Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of two salts, products of the reactions between [(5-methyl-2-pyrid­yl)amino­methyl­ene]bis­(phospho­nic acid) and 4-amino­pyridine or ammonia, namely bis­(4-amino­pyridinium) hydrogen [(5-methyl-2-pyridinio)amino­meth­yl­ene]diphospho­nate 2.4-hydrate, 2C5H7N2+·C7H10N2O6P22-·2.4H2O, (I), and triammonium hydrogen [(5-methyl-2-pyrid­yl)amino­methyl­ene]diphospho­nate monohydrate, 3NH4+·C7H9N2O6P23-·H2O, (II), have been determined. In (I), the Z configuration of the ring N-C and amino N-H bonds of the bis­phospho­nate dianion with respect to the Cring-Namino bond is consistent with that of the parent zwitterion. Removing the H atom from the pyridyl N atom results in the opposite E configuration of the bis­phospho­nate trianion in (II). Compound (I) exhibits a three-dimensional hydrogen-bonded network, in which 4-amino­pyridinium cations and water mol­ecules are joined to ribbons composed of anionic dimers linked by O-H...O and N-H...O hydrogen bonds. The supra­molecular motif resulting from a combination of these three inter­actions is a common phenomenon in crystals of all of the Z-isomeric zwitterions of 4- and 5-substituted (2-pyri­dyl­amino­methyl­ene)bis­(phospho­nic acid)s studied to date. In (II), ammonium cations and water mol­ecules are linked to chains of trianions, resulting in the formation of double layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109010683/tr3053sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109010683/tr3053Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109010683/tr3053IIsup3.hkl
Contains datablock II

CCDC references: 742167; 742168

Comment top

The (2-pyridylaminomethene)bis(phosphonic acid)s, a subclass of bisphosphonates with a direct Cα—Namino bond, demonstrate a broad spectrum of activities. There is a vast literature dealing with their herbicidal properties (Suzuki et al., 1979; Cromartie et al., 1999; Kafarski et al., 2000; Forlani et al., 2007). Recently, they have also been shown to be promising antimalarial, anti-amoebic (Ghosh et al., 2004) and antibacterial (Leon et al., 2006) agents, as well as stimulators of human γδT cells of the immune system (Sanders et al., 2004). All these activities correlate well with their inhibitory potency with respect to the FPP synthase, a key regulatory enzyme of the mevalonate pathway found to be a major target of nitrogen-containing bisphosphonates in human, parasite and plant cells (Cromartie et al., 1999; Sanders et al., 2003; Coxon et al., 2006). Interestingly, the topology, size and/or chemical nature of the substituent on the pyridyl ring clearly play a role in the biological activity of this class of acids.

Spectroscopic and X-ray studies of (2-pyridylaminomethylene)bis(phosphonic acid)s studied to date have revealed a clear relationship between the topology of the substituents on the ring and their conformational preferences. A slight predominance of the Z over the E geometrical isomer [defined here as the C1—N1—C2—C3 torsion angle being close to 0 or 180°, respectively; see Fig. 1 for atom numbering] has been observed in solutions of compounds substituted at the 4- or 5-position, and as a result the dominant isomer has been observed to crystallize [Cambridge Structural Database (CSD; Allen, 2002) refcodes JEDYAT (Matczak-Jon et al., 2006a), QURYEH (Matczak-Jon et al., 2001), BEKCAW and BEKBUP (Sanders et al., 2003), and YEFWIQ (Matczak-Jon et al., 2006b)]. On the other hand, the 3-pyridyl-substituted compounds demonstrate the opposite E configuration in the solid state [QURYAD (Matczak-Jon et al., 2001) and MUQDIL (Szabo et al., 2002)], and the same isomer is expected to dominate in their solutions (Matczak-Jon, 2005). Interestingly, (2-pyridylaminomethylene)bis(phosphonic acid), with equal populations of Z and E in solution, crystallizes as the E isomer (JEDXUM; Matczak-Jon et al., 2006a). In all these crystals, except for the disodium salt of the 5-chloro derivative (BEKBUP; Sanders et al., 2003), the bisphosphonic acid components exist as zwitterions with a proton transfer from one of the phosphonic acid groups to pyridyl atom N2.

We report here the crystal structures of two [(5-methyl-2-pyridyl)aminomethylene]diphosphonate salts with different ionization states of the anion, namely [(5-methyl-2-pyridinio)aminomethylene]diphosphonate 2.4-hydrate, (I), and triammonium [(5-methyl-2-pyridyl)aminomethylene]diphosphonate monohydrate, (II).

