O2—C180.1 (5)C23vii—P3—Co3—C30vii163.80 (17)
C14—C15—O2—C18179.3 (3)C23iii—P3—Co3—C30vii76.20 (17)
C17—C12—P2—C12vi99.7 (3)C23—P3—Co3—C30vii43.80 (17)
C13—C12—P2—C12vi80.6 (2)
Symmetry codes: (i) x+y+1, x+1, z; (ii) x+y, x, z; (iii) y+1, xy+1, z; (iv) x, y, z+3/2; (v) y+1, xy, z; (vi) y, xy, z; (vii) x+y, x+1, z.
(II) Tris(tert-butyl isocyanide)bis[tris(4-methoxyphenyl)phosphine]cobalt(II) bis(perchlorate) dichloromethane disolvate top
Crystal data top
[Co(C5H9N)3(C21H21O3P)2](ClO4)2·2CH2Cl2F(000) = 2876
Mr = 1381.77Dx = 1.324 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7487 reflections
a = 12.3461 (3) Åθ = 2.2–28.3°
b = 19.7566 (5) ŵ = 0.59 mm1
c = 28.4452 (7) ÅT = 173 K
β = 92.818 (2)°Block, red
V = 6929.9 (3) Å30.43 × 0.31 × 0.22 mm
Z = 4
Data collection top
CCD area detector
diffractometer
11549 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28°, θmin = 1.3°
Tmin = 0.787, Tmax = 0.882h = 1116
93953 measured reflectionsk = 2625
16738 independent reflectionsl = 3737
Refinement top
Refinement on F240 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0551P)2 + 6.8607P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.146(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.55 e Å3
16738 reflectionsΔρmin = 0.41 e Å3
848 parameters
Crystal data top
[Co(C5H9N)3(C21H21O3P)2](ClO4)2·2CH2Cl2V = 6929.9 (3) Å3
Mr = 1381.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.3461 (3) ŵ = 0.59 mm1
b = 19.7566 (5) ÅT = 173 K
c = 28.4452 (7) Å0.43 × 0.31 × 0.22 mm
β = 92.818 (2)°
Data collection top
CCD area detector
diffractometer
16738 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
11549 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.882Rint = 0.056
93953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05140 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.06Δρmax = 0.55 e Å3
16738 reflectionsΔρmin = 0.41 e Å3
848 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.68257 (3)0.259635 (17)0.140563 (11)0.02421 (9)
P10.85415 (5)0.23994 (3)0.12087 (2)0.02777 (14)
P20.50954 (5)0.28107 (3)0.15757 (2)0.02748 (14)
O10.4094 (2)0.21261 (12)0.35471 (8)0.0583 (7)
O20.20341 (19)0.11000 (13)0.04109 (9)0.0597 (7)
O30.4076 (2)0.57047 (11)0.11887 (7)0.0536 (6)
O41.0815 (2)0.49649 (11)0.07796 (9)0.0562 (6)
O50.8796 (2)0.04875 (13)0.04040 (10)0.0678 (7)
O61.1209 (2)0.09637 (17)0.26965 (10)0.0819 (10)
O70.0955 (3)0.3014 (2)0.41746 (11)0.1155 (14)
O80.0778 (3)0.3012 (2)0.39321 (12)0.1180 (14)
O90.0473 (3)0.27277 (19)0.46977 (13)0.1079 (12)
O100.0230 (4)0.37957 (15)0.44613 (16)0.1213 (15)
O110.7607 (4)0.4690 (2)0.23018 (16)0.1434 (19)
O120.9313 (2)0.51768 (19)0.23011 (11)0.0897 (10)
O130.7955 (3)0.57446 (19)0.26319 (11)0.0992 (11)
O140.7914 (3)0.55936 (17)0.18250 (10)0.0876 (9)
Cl10.01292 (7)0.31316 (4)0.43069 (3)0.0501 (2)
Cl20.81796 (7)0.52868 (4)0.22679 (3)0.0495 (2)
N10.62505 (19)0.11146 (11)0.12094 (8)0.0328 (5)
N20.65614 (19)0.34645 (12)0.05362 (7)0.0347 (5)
N30.7585 (2)0.27935 (13)0.24208 (8)0.0404 (6)
C10.4785 (2)0.26315 (14)0.21791 (9)0.0310 (5)
C20.5114 (2)0.20180 (14)0.23851 (10)0.0352 (6)
H20.55070.17020.22090.042*
C30.4874 (2)0.18675 (15)0.28396 (10)0.0410 (7)
H30.51050.1450.29760.049*
C40.4295 (3)0.23258 (16)0.31005 (10)0.0417 (7)
C50.3979 (3)0.29366 (16)0.29062 (10)0.0439 (7)
H50.35970.32540.30860.053*
C60.4220 (2)0.30883 (15)0.24459 (10)0.0389 (6)
H60.39950.35090.23120.047*
C70.3501 (4)0.2581 (2)0.38304 (14)0.0797 (14)
H7A0.38660.30220.38430.12*
H7B0.3470.23980.41490.12*
H7C0.27640.26360.36920.12*
C80.4127 (2)0.23227 (14)0.12155 (9)0.0320 (6)
C90.4234 (3)0.22742 (17)0.07336 (10)0.0455 (7)
H90.48020.25140.05930.055*
C100.3533 (3)0.18846 (17)0.04526 (11)0.0474 (8)
H100.3610.18660.01220.057*
C110.2724 (2)0.15241 (16)0.06547 (11)0.0437 (7)
C120.2592 (3)0.15734 (19)0.11281 (12)0.0560 (9)