Our results are of interest for a number of reasons. Firstly, only a few crystal structures have been determined to date of salts containing bisphosphonate anions with a direct Cα—Namino bond (Mao et al., 2006; Sanders et al., 2003; Bon et al., 2008). In particular, the only example reported for (2-pyridylaminomethylene)bis(phosphonic acid)s is the disodium salt of [(5-chloro-2-pyridyl)aminomethylene]diphosphonate. In addition, we provide for the first time the X-ray structure of the organic salt formed between a member of this particular class of acids and an amine. Secondly, we demonstrate a correlation between the protonation state of the [(5-methyl-2-pyridyl)aminomethylene]diphosphonate anion and its conformational preferences. Finally, we provide evidence that the deprotonation of the parent bisphosphonate (Matczak-Jon et al., 2001) proceeds in the manner shown in the scheme below. This is surprisingly in contrast to the related 5-Cl derivative, where the crystal structure of its disodium salt (Sanders et al., 2003) has both phosphonate groups monoprotonated and a neutral pyridyl atom.

The asymmetric unit of (I) consists of one bisphosphonate dianion, two 4-aminopyridinium cations and 2.4 water molecules (O1W and disordered O2W in general positions, and partially occupied O3W on a twofold axis). In the 4-aminopyridinium cations, the amine groups (N41 and N42) are neutral, and two positive charges are located at pyridinium atoms N11 and N12. The asymmetric unit of (II) contains one trianion, three ammonium cations (N10, N20 and N30) and one water molecule (O1W). It should be noted that, depending on the protonation state [the pyridyl atom N2 is protonated in (I) but not in (II)], the bisphosphonate anion adopts opposite Z or E configurations, as defined above, with respect to the C2—N1 bond. This is reflected in the C1—N1—C2—C3 torsion angles of 10.3 (2)° in (I) and -147.18 (9)° in (II) (Fig. 1).

It is a general rule in the structures known so far that, because of the formal sp2-hybridization of atom N1 and the partial double-bond character of the C2—N1 linkage, both atoms N1 and C1 are coplanar with the pyridyl ring. Similarly, this is observed in (I) and (II) (Fig. 1, and Tables 1 and 3). However, as seen from the C1—N1—C2—N2 and C1—N1—C2—C3 torsion angles, atom C1 is more displaced from the pyridyl ring plane in (II) than in (I) [at 0.65 (1) and 0.39 (1) Å, respectively]. Moreover, in (II), some degree of pyramidalization of atom N1 is evident. The sum of the angles at N1 is 347.3 (1)°, which indicates that hybridization of the N1 atom is not purely sp2. As a result, the C2—N1 bond in (II) is slightly longer [1.385 (2) Å compared with 1.346 (2) Å in (I)].

The geometry of the diphosphonate fragment in (II) is in good agreement with that of parent zwitterion (QURYEH; Matczak-Jon et al., 2001). The O3—P1—C1—P2—O6 sequence, with one protonated and one deprotonated O atom, reveals a typical, almost planar W conformation. Thus, every P atom is antiperiplanar to one of the O atoms from the adjacent phosphonate group and synclinal to the remaining O atoms from that group. However, in (I) the W conformation is slightly distorted (see the relevant torsion angles in Table 1). This seems to be of some importance for the formation of intermolecular interactions. The orientation of the phosphonate groups in relation to the pyridyl ring is defined by the C2—N1—C1—P1 and C2—N1—C1—P2 torsion angles, which reveal that in both (I) and (II) atoms P1 and P2 have an anticlinal orientation with respect to pyridyl atom C2. However, a comparison of these values with those reported previously indicates that the -HO3P—C—PO32- diphosphonate portion is slightly more perpendicular with respect to the pyridyl ring than in the parent zwitterion and related 4-methyl, 5-chloro and 5-bromo derivatives. The planes defined by the pyridyl ring and the P1—C1—P2 linkage intersect with each other at 68.7 (1)° in (I) and 66.2 (1)° in (II).

Consistent with previous observations, in both (I) and (II) the geometries of both the monoprotonated (PO3H-) and the completely deprotonated (PO32-) groups deviate significantly from ideal tetrahedra. This is mainly reflected in the high values of the O1—P1—O2 and O4—P2—O5 angles, in which the unprotonated O atoms are involved. On the other hand, the (H)O3—P1—C1 angle, in which the protonated O atom is involved, has the smallest value in both (I) and (II) (Tables 1 and 3).

The common structural motifs in the crystal structures of (2-pyridylaminomethylene)bis(phosphonic acid) and its 4- and 5-substituted derivatives reported to date (Matczak-Jon et al., 2001, 2006a,b; Sanders et al., 2003) are chains and molecular dimers formed by the adjacent zwitterions. Usually these two types of motifs give rise to ribbons, in which some N—H···O and C—H···O contacts play a role. In (I), the strongest interactions (O3—H3···O1i; symmetry code as in Table 2) join the twofold axis-related dianions to form dimers via an R22(8) ring motif. Each dimer is linked with two adjacent dimers by centrosymmetric bifurcated N1—H2···O4ii and N2—H4···O4ii hydrogen bonds to the same O4 atom, which is also involved in the weak intramolecular N1—H2···O4 contact and therefore becomes a trifurcated acceptor. The combination of three N—H···O4 contacts gives rise to R21(6) and R22(4) rings (Fig. 2a and Table 2). As a result, ribbons running in the [101] direction are formed, as shown in Fig. 3(a). It is also worth noting that the structural motif comprising the intermolecular O—H···O and N1—H···O contacts, as presented in Fig. 2(a), is a common feature in all Z-isomeric zwitterions studied to date. On the other hand, the deformed W conformation of the O3—P1—C1—P2—O6 sequence disfavours chain formation in (I). A quite different structural motif is observed in (II), where, the removal of the H atom on atom N2 relaxes a strain imposed on the Z configuration by the N2—H4···O hydrogen bond, which allows a conformational switch of trianions via rotation around the C2—N1 bond. As a result, the optimal conformation of the [(5-methyl-2-pyridyl)aminomethylene]diphosphonate trianion in (II) is a pseudo-E isomer, with an almost planar O3—P1—C1—P2—O6 sequence. This enables atoms O3 and O6 from adjacent glide-plane-related anions to interact with each other via strong O3—H3···O6i hydrogen bonds to form infinite chains along the c axis (Fig. 2b and Table 4).

The crystal packing of (I) and (II) is greatly affected by the presence of the 4-aminopyridinium and ammonium cations, respectively. In (I), both the amine (N41 and N42) and the pyridinium (N11 and N12) N atoms along with the water O atoms form N—H···O and O—H···O hydrogen bonds with the phosphonate O atoms from the ribbons (Fig. 3a and Table 2). Moreover, phosphonate atoms O2 and O6 are involved in bifurcated N—H···O contacts. All that, together with the extensive network of C—H···O/N contacts and the weak C6—H16···Cg(-x + 3/2, -y + 3/2, -z + 1) interaction [H···Cg = 2.61 (2) Å, C···Cg = 3.531 (2) Å and C—H···Cg = 164 (2)°, where Cg is the centroid of the phenyl ring of one of the crystallographically independent cations], and the stacking between the 4-aminopyridinium cations [Cg···Cgiv = 3.460 (1) Å], gives rise to a three-dimensional network in the crystal structure. In (II), the adjacent chains are arranged in a head-to-head manner, with the ammonium cations and water molecules located between the methylenediphosphonate groups. Numerous H3N—H···O interactions and one H3N—H···N contact link the ammonium cations with the hydrophilic parts of the dianions (and water molecules), giving rise to the double layers parallel to the (100) plane (Fig. 3b). Such crystal architecture leads to the aggregation of the hydrophilic and hydrophobic groups into two distinct regions in the crystal structure.

Related literature top

For related literature, see: Bon et al. (2008); Coxon et al. (2006); Cromartie et al. (1999); Forlani et al. (2007); Ghosh et al. (2004); Kafarski, Lejczak, Forlani & Heteroatom Chemistry (2000); Leon et al. (2006); Mao et al. (2006); Matczak-Jon (2005); Matczak-Jon, Sawka-Dobrowolska, Kafarski & Videnova-Adrabińska (2001); Matczak-Jon, Ślepokura & Kafarski (2006a, 2006b); Sanders et al. (2003, 2004); Suzuki, Fujikawa, Yamamoto, Mizutani, Ohya, Ikai, Oguchi, Ger & Offen (1979); Szabo et al. (2002).