H120.2020.13340.12650.067*
C130.3289 (2)0.19710 (17)0.14114 (11)0.0472 (8)
H130.3190.20010.1740.057*
C140.2238 (3)0.0958 (2)0.00678 (13)0.0690 (11)
H14A0.21480.13730.02550.103*
H14B0.17270.06140.0190.103*
H14C0.29810.0790.00880.103*
C150.4757 (2)0.36890 (13)0.14731 (9)0.0296 (5)
C160.5510 (2)0.41826 (14)0.16158 (10)0.0368 (6)
H160.61720.40510.17730.044*
C170.5308 (3)0.48593 (15)0.15319 (10)0.0408 (7)
H170.58250.51910.16340.049*
C180.4347 (3)0.50511 (14)0.12976 (9)0.0388 (7)
C190.3590 (3)0.45655 (15)0.11535 (10)0.0404 (7)
H190.29290.46990.09950.048*
C200.3792 (2)0.38927 (14)0.12399 (10)0.0356 (6)
H200.3270.35630.1140.043*
C210.4878 (4)0.62149 (17)0.12987 (13)0.0702 (12)
H21A0.50650.62090.16370.105*
H21B0.45860.6660.12090.105*
H21C0.55280.61230.11250.105*
C220.9221 (2)0.31767 (13)0.10681 (9)0.0312 (5)
C230.9010 (2)0.37584 (15)0.13202 (10)0.0374 (6)
H230.84990.3740.15590.045*
C240.9522 (2)0.43644 (15)0.12348 (10)0.0387 (6)
H240.93650.47560.14130.046*
C251.0259 (2)0.43966 (15)0.08895 (10)0.0398 (7)
C261.0483 (3)0.38193 (17)0.06327 (13)0.0612 (10)
H261.09970.3840.03950.073*
C270.9968 (3)0.32162 (16)0.07200 (12)0.0523 (9)
H271.01250.28260.05410.063*
C281.0597 (3)0.55627 (18)0.10414 (16)0.0666 (11)
H28A0.9830.56840.09930.1*
H28B1.10480.59350.09340.1*
H28C1.07630.5480.13770.1*
C290.8627 (2)0.18404 (13)0.07071 (9)0.0324 (6)
C300.9434 (3)0.13528 (18)0.06889 (13)0.0539 (9)
H300.99710.13240.09390.065*
C310.9470 (3)0.09095 (19)0.03146 (15)0.0640 (11)
H311.00240.05760.03110.077*
C320.8705 (3)0.09494 (16)0.00533 (11)0.0465 (8)
C330.7906 (3)0.14317 (16)0.00476 (10)0.0487 (8)
H330.73860.14670.03040.058*
C340.7859 (3)0.18657 (16)0.03328 (10)0.0451 (8)
H340.7290.21890.03380.054*
C350.7954 (4)0.0470 (2)0.07718 (13)0.0821 (14)
H35A0.72510.04030.06330.123*
H35B0.80910.00960.09880.123*
H35C0.79470.08990.09450.123*
C360.9381 (2)0.19975 (15)0.16688 (9)0.0355 (6)
C370.9041 (3)0.13940 (18)0.18639 (12)0.0524 (9)
H370.8360.12080.17620.063*
C380.9668 (3)0.1061 (2)0.22006 (14)0.0657 (11)
H380.94270.06440.23250.079*
C391.0662 (3)0.1334 (2)0.23604 (12)0.0578 (10)
C401.0996 (2)0.1944 (2)0.21841 (11)0.0517 (8)
H401.16580.21410.23010.062*
C411.0364 (2)0.22721 (16)0.18343 (10)0.0402 (7)
H411.06070.26870.17080.048*
C421.2229 (4)0.1226 (4)0.2875 (2)0.127 (3)
H42A1.27090.12910.26140.191*
H42B1.25630.09050.31020.191*
H42C1.21150.1660.30310.191*
C430.7289 (2)0.26853 (14)0.20416 (9)0.0323 (6)
C440.6470 (2)0.16677 (14)0.12926 (8)0.0299 (5)
C450.6616 (2)0.30927 (13)0.08462 (9)0.0307 (5)
C460.6531 (3)0.39462 (15)0.01432 (10)0.0410 (7)
C470.7213 (3)0.3633 (2)0.02354 (11)0.0606 (10)
H47A0.79610.35750.0110.091*
H47B0.72040.39310.05110.091*
H47C0.6910.31910.03280.091*
C480.5346 (3)0.40141 (18)0.00238 (11)0.0507 (8)
H48A0.50720.35730.01330.076*
H48B0.52830.43410.02830.076*
H48C0.49220.41720.02370.076*
C490.6993 (4)0.46024 (19)0.03341 (14)0.0718 (12)
H49A0.65480.47670.05860.108*
H49B0.69950.49390.00810.108*
H49C0.77370.45280.0460.108*
C500.5953 (2)0.04203 (13)0.10785 (10)0.0362 (6)
C510.6943 (3)0.00155 (17)0.11717 (14)0.0584 (9)
H51A0.75240.01370.09740.088*
H51B0.67640.04880.10980.088*
H51C0.71860.00220.15040.088*
C520.5592 (3)0.04302 (17)0.05593 (11)0.0562 (9)
H52A0.49710.07350.05110.084*
H52B0.53830.00280.04580.084*
H52C0.61910.05890.03740.084*
C530.5034 (3)0.02117 (19)0.13816 (13)0.0608 (10)
H53A0.52730.02450.17150.091*
H53B0.48250.02560.13080.091*
H53C0.44110.05110.13180.091*
C540.7997 (3)0.29097 (17)0.29064 (10)0.0486 (8)
C550.7164 (3)0.3319 (2)0.31506 (12)0.0622 (10)
H55A0.70720.37580.29940.093*
H55B0.74060.33880.3480.093*
H55C0.64710.30760.31360.093*
C560.8160 (5)0.2215 (2)0.31198 (13)0.0860 (15)
H56A0.74650.19750.31150.129*
H56B0.84480.22590.34460.129*
H56C0.86740.19580.29370.129*
C570.9048 (3)0.3301 (3)0.28810 (13)0.0792 (13)
H57A0.9570.30340.27110.119*
H57B0.93450.33930.320.119*