Experimental top

To obtain (I), [(5-methyl-2-pyridyl)aminomethylene]bis(phosphonic acid) (0.05646 g, 0.2 mmol) and 4-aminopyridine (0.03764 g, 0.4 mmol) were dissolved in water (5 ml) and heated under reflux for ca 7 h. Crystals of (I) were obtained after slow concentration of the resulting solution combined with a diffusion of 2-propanol. Crystals of (II) were prepared by slow evaporation of a 5 ml solution of [(5-methyl-2-pyridyl)aminomethylene]bis(phosphonic acid) (0.05646 g, 0.2 mmol) dissolved in 10% ammonia.

Refinement top

Two of the three sites for water molecules in (I) are disordered. O2W was refined over two positions, with occupancies of 0.803 (5) and 0.197 (5) for O2W and O20W, respectively. Similarly, water molecule O3W, lying on a twofold axis, is occupationally disordered and refined to an occupancy of 0.803 (5). Owing to the low occupancy of O20W only the O2W position is discussed. All of the non-H atoms were refined anisotropically, except for O20W. The positions of both H atoms on O20W and one of the H atoms on O2W have not been found. The remaining H atoms in (I) and (II) were found in difference Fourier maps and were refined isotropically, except for C7-bonded H atoms atoms in (I), which were treated as riding atoms, with C—H distances of 0.98 Å, and with Uiso = 1.5Ueq(C). Atom H1W in (I) was refined with the O—H distance restrained to 0.84 (2) Å [is this value the applied restraint?; it is the same as the refined distance listed in the CIF] and with Uiso(H) = 1.5Ueq(O1W).

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Version 5.1; Sheldrick, 2008) and DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) the dianion in (I) and (b) the trianion in (II), showing the atom-numbering schemes and the intramolecular N—H···O hydrogen bond in (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The arrangement of (a) the dianions in (I) within the ribbons running in the [101] direction, and (b) the trianions in (II) within the infinite chains along the c axis. Dashed lines indicate O—H···O and N—H···O hydrogen bonds. Symmetry codes are given in Tables 2 and 4.
[Figure 3] Fig. 3. The crystal packing modes in the structures of (I) and (II), showing (a) the anionic ribbons joined by the 4-aminopyridinium cations to form a three-dimensional structure, and (b) the double layers made up from anionic chains in a head-to-head arrangement with NH4+ cations and water molecules located between them. O—H···O and N—H···O hydrogen bonds are shown with dashed lines. Water molecules in (I) have been omitted for clarity; the shaded tetrahedra represent the phosphonate groups. Symmetry codes for (II) are given in Table 4.
(I) bis(4-aminopyridinium) hydrogen [(5-methyl-2-pyridinio)aminomethylene]diphosphonate 2.4-hydrate top
Crystal data top
2C5H7N2+·C7H10N2O6P22·2.4H2OF(000) = 2160
Mr = 513.60Dx = 1.471 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 27791 reflections
a = 20.385 (3) Åθ = 2.8–36.9°
b = 17.838 (3) ŵ = 0.25 mm1
c = 13.038 (3) ÅT = 100 K
β = 101.89 (3)°Block, colourless
V = 4639.3 (15) Å30.30 × 0.25 × 0.22 mm
Z = 8
Data collection top
KUMA KM-4 CCD κ-geometry
diffractometer with Sapphire CCD camera
5813 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 30.0°, θmin = 2.8°
ω scansh = 2826
38561 measured reflectionsk = 2524
6761 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0589P)2 + 4.7126P]
where P = (Fo2 + 2Fc2)/3
6761 reflections(Δ/σ)max = 0.001
408 parametersΔρmax = 0.87 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
2C5H7N2+·C7H10N2O6P22·2.4H2OV = 4639.3 (15) Å3
Mr = 513.60Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.385 (3) ŵ = 0.25 mm1
b = 17.838 (3) ÅT = 100 K
c = 13.038 (3) Å0.30 × 0.25 × 0.22 mm
β = 101.89 (3)°
Data collection top
KUMA KM-4 CCD κ-geometry
diffractometer with Sapphire CCD camera
5813 reflections with I > 2σ(I)
38561 measured reflectionsRint = 0.031
6761 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.87 e Å3
6761 reflectionsΔρmin = 0.31 e Å3
408 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.572726 (14)0.853491 (16)0.38917 (2)0.01047 (7)
P20.624629 (15)0.709478 (17)0.52188 (2)0.01201 (8)
O10.49789 (4)0.84730 (5)0.38165 (7)0.01401 (17)
O20.61034 (4)0.90121 (5)0.47643 (7)0.01533 (17)
O30.58766 (4)0.88486 (5)0.28248 (7)0.01370 (17)
H30.5585 (13)0.8719 (14)0.233 (2)0.048 (7)*
O40.68939 (5)0.74313 (6)0.58273 (7)0.01919 (19)
O50.56471 (5)0.72053 (5)0.57299 (7)0.01587 (17)
O60.63437 (5)0.62714 (5)0.49456 (7)0.01730 (18)