H57C0.89080.3730.27160.119*
C580.68020.20260.42360.140 (3)0.489 (8)
H58A0.73140.23840.41450.21*0.489 (8)
H58B0.64670.18330.39420.21*0.489 (8)
Cl3A0.7552 (6)0.1376 (4)0.4540 (4)0.267 (7)0.489 (8)
Cl4A0.59030.23570.45170.144 (2)0.489 (8)
C58A0.68020.20260.42360.140 (3)0.511 (8)
H58C0.64240.19390.39270.21*0.511 (8)
H58D0.74310.23240.41860.21*0.511 (8)
Cl3B0.7242 (4)0.1265 (2)0.44896 (13)0.0987 (14)0.511 (8)
Cl4B0.59020.24280.4620.120 (2)0.511 (8)
C590.538 (2)0.4671 (14)0.3261 (13)0.094 (10)0.164 (3)
H59A0.57370.51140.33180.113*0.164 (3)
H59B0.57730.44350.30140.113*0.164 (3)
Cl9A0.4103 (5)0.4808 (4)0.3059 (4)0.103 (3)0.164 (3)
Cl9B0.5493 (5)0.4187 (3)0.3784 (2)0.070 (2)0.164 (3)
Cl5A0.1850 (7)0.4127 (5)0.2062 (3)0.0751 (13)0.291 (7)
C60A0.1346 (15)0.4396 (14)0.2581 (7)0.105 (8)*0.291 (7)
H60A0.0950.40160.27210.126*0.291 (7)
H60B0.08170.47630.25110.126*0.291 (7)
Cl6A0.2342 (7)0.4694 (7)0.3002 (4)0.0783 (9)0.291 (7)
Cl5B0.155 (2)0.4135 (19)0.2086 (7)0.0751 (13)0.079 (3)
C60B0.165 (4)0.4669 (14)0.2589 (8)0.041 (9)*0.079 (3)
H60C0.22960.49650.25760.049*0.079 (3)
H60D0.09980.49590.26010.049*0.079 (3)
Cl6B0.1764 (12)0.4144 (10)0.3087 (5)0.0783 (9)0.079 (3)
Cl5C0.2073 (6)0.4426 (5)0.2086 (3)0.0751 (13)0.183 (3)
C60C0.149 (3)0.3804 (13)0.2389 (7)0.083 (11)*0.183 (3)
H60E0.0730.37630.22680.1*0.183 (3)
H60F0.1860.33750.23130.1*0.183 (3)
Cl6C0.1491 (5)0.3869 (4)0.2977 (3)0.0783 (9)0.183 (3)
Cl5D0.1602 (6)0.3936 (4)0.2201 (3)0.0751 (13)0.358 (7)
C60D0.1424 (9)0.4309 (7)0.2745 (5)0.060 (3)*0.358 (7)
H60G0.11860.39610.29680.072*0.358 (7)
H60H0.08460.46550.27110.072*0.358 (7)
Cl6D0.2645 (5)0.4699 (5)0.2982 (3)0.0783 (9)0.358 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02695 (17)0.02599 (18)0.01963 (15)0.00013 (13)0.00066 (12)0.00018 (12)
P10.0281 (3)0.0292 (3)0.0262 (3)0.0003 (3)0.0029 (2)0.0009 (2)
P20.0272 (3)0.0294 (3)0.0258 (3)0.0000 (3)0.0015 (2)0.0006 (2)
O10.0768 (17)0.0562 (14)0.0449 (12)0.0095 (12)0.0327 (12)0.0145 (11)
O20.0484 (14)0.0684 (17)0.0620 (15)0.0245 (12)0.0007 (11)0.0219 (12)
O30.0862 (18)0.0310 (12)0.0420 (12)0.0012 (11)0.0133 (11)0.0059 (9)
O40.0634 (15)0.0400 (13)0.0676 (15)0.0176 (11)0.0260 (12)0.0059 (11)
O50.0758 (18)0.0539 (15)0.0750 (17)0.0028 (13)0.0154 (14)0.0362 (13)
O60.0421 (14)0.123 (3)0.0790 (19)0.0055 (15)0.0173 (13)0.0555 (18)
O70.074 (2)0.206 (4)0.0654 (19)0.035 (2)0.0111 (16)0.016 (2)
O80.095 (3)0.184 (4)0.076 (2)0.035 (3)0.0207 (19)0.017 (2)
O90.117 (3)0.097 (3)0.107 (3)0.022 (2)0.018 (2)0.045 (2)
O100.162 (4)0.0427 (18)0.156 (4)0.019 (2)0.032 (3)0.025 (2)
O110.163 (4)0.100 (3)0.159 (4)0.078 (3)0.081 (3)0.048 (3)
O120.0536 (17)0.123 (3)0.092 (2)0.0248 (17)0.0000 (15)0.0176 (19)
O130.101 (2)0.121 (3)0.077 (2)0.026 (2)0.0240 (18)0.0389 (19)
O140.106 (2)0.090 (2)0.0649 (18)0.0191 (19)0.0150 (17)0.0006 (16)
Cl10.0668 (5)0.0409 (4)0.0411 (4)0.0082 (4)0.0127 (4)0.0096 (3)
Cl20.0491 (4)0.0511 (5)0.0479 (4)0.0046 (4)0.0024 (3)0.0133 (3)
N10.0378 (13)0.0275 (13)0.0329 (11)0.0014 (10)0.0002 (9)0.0013 (9)
N20.0413 (13)0.0340 (13)0.0289 (11)0.0071 (10)0.0039 (9)0.0045 (9)
N30.0451 (14)0.0473 (15)0.0285 (12)0.0021 (11)0.0017 (10)0.0023 (10)
C10.0292 (13)0.0353 (14)0.0290 (12)0.0021 (11)0.0065 (10)0.0008 (10)
C20.0366 (15)0.0316 (15)0.0386 (14)0.0021 (11)0.0120 (11)0.0001 (11)
C30.0459 (17)0.0351 (16)0.0433 (16)0.0033 (13)0.0136 (13)0.0094 (12)
C40.0447 (17)0.0454 (17)0.0362 (15)0.0003 (14)0.0151 (12)0.0067 (12)
C50.0474 (18)0.0439 (18)0.0418 (16)0.0113 (14)0.0176 (13)0.0003 (13)
C60.0421 (16)0.0387 (16)0.0366 (14)0.0080 (13)0.0079 (12)0.0032 (12)
C70.111 (4)0.080 (3)0.053 (2)0.029 (3)0.050 (2)0.020 (2)
C80.0285 (13)0.0302 (14)0.0371 (14)0.0001 (11)0.0018 (11)0.0033 (11)
C90.0480 (18)0.054 (2)0.0341 (15)0.0174 (15)0.0032 (13)0.0033 (13)
C100.0467 (18)0.057 (2)0.0374 (15)0.0152 (15)0.0071 (13)0.0040 (14)
C110.0320 (15)0.0454 (18)0.0529 (18)0.0035 (13)0.0053 (13)0.0128 (14)
C120.0405 (18)0.071 (2)0.058 (2)0.0249 (17)0.0141 (15)0.0160 (17)
C130.0355 (16)0.062 (2)0.0446 (17)0.0098 (15)0.0120 (13)0.0143 (15)
C140.070 (3)0.075 (3)0.061 (2)0.028 (2)0.0091 (19)0.022 (2)
C150.0310 (13)0.0314 (14)0.0265 (12)0.0012 (11)0.0038 (10)0.0009 (10)
C160.0380 (15)0.0362 (16)0.0358 (14)0.0006 (12)0.0032 (12)0.0048 (11)
C170.0511 (18)0.0371 (16)0.0337 (14)0.0079 (13)0.0026 (13)0.0067 (12)
C180.0579 (19)0.0331 (15)0.0252 (12)0.0023 (13)0.0001 (12)0.0009 (11)
C190.0436 (17)0.0402 (17)0.0365 (14)0.0052 (13)0.0059 (12)0.0050 (12)
C200.0358 (15)0.0336 (15)0.0371 (14)0.0010 (12)0.0014 (11)0.0018 (11)
C210.120 (4)0.0320 (18)0.057 (2)0.015 (2)0.017 (2)0.0041 (15)
C220.0325 (14)0.0322 (14)0.0291 (12)0.0052 (11)0.0043 (10)0.0011 (10)
C230.0404 (16)0.0393 (16)0.0338 (14)0.0050 (12)0.0139 (12)0.0067 (11)
C240.0425 (16)0.0329 (15)0.0415 (15)0.0069 (12)0.0102 (12)0.0104 (12)
C250.0399 (16)0.0379 (16)0.0422 (15)0.0110 (13)0.0076 (12)0.0020 (12)
C260.074 (2)0.048 (2)0.065 (2)0.0177 (18)0.0473 (19)0.0115 (16)
C270.065 (2)0.0362 (17)0.059 (2)0.0113 (15)0.0350 (17)0.0138 (14)
C280.068 (2)0.0375 (19)0.096 (3)0.0166 (17)0.027 (2)0.0113 (19)
C290.0351 (14)0.0293 (14)0.0336 (13)0.0001 (11)0.0091 (11)0.0031 (10)
C300.0330 (16)0.051 (2)0.076 (2)0.0089 (14)0.0100 (15)0.0268 (17)
C310.0383 (18)0.055 (2)0.098 (3)0.0111 (16)0.0017 (18)0.041 (2)
C320.0546 (19)0.0357 (16)0.0508 (18)0.0061 (14)0.0183 (15)0.0153 (13)
C330.077 (2)0.0417 (18)0.0278 (14)0.0139 (16)0.0021 (14)0.0030 (12)
C340.064 (2)0.0418 (17)0.0291 (13)0.0223 (15)0.0002 (13)0.0004 (12)
C350.145 (4)0.055 (2)0.046 (2)0.005 (3)0.002 (2)0.0212 (18)
C360.0288 (13)0.0450 (17)0.0327 (13)0.0027 (12)0.0002 (11)0.0050 (12)
C370.0361 (17)0.059 (2)0.061 (2)0.0074 (15)0.0115 (14)0.0238 (17)
C380.0417 (19)0.077 (3)0.077 (3)0.0084 (18)0.0124 (17)0.042 (2)
C390.0315 (16)0.087 (3)0.054 (2)0.0003 (17)0.0045 (14)0.0297 (19)
C400.0307 (15)0.081 (3)0.0430 (17)0.0077 (16)0.0031 (13)0.0101 (16)
C410.0322 (15)0.0523 (19)0.0362 (14)0.0055 (13)0.0033 (11)0.0029 (13)
C420.047 (2)0.208 (7)0.122 (4)0.029 (3)0.041 (3)0.099 (5)
C430.0319 (14)0.0370 (15)0.0278 (13)0.0018 (11)0.0009 (10)0.0026 (11)
C440.0280 (13)0.0375 (16)0.0241 (11)0.0015 (11)0.0007 (10)0.0015 (10)
C450.0328 (14)0.0318 (14)0.0278 (12)0.0030 (11)0.0051 (10)0.0012 (10)
C460.0506 (18)0.0402 (17)0.0324 (14)0.0093 (13)0.0050 (12)0.0156 (12)
C470.064 (2)0.079 (3)0.0412 (17)0.0259 (19)0.0189 (16)0.0265 (17)
C480.053 (2)0.057 (2)0.0425 (17)0.0194 (16)0.0038 (14)0.0152 (15)
C490.101 (3)0.049 (2)0.064 (2)0.012 (2)0.007 (2)0.0209 (18)
C500.0468 (17)0.0236 (14)0.0382 (14)0.0027 (12)0.0024 (12)0.0008 (11)
C510.059 (2)0.0357 (18)0.079 (3)0.0098 (16)0.0074 (18)0.0077 (17)
C520.087 (3)0.0368 (18)0.0431 (17)0.0058 (17)0.0097 (17)0.0057 (14)
C530.065 (2)0.057 (2)0.062 (2)0.0250 (18)0.0157 (18)0.0084 (17)
C540.064 (2)0.055 (2)0.0254 (13)0.0064 (16)0.0111 (13)0.0056 (13)
C550.082 (3)0.068 (2)0.0372 (17)0.009 (2)0.0052 (17)0.0157 (16)
C560.146 (5)0.069 (3)0.0390 (19)0.018 (3)0.030 (2)0.0042 (18)
C570.064 (3)0.126 (4)0.046 (2)0.025 (3)0.0131 (18)0.014 (2)
C580.205 (8)0.112 (5)0.110 (5)0.030 (5)0.076 (5)0.011 (4)
Cl3A0.098 (4)0.143 (5)0.570 (18)0.020 (4)0.113 (6)0.135 (7)
Cl4A0.120 (4)0.141 (5)0.168 (4)0.025 (3)0.027 (3)0.043 (3)
C58A0.205 (8)0.112 (5)0.110 (5)0.030 (5)0.076 (5)0.011 (4)
Cl3B0.093 (3)0.095 (2)0.110 (3)0.0008 (19)0.0289 (17)0.0129 (17)
Cl4B0.181 (5)0.110 (3)0.075 (2)0.002 (3)0.055 (2)0.0062 (18)
C590.058 (16)0.049 (15)0.17 (3)0.001 (12)0.010 (18)0.018 (17)
Cl9A0.053 (4)0.059 (4)0.194 (10)0.014 (3)0.019 (5)0.017 (5)
Cl9B0.050 (3)0.089 (5)0.074 (4)0.013 (3)0.013 (3)0.030 (3)
Cl5A0.055 (2)0.097 (4)0.073 (2)0.012 (2)0.0045 (16)0.007 (2)
Cl6A0.042 (2)0.1016 (15)0.0905 (14)0.002 (2)0.0019 (19)0.0184 (11)