N10.66866 (5)0.75423 (6)0.35379 (8)0.0146 (2)
H20.7099 (11)0.7626 (12)0.4021 (17)0.032 (5)*
N20.73489 (6)0.71722 (6)0.23997 (9)0.0177 (2)
H40.7700 (11)0.7283 (13)0.2954 (18)0.039 (6)*
C10.60709 (6)0.75785 (7)0.39428 (9)0.0125 (2)
H10.5744 (9)0.7262 (10)0.3471 (14)0.018 (4)*
C20.67293 (6)0.72887 (7)0.25817 (9)0.0147 (2)
C30.61750 (6)0.71266 (7)0.17598 (10)0.0171 (2)
H130.5745 (10)0.7223 (11)0.1874 (16)0.026 (5)*
C40.62886 (7)0.68131 (8)0.08495 (10)0.0198 (2)
H140.5911 (10)0.6691 (12)0.0312 (16)0.028 (5)*
C50.69462 (7)0.66725 (8)0.07006 (10)0.0208 (3)
C60.74574 (7)0.68743 (8)0.14945 (11)0.0210 (3)
H160.7913 (11)0.6822 (12)0.1449 (16)0.032 (5)*
C70.70676 (9)0.63073 (11)0.02875 (12)0.0331 (4)
H7A0.75510.62490.02420.050*
H7B0.68790.66220.08920.050*
H7C0.68520.58140.03700.050*
N110.58576 (5)0.80905 (6)0.73669 (9)0.0172 (2)
H110.5822 (10)0.7814 (12)0.6804 (17)0.030 (5)*
N410.56928 (6)0.94455 (6)0.98521 (9)0.0179 (2)
H41A0.5785 (10)0.9921 (12)0.9812 (16)0.029 (5)*
H41B0.5522 (10)0.9245 (11)1.0345 (16)0.027 (5)*
C210.57266 (6)0.77896 (7)0.82543 (10)0.0171 (2)
H210.5666 (9)0.7242 (11)0.8251 (15)0.023 (4)*
C310.56769 (6)0.82215 (7)0.90994 (10)0.0158 (2)
H310.5554 (9)0.8000 (10)0.9676 (14)0.018 (4)*
C410.57700 (6)0.90073 (7)0.90509 (9)0.0138 (2)
C510.59314 (6)0.93035 (7)0.81249 (10)0.0161 (2)
H510.6003 (9)0.9819 (10)0.8055 (13)0.017 (4)*
C610.59541 (6)0.88350 (7)0.73004 (10)0.0173 (2)
H610.6030 (9)0.8989 (11)0.6680 (15)0.023 (4)*
N120.69054 (6)0.55000 (7)0.66449 (9)0.0200 (2)
H120.6736 (11)0.5786 (13)0.6054 (18)0.037 (6)*
N420.75427 (6)0.42119 (6)0.92739 (9)0.0175 (2)
H42A0.7964 (10)0.4171 (11)0.9555 (15)0.025 (5)*
H42B0.7229 (11)0.3946 (12)0.9514 (17)0.034 (5)*
C220.75551 (7)0.55300 (8)0.71456 (11)0.0201 (2)
H220.7823 (10)0.5852 (12)0.6842 (16)0.028 (5)*
C320.77868 (6)0.51158 (7)0.80262 (10)0.0176 (2)
H320.8244 (10)0.5180 (11)0.8378 (15)0.024 (5)*
C420.73427 (6)0.46371 (7)0.84276 (9)0.0142 (2)
C520.66619 (6)0.46324 (7)0.78907 (10)0.0169 (2)
H520.6344 (10)0.4316 (12)0.8137 (15)0.028 (5)*
C620.64665 (7)0.50598 (8)0.70180 (11)0.0196 (2)
H620.6015 (10)0.5058 (11)0.6640 (15)0.027 (5)*
O1W0.48746 (7)0.61202 (7)0.64242 (13)0.0401 (3)
H1W0.4820 (14)0.5688 (6)0.617 (2)0.060*
H2W0.5100 (13)0.6397 (15)0.614 (2)0.046 (7)*
O2W0.53022 (10)0.53234 (10)0.43113 (15)0.0459 (6)0.803 (5)
H3W0.5667 (18)0.560 (2)0.456 (3)0.056 (9)*0.803 (5)
O3W0.50000.62111 (13)0.25000.0363 (6)0.803 (5)
H5W0.5046 (12)0.5902 (15)0.311 (2)0.022 (6)*0.803 (5)
O20W0.5119 (4)0.5568 (5)0.3671 (8)0.053 (3)*0.197 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01080 (13)0.01092 (14)0.00928 (13)0.00036 (9)0.00114 (10)0.00046 (9)
P20.01467 (14)0.01177 (14)0.00973 (13)0.00165 (10)0.00286 (10)0.00006 (10)
O10.0119 (4)0.0184 (4)0.0118 (4)0.0008 (3)0.0027 (3)0.0004 (3)
O20.0171 (4)0.0137 (4)0.0130 (4)0.0002 (3)0.0019 (3)0.0027 (3)
O30.0136 (4)0.0155 (4)0.0114 (4)0.0027 (3)0.0012 (3)0.0019 (3)
O40.0161 (4)0.0246 (5)0.0152 (4)0.0011 (3)0.0007 (3)0.0014 (3)
O50.0178 (4)0.0166 (4)0.0148 (4)0.0007 (3)0.0068 (3)0.0009 (3)
O60.0243 (5)0.0128 (4)0.0155 (4)0.0043 (3)0.0059 (3)0.0005 (3)
N10.0131 (4)0.0190 (5)0.0114 (4)0.0007 (4)0.0020 (3)0.0020 (4)
N20.0174 (5)0.0214 (5)0.0137 (5)0.0017 (4)0.0017 (4)0.0014 (4)
C10.0143 (5)0.0128 (5)0.0110 (5)0.0014 (4)0.0041 (4)0.0006 (4)
C20.0183 (5)0.0130 (5)0.0124 (5)0.0005 (4)0.0023 (4)0.0007 (4)
C30.0158 (5)0.0196 (6)0.0155 (5)0.0016 (4)0.0021 (4)0.0005 (4)
C40.0211 (6)0.0222 (6)0.0141 (5)0.0001 (5)0.0009 (5)0.0001 (5)
C50.0277 (7)0.0216 (6)0.0139 (5)0.0050 (5)0.0065 (5)0.0030 (5)
C60.0189 (6)0.0256 (6)0.0190 (6)0.0039 (5)0.0047 (5)0.0004 (5)
C70.0383 (9)0.0417 (9)0.0199 (7)0.0077 (7)0.0076 (6)0.0114 (6)
N110.0167 (5)0.0201 (5)0.0154 (5)0.0019 (4)0.0049 (4)0.0045 (4)
N410.0257 (5)0.0145 (5)0.0155 (5)0.0024 (4)0.0086 (4)0.0017 (4)
C210.0169 (5)0.0154 (5)0.0196 (6)0.0025 (4)0.0050 (4)0.0024 (4)
C310.0169 (5)0.0150 (5)0.0164 (5)0.0020 (4)0.0053 (4)0.0004 (4)
C410.0131 (5)0.0149 (5)0.0139 (5)0.0006 (4)0.0037 (4)0.0009 (4)
C510.0189 (5)0.0150 (5)0.0155 (5)0.0007 (4)0.0061 (4)0.0007 (4)
C610.0175 (5)0.0208 (6)0.0147 (5)0.0001 (4)0.0060 (4)0.0005 (4)
N120.0220 (5)0.0190 (5)0.0191 (5)0.0035 (4)0.0048 (4)0.0061 (4)
N420.0155 (5)0.0199 (5)0.0165 (5)0.0002 (4)0.0018 (4)0.0040 (4)
C220.0221 (6)0.0179 (6)0.0220 (6)0.0006 (5)0.0087 (5)0.0031 (5)
C320.0151 (5)0.0181 (6)0.0200 (6)0.0003 (4)0.0049 (4)0.0001 (5)
C420.0149 (5)0.0135 (5)0.0145 (5)0.0011 (4)0.0036 (4)0.0006 (4)
C520.0144 (5)0.0181 (6)0.0180 (6)0.0006 (4)0.0028 (4)0.0025 (4)
C620.0161 (6)0.0210 (6)0.0205 (6)0.0030 (5)0.0013 (5)0.0033 (5)
O1W0.0311 (6)0.0232 (6)0.0677 (10)0.0024 (5)0.0139 (6)0.0118 (6)
O2W0.0538 (11)0.0390 (10)0.0405 (11)0.0246 (8)0.0004 (8)0.0024 (7)
O3W0.0371 (12)0.0294 (11)0.0402 (13)0.0000.0027 (9)0.000
Geometric parameters (Å, º) top
P1—O11.5124 (9)N41—C411.340 (2)
P1—O21.4991 (10)N41—H41A0.87 (2)
P1—O31.5860 (10)N41—H41B0.87 (2)
P1—C11.8403 (12)C21—C311.365 (2)
P2—O41.5169 (10)C21—H210.98 (2)
P2—O51.5199 (10)C31—C411.418 (2)
P2—O61.5339 (10)C31—H310.93 (2)
P2—C11.8425 (13)C41—C511.417 (2)
N1—C11.460 (2)C51—C611.370 (2)
N1—C21.346 (2)C51—H510.94 (2)
N2—C21.348 (2)C61—H610.90 (2)
N2—C61.353 (2)N12—C221.352 (2)
O3—H30.81 (3)N12—C621.354 (2)
N1—H20.95 (2)N12—H120.93 (2)
N2—H40.93 (2)N42—C421.332 (2)
C1—H10.99 (2)N42—H42A0.86 (2)
C2—C31.418 (2)N42—H42B0.90 (2)
C3—C41.374 (2)C22—C321.365 (2)
C3—H130.93 (2)C22—H220.94 (2)
C4—C51.416 (2)C32—C421.420 (2)
C4—H140.95 (2)C32—H320.96 (2)
C5—C61.357 (2)C42—C521.420 (2)
C5—C71.509 (2)C52—C621.359 (2)
C6—H160.95 (2)C52—H520.96 (2)
C7—H7A0.98C62—H620.95 (2)
C7—H7B0.98O1W—H1W0.84 (2)
C7—H7C0.98O1W—H2W0.82 (3)
N11—C611.348 (2)O2W—H3W0.90 (4)
N11—C211.351 (2)O3W—H5W0.96 (3)
N11—H110.87 (2)
O1—P1—O2116.23 (6)H7B—C7—H7C109.5
O1—P1—O3110.02 (6)C61—N11—C21120.24 (11)
O2—P1—O3107.74 (5)C61—N11—H11119.3 (14)
O1—P1—C1107.82 (5)C21—N11—H11119.8 (14)
O2—P1—C1111.56 (5)C41—N41—H41A117.3 (14)
O3—P1—C1102.61 (5)C41—N41—H41B117.8 (14)
O4—P2—O5114.25 (6)H41A—N41—H41B125 (2)