Cl5B0.055 (2)0.097 (4)0.073 (2)0.012 (2)0.0045 (16)0.007 (2)
Cl6B0.042 (2)0.1016 (15)0.0905 (14)0.002 (2)0.0019 (19)0.0184 (11)
Cl5C0.055 (2)0.097 (4)0.073 (2)0.012 (2)0.0045 (16)0.007 (2)
Cl6C0.042 (2)0.1016 (15)0.0905 (14)0.002 (2)0.0019 (19)0.0184 (11)
Cl5D0.055 (2)0.097 (4)0.073 (2)0.012 (2)0.0045 (16)0.007 (2)
Cl6D0.042 (2)0.1016 (15)0.0905 (14)0.002 (2)0.0019 (19)0.0184 (11)
Geometric parameters (Å, º) top
Co1—C451.876 (3)C30—C311.381 (5)
Co1—C431.879 (3)C30—H300.95
Co1—C441.910 (3)C31—C321.377 (5)
Co1—P12.2515 (7)C31—H310.95
Co1—P22.2536 (7)C32—C331.372 (5)
C44—N11.148 (3)C33—C341.384 (4)
C45—N21.147 (3)C33—H330.95
C43—N31.142 (3)C34—H340.95
N1—C501.463 (3)C35—H35A0.98
N2—C461.467 (3)C35—H35B0.98
N3—C541.466 (3)C35—H35C0.98
P1—C221.804 (3)C36—C371.389 (4)
P1—C291.811 (3)C36—C411.390 (4)
P1—C361.812 (3)C37—C381.370 (4)
P2—C151.805 (3)C37—H370.95
P2—C11.812 (3)C38—C391.397 (5)
P2—C81.813 (3)C38—H380.95
O1—C41.365 (3)C39—C401.376 (5)
O1—C71.432 (4)C40—C411.394 (4)
O2—C111.360 (3)C40—H400.95
O2—C141.425 (4)C41—H410.95
O3—C181.366 (3)C42—H42A0.98
O3—C211.436 (4)C42—H42B0.98
O4—C251.360 (3)C42—H42C0.98
O4—C281.429 (4)C46—C491.507 (5)
O5—C321.361 (3)C46—C481.521 (4)
O5—C351.438 (5)C46—C471.530 (4)
O6—C391.358 (4)C47—H47A0.98
O6—C421.431 (5)C47—H47B0.98
O7—Cl11.392 (3)C47—H47C0.98
O8—Cl11.385 (3)C48—H48A0.98
O9—Cl11.416 (3)C48—H48B0.98
O10—Cl11.387 (3)C48—H48C0.98
O11—Cl21.380 (3)C49—H49A0.98
O12—Cl21.415 (3)C49—H49B0.98
O13—Cl21.412 (3)C49—H49C0.98
O14—Cl21.422 (3)C50—C511.508 (4)
C1—C61.389 (4)C50—C531.515 (4)
C1—C21.398 (4)C50—C521.522 (4)
C2—C31.373 (4)C51—H51A0.98
C2—H20.95C51—H51B0.98
C3—C41.391 (4)C51—H51C0.98
C3—H30.95C52—H52A0.98
C4—C51.376 (4)C52—H52B0.98
C5—C61.390 (4)C52—H52C0.98
C5—H50.95C53—H53A0.98
C6—H60.95C53—H53B0.98
C7—H7A0.98C53—H53C0.98
C7—H7B0.98C54—C551.505 (5)
C7—H7C0.98C54—C561.511 (5)
C8—C131.385 (4)C54—C571.515 (5)
C8—C91.387 (4)C55—H55A0.98
C9—C101.383 (4)C55—H55B0.98
C9—H90.95C55—H55C0.98
C10—C111.376 (4)C56—H56A0.98
C10—H100.95C56—H56B0.98
C11—C121.368 (5)C56—H56C0.98
C12—C131.392 (4)C57—H57A0.98
C12—H120.95C57—H57B0.98
C13—H130.95C57—H57C0.98
C14—H14A0.98C58—Cl4A1.5437
C14—H14B0.98C58—Cl3A1.782 (8)
C14—H14C0.98C58—H58A0.99
C15—C201.394 (4)C58—H58B0.99
C15—C161.394 (4)C58A—Cl3B1.744 (4)
C16—C171.378 (4)C58A—Cl4B1.7836
C16—H160.95C58A—H58C0.99
C17—C181.385 (4)C58A—H58D0.99
C17—H170.95C59—Cl9A1.67 (3)
C18—C191.387 (4)C59—Cl9B1.77 (3)
C19—C201.372 (4)C59—H59A0.99
C19—H190.95C59—H59B0.99
C20—H200.95Cl9A—Cl6D1.815 (9)
C21—H21A0.98Cl9A—Cl6A2.184 (11)
C21—H21B0.98Cl5A—C60A1.714 (16)
C21—H21C0.98C60A—Cl6A1.775 (16)
C22—C231.386 (4)C60A—H60A0.99
C22—C271.388 (4)C60A—H60B0.99
C23—C241.381 (4)Cl5B—C60B1.777 (19)
C23—H230.95C60B—Cl6B1.755 (19)
C24—C251.373 (4)C60B—H60C0.99
C24—H240.95C60B—H60D0.99
C25—C261.390 (4)Cl5C—C60C1.680 (18)
C26—C271.379 (4)C60C—Cl6C1.678 (18)
C26—H260.95C60C—H60E0.99
C27—H270.95C60C—H60F0.99
C28—H28A0.98Cl5D—C60D1.737 (12)
C28—H28B0.98C60D—Cl6D1.794 (11)
C28—H28C0.98C60D—H60G0.99
C29—C301.389 (4)C60D—H60H0.99
C29—C341.391 (4)
N1—C44—Co1177.8 (2)C32—C33—H33120.1
N2—C45—Co1170.8 (2)C34—C33—H33120.1
N3—C43—Co1174.5 (3)C33—C34—C29121.6 (3)
C43—N3—C54177.7 (3)C33—C34—H34119.2
C44—N1—C50177.0 (3)C29—C34—H34119.2
C45—N2—C46178.0 (3)O5—C35—H35A109.5
C45—Co1—C43142.25 (12)O5—C35—H35B109.5
C45—Co1—C44109.77 (11)H35A—C35—H35B109.5
C43—Co1—C44107.97 (11)O5—C35—H35C109.5
C43—Co1—P190.57 (8)H35A—C35—H35C109.5
C44—Co1—P190.19 (8)H35B—C35—H35C109.5
C45—Co1—P188.37 (8)C37—C36—C41118.4 (3)
C43—Co1—P291.31 (8)C37—C36—P1119.4 (2)
C44—Co1—P290.25 (8)C41—C36—P1122.2 (2)
C45—Co1—P289.49 (8)C38—C37—C36121.4 (3)
P1—Co1—P2177.84 (3)C38—C37—H37119.3
C22—P1—C29107.38 (12)C36—C37—H37119.3
C22—P1—C36106.11 (13)C37—C38—C39119.9 (3)
C29—P1—C36104.39 (13)C37—C38—H38120
C22—P1—Co1111.19 (9)C39—C38—H38120