O4—P2—O6111.10 (6)N11—C21—C31121.85 (12)
O5—P2—O6112.34 (5)N11—C21—H21115.9 (11)
O4—P2—C1105.84 (6)C31—C21—H21122.3 (11)
O5—P2—C1108.13 (6)C21—C31—C41119.28 (12)
O6—P2—C1104.42 (5)C21—C31—H31119.4 (11)
C1—N1—C2125.05 (11)C41—C31—H31121.2 (11)
C1—N1—H2117.5 (13)N41—C41—C51122.14 (12)
C2—N1—H2116.6 (13)N41—C41—C31120.26 (11)
P1—C1—P2117.93 (6)C51—C41—C31117.59 (11)
P1—C1—N1112.16 (8)C61—C51—C41119.50 (12)
P2—C1—N1106.53 (8)C61—C51—H51119.3 (11)
P1—O3—H3110 (2)C41—C51—H51121.1 (11)
C2—N2—C6122.77 (12)N11—C61—C51121.44 (12)
C2—N2—H4115.5 (14)N11—C61—H61114.5 (12)
C6—N2—H4121.6 (14)C51—C61—H61124.1 (12)
N1—C1—H1105.7 (10)C22—N12—C62120.25 (12)
P1—C1—H1107.7 (10)C22—N12—H12122.6 (14)
P2—C1—H1106.0 (11)C62—N12—H12117.2 (14)
N1—C2—N2117.16 (11)C42—N42—H42A120.5 (13)
N1—C2—C3125.12 (12)C42—N42—H42B118.0 (14)
N2—C2—C3117.72 (11)H42A—N42—H42B121 (2)
C4—C3—C2119.08 (12)N12—C22—C32121.30 (12)
C4—C3—H13122.9 (12)N12—C22—H22114.8 (12)
C2—C3—H13118.0 (12)C32—C22—H22123.9 (13)
C3—C4—C5121.55 (12)C22—C32—C42119.92 (12)
C3—C4—H14118.3 (12)C22—C32—H32118.2 (12)
C5—C4—H14120.2 (12)C42—C32—H32121.8 (12)
C6—C5—C4116.63 (12)N42—C42—C52120.43 (12)
C6—C5—C7122.03 (13)N42—C42—C32122.54 (12)
C4—C5—C7121.33 (13)C52—C42—C32117.03 (11)
N2—C6—C5122.09 (13)C62—C52—C42119.83 (12)
N2—C6—H16115.6 (13)C62—C52—H52120.4 (12)
C5—C6—H16122.3 (13)C42—C52—H52119.7 (12)
C5—C7—H7A109.5N12—C62—C52121.64 (12)
C5—C7—H7B109.5N12—C62—H62117.2 (12)
H7A—C7—H7B109.5C52—C62—H62121.2 (12)
C5—C7—H7C109.5H1W—O1W—H2W114 (3)
H7A—C7—H7C109.5
O1—P1—C1—P282.24 (8)C3—C4—C5—C61.1 (2)
O2—P1—C1—P246.54 (9)C3—C4—C5—C7178.17 (14)
O3—P1—C1—P2161.63 (6)C2—N2—C6—C50.2 (2)
O4—P2—C1—P176.95 (8)C4—C5—C6—N22.2 (2)
O5—P2—C1—P145.89 (8)C7—C5—C6—N2177.08 (14)
O6—P2—C1—P1165.71 (7)C61—N11—C21—C311.0 (2)
O1—P1—C1—N1153.46 (8)N11—C21—C31—C410.5 (2)
O2—P1—C1—N177.77 (9)C21—C31—C41—N41176.90 (12)
O3—P1—C1—N137.33 (9)C21—C31—C41—C511.8 (2)
O4—P2—C1—N150.11 (9)N41—C41—C51—C61175.08 (12)
O5—P2—C1—N1172.95 (7)C31—C41—C51—C613.6 (2)
O6—P2—C1—N167.24 (9)C21—N11—C61—C510.8 (2)
C2—N1—C1—P1102.04 (12)C41—C51—C61—N113.2 (2)
C2—N1—C1—P2127.53 (11)C62—N12—C22—C320.7 (2)
C1—N1—C2—N2168.82 (11)N12—C22—C32—C420.5 (2)
C1—N1—C2—C310.3 (2)C22—C32—C42—N42178.96 (12)
C6—N2—C2—N1175.75 (12)C22—C32—C42—C521.6 (2)
C6—N2—C2—C33.5 (2)N42—C42—C52—C62178.93 (12)
N1—C2—C3—C4174.77 (12)C32—C42—C52—C621.7 (2)
N2—C2—C3—C44.4 (2)C22—N12—C62—C520.7 (2)
C2—C3—C4—C52.2 (2)C42—C52—C62—N120.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.81 (3)1.75 (3)2.556 (2)173 (3)
N1—H2···O40.95 (2)2.50 (2)2.934 (2)108 (2)
N1—H2···O4ii0.95 (2)2.02 (2)2.841 (2)143 (2)
N2—H4···O4ii0.93 (2)1.71 (2)2.599 (2)159 (2)
N11—H11···O50.87 (2)1.75 (2)2.618 (2)172 (2)
N41—H41A···O2iii0.87 (2)2.02 (2)2.885 (2)174 (2)
N41—H41B···O1iv0.87 (2)2.14 (2)2.979 (2)161 (2)
N12—H12···O60.93 (2)1.73 (2)2.658 (2)174 (2)
N42—H42A···O2v0.86 (2)1.95 (2)2.809 (2)176 (2)
N42—H42B···O6vi0.90 (2)2.04 (2)2.892 (2)158 (2)
O1W—H1W···O2Wvii0.84 (2)1.91 (1)2.746 (2)