C29—P1—Co1113.14 (9)O6—C39—C40125.5 (3)
C36—P1—Co1114.06 (9)O6—C39—C38114.8 (3)
C15—P2—C1106.43 (12)C40—C39—C38119.7 (3)
C15—P2—C8106.18 (12)C39—C40—C41120.0 (3)
C1—P2—C8105.49 (13)C39—C40—H40120
C15—P2—Co1111.13 (9)C41—C40—H40120
C1—P2—Co1114.42 (9)C36—C41—C40120.6 (3)
C8—P2—Co1112.61 (9)C36—C41—H41119.7
C4—O1—C7117.6 (3)C40—C41—H41119.7
C11—O2—C14118.2 (3)O6—C42—H42A109.5
C18—O3—C21117.1 (3)O6—C42—H42B109.5
C25—O4—C28116.9 (2)H42A—C42—H42B109.5
C32—O5—C35117.8 (3)O6—C42—H42C109.5
C39—O6—C42117.0 (3)H42A—C42—H42C109.5
O7—Cl1—O9111.4 (2)H42B—C42—H42C109.5
O8—Cl1—O7110.4 (2)N2—C46—C49106.8 (2)
O8—Cl1—O9110.3 (2)N2—C46—C48106.4 (2)
O8—Cl1—O10111.0 (3)C49—C46—C48112.2 (3)
O10—Cl1—O7108.3 (3)N2—C46—C47106.2 (2)
O10—Cl1—O9105.4 (2)C49—C46—C47113.0 (3)
O11—Cl2—O12111.9 (3)C48—C46—C47111.7 (3)
O11—Cl2—O13112.1 (3)C46—C47—H47A109.5
O11—Cl2—O14109.2 (2)C46—C47—H47B109.5
O12—Cl2—O14108.0 (2)H47A—C47—H47B109.5
O13—Cl2—O12106.2 (2)C46—C47—H47C109.5
O13—Cl2—O14109.4 (2)H47A—C47—H47C109.5
C6—C1—C2118.5 (2)H47B—C47—H47C109.5
C6—C1—P2121.7 (2)C46—C48—H48A109.5
C2—C1—P2119.7 (2)C46—C48—H48B109.5
C3—C2—C1120.7 (3)H48A—C48—H48B109.5
C3—C2—H2119.6C46—C48—H48C109.5
C1—C2—H2119.6H48A—C48—H48C109.5
C2—C3—C4120.1 (3)H48B—C48—H48C109.5
C2—C3—H3119.9C46—C49—H49A109.5
C4—C3—H3119.9C46—C49—H49B109.5
O1—C4—C5124.5 (3)H49A—C49—H49B109.5
O1—C4—C3115.5 (3)C46—C49—H49C109.5
C5—C4—C3120.0 (3)H49A—C49—H49C109.5
C4—C5—C6119.9 (3)H49B—C49—H49C109.5
C4—C5—H5120.1N1—C50—C51107.4 (2)
C6—C5—H5120.1N1—C50—C53107.2 (2)
C1—C6—C5120.7 (3)C51—C50—C53111.6 (3)
C1—C6—H6119.6N1—C50—C52107.0 (2)
C5—C6—H6119.6C51—C50—C52112.0 (3)
O1—C7—H7A109.5C53—C50—C52111.4 (3)
O1—C7—H7B109.5C50—C51—H51A109.5
H7A—C7—H7B109.5C50—C51—H51B109.5
O1—C7—H7C109.5H51A—C51—H51B109.5
H7A—C7—H7C109.5C50—C51—H51C109.5
H7B—C7—H7C109.5H51A—C51—H51C109.5
C13—C8—C9118.2 (3)H51B—C51—H51C109.5
C13—C8—P2121.6 (2)C50—C52—H52A109.5
C9—C8—P2120.2 (2)C50—C52—H52B109.5
C10—C9—C8121.5 (3)H52A—C52—H52B109.5
C10—C9—H9119.3C50—C52—H52C109.5
C8—C9—H9119.3H52A—C52—H52C109.5
C11—C10—C9119.6 (3)H52B—C52—H52C109.5
C11—C10—H10120.2C50—C53—H53A109.5
C9—C10—H10120.2C50—C53—H53B109.5
O2—C11—C12116.4 (3)H53A—C53—H53B109.5
O2—C11—C10123.7 (3)C50—C53—H53C109.5
C12—C11—C10119.9 (3)H53A—C53—H53C109.5
C11—C12—C13120.7 (3)H53B—C53—H53C109.5
C11—C12—H12119.7N3—C54—C55107.8 (3)
C13—C12—H12119.7N3—C54—C56105.6 (3)
C8—C13—C12120.2 (3)C55—C54—C56112.5 (3)
C8—C13—H13119.9N3—C54—C57107.0 (3)
C12—C13—H13119.9C55—C54—C57110.7 (3)
O2—C14—H14A109.5C56—C54—C57112.7 (4)
O2—C14—H14B109.5C54—C55—H55A109.5
H14A—C14—H14B109.5C54—C55—H55B109.5
O2—C14—H14C109.5H55A—C55—H55B109.5
H14A—C14—H14C109.5C54—C55—H55C109.5
H14B—C14—H14C109.5H55A—C55—H55C109.5
C20—C15—C16118.6 (3)H55B—C55—H55C109.5
C20—C15—P2122.7 (2)C54—C56—H56A109.5
C16—C15—P2118.7 (2)C54—C56—H56B109.5
C17—C16—C15121.1 (3)H56A—C56—H56B109.5
C17—C16—H16119.5C54—C56—H56C109.5
C15—C16—H16119.5H56A—C56—H56C109.5
C16—C17—C18119.4 (3)H56B—C56—H56C109.5
C16—C17—H17120.3C54—C57—H57A109.5
C18—C17—H17120.3C54—C57—H57B109.5
O3—C18—C17124.2 (3)H57A—C57—H57B109.5
O3—C18—C19115.7 (3)C54—C57—H57C109.5
C17—C18—C19120.1 (3)H57A—C57—H57C109.5
C20—C19—C18120.2 (3)H57B—C57—H57C109.5
C20—C19—H19119.9Cl4A—C58—Cl3A115.0 (3)
C18—C19—H19119.9Cl4A—C58—H58A108.5
C19—C20—C15120.6 (3)Cl3A—C58—H58A108.5
C19—C20—H20119.7Cl4A—C58—H58B108.5
C15—C20—H20119.7Cl3A—C58—H58B108.5
O3—C21—H21A109.5H58A—C58—H58B107.5
O3—C21—H21B109.5Cl3B—C58A—Cl4B108.73 (13)
H21A—C21—H21B109.5Cl3B—C58A—H58C109.9
O3—C21—H21C109.5Cl4B—C58A—H58C109.9
H21A—C21—H21C109.5Cl3B—C58A—H58D109.9
H21B—C21—H21C109.5Cl4B—C58A—H58D109.9
C23—C22—C27118.1 (3)H58C—C58A—H58D108.3
C23—C22—P1119.3 (2)Cl9A—C59—Cl9B114.3 (18)
C27—C22—P1122.6 (2)Cl9A—C59—H59A108.7
C24—C23—C22121.9 (2)Cl9B—C59—H59A108.7
C24—C23—H23119Cl9A—C59—H59B108.7
C22—C23—H23119Cl9B—C59—H59B108.7
C25—C24—C23119.4 (3)H59A—C59—H59B107.6
C25—C24—H24120.3C59—Cl9A—Cl6D159.1 (12)
C23—C24—H24120.3C59—Cl9A—Cl6A157.9 (12)
O4—C25—C24124.2 (3)Cl6D—Cl9A—Cl6A2.9 (5)
O4—C25—C26116.2 (3)Cl5A—C60A—Cl6A114.6 (11)
C24—C25—C26119.6 (3)Cl5A—C60A—H60A108.6
C27—C26—C25120.6 (3)Cl6A—C60A—H60A108.6
C27—C26—H26119.7Cl5A—C60A—H60B108.6
C25—C26—H26119.7Cl6A—C60A—H60B108.6
C26—C27—C22120.4 (3)H60A—C60A—H60B107.6
C26—C27—H27119.8C60A—Cl6A—Cl9A137.5 (8)
C22—C27—H27119.8Cl6B—C60B—Cl5B107.3 (14)
O4—C28—H28A109.5Cl6B—C60B—H60C110.3
O4—C28—H28B109.5Cl5B—C60B—H60C110.3
H28A—C28—H28B109.5Cl6B—C60B—H60D110.3
O4—C28—H28C109.5Cl5B—C60B—H60D110.3
H28A—C28—H28C109.5H60C—C60B—H60D108.5
H28B—C28—H28C109.5Cl6C—C60C—Cl5C118.5 (14)
C30—C29—C34117.3 (3)Cl6C—C60C—H60E107.7
C30—C29—P1121.5 (2)Cl5C—C60C—H60E107.7
C34—C29—P1121.2 (2)Cl6C—C60C—H60F107.7
C31—C30—C29121.3 (3)Cl5C—C60C—H60F107.7
C31—C30—H30119.4H60E—C60C—H60F107.1
C29—C30—H30119.4Cl5D—C60D—Cl6D112.0 (7)
C32—C31—C30120.2 (3)Cl5D—C60D—H60G109.2
C32—C31—H31119.9Cl6D—C60D—H60G109.2
C30—C31—H31119.9Cl5D—C60D—H60H109.2
O5—C32—C33124.0 (3)Cl6D—C60D—H60H109.2
O5—C32—C31116.1 (3)H60G—C60D—H60H107.9
C33—C32—C31119.8 (3)C60D—Cl6D—Cl9A155.0 (7)
C32—C33—C34119.8 (3)
C45—Co1—P1—C2251.80 (12)O3—C18—C19—C20179.1 (3)
C43—Co1—P1—C2290.46 (12)C17—C18—C19—C200.4 (4)
C44—Co1—P1—C22161.57 (12)C18—C19—C20—C150.1 (4)
C45—Co1—P1—C2969.14 (13)C16—C15—C20—C190.1 (4)
C43—Co1—P1—C29148.61 (13)P2—C15—C20—C19177.4 (2)
C44—Co1—P1—C2940.63 (12)C29—P1—C22—C23160.9 (2)
C45—Co1—P1—C36171.73 (14)C36—P1—C22—C2387.9 (2)
C43—Co1—P1—C3629.48 (14)Co1—P1—C22—C2336.7 (3)
C44—Co1—P1—C3678.50 (13)C29—P1—C22—C2720.2 (3)
C45—Co1—P2—C1545.19 (12)C36—P1—C22—C2791.0 (3)
C43—Co1—P2—C1597.06 (12)Co1—P1—C22—C27144.5 (3)
C44—Co1—P2—C15154.95 (11)C27—C22—C23—C240.2 (5)
C45—Co1—P2—C1165.75 (13)P1—C22—C23—C24178.7 (2)
C43—Co1—P2—C123.50 (13)C22—C23—C24—C250.2 (5)
C44—Co1—P2—C184.49 (12)C28—O4—C25—C240.7 (5)
C45—Co1—P2—C873.80 (13)C28—O4—C25—C26179.8 (4)
C43—Co1—P2—C8143.95 (13)C23—C24—C25—O4179.4 (3)
C44—Co1—P2—C835.96 (12)C23—C24—C25—C260.3 (5)
C15—P2—C1—C69.9 (3)O4—C25—C26—C27179.5 (4)
C8—P2—C1—C6102.6 (2)C24—C25—C26—C270.4 (6)
Co1—P2—C1—C6133.1 (2)C25—C26—C27—C220.4 (6)
C15—P2—C1—C2170.4 (2)C23—C22—C27—C260.3 (5)
C8—P2—C1—C277.1 (2)P1—C22—C27—C26178.6 (3)
Co1—P2—C1—C247.2 (2)C22—P1—C29—C3095.9 (3)
C6—C1—C2—C30.6 (4)C36—P1—C29—C3016.4 (3)
P2—C1—C2—C3179.1 (2)Co1—P1—C29—C30141.0 (2)
C1—C2—C3—C40.3 (5)C22—P1—C29—C3486.6 (3)
C7—O1—C4—C50.8 (5)C36—P1—C29—C34161.0 (2)
C7—O1—C4—C3179.9 (4)Co1—P1—C29—C3436.5 (3)
C2—C3—C4—O1179.6 (3)C34—C29—C30—C310.2 (5)
C2—C3—C4—C51.3 (5)P1—C29—C30—C31177.3 (3)
O1—C4—C5—C6179.6 (3)C29—C30—C31—C320.8 (6)
C3—C4—C5—C61.4 (5)C35—O5—C32—C335.1 (5)
C2—C1—C6—C50.5 (4)C35—O5—C32—C31174.1 (4)
P2—C1—C6—C5179.2 (2)C30—C31—C32—O5179.3 (3)
C4—C5—C6—C10.5 (5)C30—C31—C32—C330.1 (6)
C15—P2—C8—C13106.3 (3)O5—C32—C33—C34177.9 (3)
C1—P2—C8—C136.4 (3)C31—C32—C33—C341.4 (5)
Co1—P2—C8—C13131.9 (2)C32—C33—C34—C292.0 (5)
C15—P2—C8—C976.0 (3)C30—C29—C34—C331.1 (5)
C1—P2—C8—C9171.3 (2)P1—C29—C34—C33178.7 (3)
Co1—P2—C8—C945.8 (3)C22—P1—C36—C37177.6 (3)
C13—C8—C9—C100.3 (5)C29—P1—C36—C3769.1 (3)
P2—C8—C9—C10177.5 (3)Co1—P1—C36—C3754.8 (3)
C8—C9—C10—C111.4 (5)C22—P1—C36—C412.6 (3)
C14—O2—C11—C12171.2 (3)C29—P1—C36—C41110.6 (3)
C14—O2—C11—C107.7 (5)Co1—P1—C36—C41125.4 (2)
C9—C10—C11—O2176.4 (3)C41—C36—C37—C382.1 (5)
C9—C10—C11—C122.5 (5)P1—C36—C37—C38177.7 (3)
O2—C11—C12—C13177.1 (3)C36—C37—C38—C391.2 (6)
C10—C11—C12—C131.8 (6)C42—O6—C39—C401.2 (7)
C9—C8—C13—C121.0 (5)C42—O6—C39—C38179.5 (5)
P2—C8—C13—C12176.7 (3)C37—C38—C39—O6179.5 (4)
C11—C12—C13—C80.0 (6)C37—C38—C39—C401.1 (6)
C1—P2—C15—C2099.9 (2)O6—C39—C40—C41179.3 (4)
C8—P2—C15—C2012.1 (3)C38—C39—C40—C412.5 (6)
Co1—P2—C15—C20134.9 (2)C37—C36—C41—C400.7 (5)
C1—P2—C15—C1682.8 (2)P1—C36—C41—C40179.1 (2)
C8—P2—C15—C16165.2 (2)C39—C40—C41—C361.6 (5)
Co1—P2—C15—C1642.4 (2)Cl9B—C59—Cl9A—Cl6D18 (5)
C20—C15—C16—C170.4 (4)Cl9B—C59—Cl9A—Cl6A11 (5)
P2—C15—C16—C17177.8 (2)Cl5A—C60A—Cl6A—Cl9A1 (3)
C15—C16—C17—C180.7 (4)C59—Cl9A—Cl6A—C60A114 (4)
C21—O3—C18—C174.3 (4)Cl6D—Cl9A—Cl6A—C60A4 (13)
C21—O3—C18—C19175.1 (3)Cl5D—C60D—Cl6D—Cl9A27 (2)
C16—C17—C18—O3178.7 (3)C59—Cl9A—Cl6D—C60D80 (5)
C16—C17—C18—C190.7 (4)Cl6A—Cl9A—Cl6D—C60D148 (15)

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C5H9N)3(C21H21O3P)2]ClO4·2(CH2Cl2)[Co(C5H9N)3(C21H21O3P)2](ClO4)2·2CH2Cl2
Mr1282.321381.77
Crystal system, space groupHexagonal, P63/mMonoclinic, P21/n
Temperature (K)173173
a, b, c (Å)21.7568 (3), 21.7568 (3), 23.3983 (6)12.3461 (3), 19.7566 (5), 28.4452 (7)
α, β, γ (°)90, 90, 12090, 92.818 (2), 90
V3)9591.9 (3)6929.9 (3)
Z64
Radiation typeMo KαMo Kα
µ (mm1)0.580.59
Crystal size (mm)0.38 × 0.38 × 0.10.43 × 0.31 × 0.22
Data collection
DiffractometerCCD area detectorCCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.809, 0.9440.787, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
46534, 6456, 4167 93953, 16738, 11549
Rint0.0580.056
(sin θ/λ)max1)0.6170.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.152, 0.97 0.051, 0.146, 1.06
No. of reflections645616738
No. of parameters390848
No. of restraints040
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0695P)2 + 16.3243P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0551P)2 + 6.8607P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.07, 0.580.55, 0.41

Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
Co1—C8i1.820 (4)C30—N31.162 (6)
Co2—C19ii1.834 (4)N1—C91.455 (6)
Co3—C30iii1.824 (5)N2—C201.453 (6)
P1—Co12.1814 (13)N3—C311.449 (7)
P2—Co22.1762 (12)Cl1—O41.434 (5)
P3—Co32.1774 (13)Cl1—O51.426 (4)
C8—N11.157 (6)Cl1—O61.389 (4)
C19—N21.158 (6)
N1—C8—Co1179.7 (4)P1v—Co1—P1180.0000 (10)
N2—C19—Co2179.2 (4)P2—Co2—P2v180
N3—C30—Co3178.6 (4)P3v—Co3—P3180
C8—N1—C9179.7 (5)C8—Co1—P1v90
C19—N2—C20175.8 (4)C19—Co2—P290
C30—N3—C31178.4 (5)C30—Co3—P390
C8—Co1—C8iv120.000 (2)O5—Cl1—O4109.8 (3)
C19ii—Co2—C19120.0000 (10)O6—Cl1—O4106.5 (2)
C30—Co3—C30iii120.0000 (10)O6—Cl1—O5109.4 (2)
Symmetry codes: (i) x+y+1, x+1, z; (ii) x+y, x, z; (iii) y+1, xy+1, z; (iv) y+1, xy, z; (v) x, y, z+3/2.
Selected geometric parameters (Å, º) for (II) top
Co1—C451.876 (3)N3—C541.466 (3)
Co1—C431.879 (3)O7—Cl11.392 (3)
Co1—C441.910 (3)O8—Cl11.385 (3)
Co1—P12.2515 (7)O9—Cl11.416 (3)
Co1—P22.2536 (7)O10—Cl11.387 (3)
C44—N11.148 (3)O11—Cl21.380 (3)
C45—N21.147 (3)O12—Cl21.415 (3)
C43—N31.142 (3)O13—Cl21.412 (3)
N1—C501.463 (3)O14—Cl21.422 (3)
N2—C461.467 (3)
N1—C44—Co1177.8 (2)C45—Co1—P289.49 (8)
N2—C45—Co1170.8 (2)P1—Co1—P2177.84 (3)
N3—C43—Co1174.5 (3)O7—Cl1—O9111.4 (2)
C43—N3—C54177.7 (3)O8—Cl1—O7110.4 (2)
C44—N1—C50177.0 (3)O8—Cl1—O9110.3 (2)
C45—N2—C46178.0 (3)O8—Cl1—O10111.0 (3)
C45—Co1—C43142.25 (12)O10—Cl1—O7108.3 (3)
C45—Co1—C44109.77 (11)O10—Cl1—O9105.4 (2)
C43—Co1—C44107.97 (11)O11—Cl2—O12111.9 (3)
C43—Co1—P190.57 (8)O11—Cl2—O13112.1 (3)
C44—Co1—P190.19 (8)O11—Cl2—O14109.2 (2)
C45—Co1—P188.37 (8)O12—Cl2—O14108.0 (2)
C43—Co1—P291.31 (8)O13—Cl2—O12106.2 (2)
C44—Co1—P290.25 (8)O13—Cl2—O14109.4 (2)
Comparison of selected geometric parameters for (I), with two analogous CoI–aryl isocyanide complexes top
Parameter(I)(III)(IV)
Co—C (Å)1.825 (6)1.78 (1)1.85 (1)
1.81 (2)1.83 (1)
CN (Å)1.159 (5)1.16 (2)1.17 (2)
1.17 (2)1.14 (2)
Co—P (Å)2.1784 (12)2.18 (1)2.137 (3)
C—Co—C (°)120.0 (2)105.0 (5)115.7 (5)
125.5 (7)122.2 (4)
Co—CN (°)179.2 (1)176 (1)176 (1)
177(1.5)180
178 (1)
.CN—C (°)178.0 (1)171 (2)178 (1)
172 (2)180
P—Co—P (°)180.00 (3)178.4 (2)179.7 (4)
Identification of compounds: [Co(CNC6H4NO2-p)3{PhP(OEt)2}2]ClO4, (III), and [Co(CNC6H4F-p)3{P(OMe)3}2]BF4, (IV)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds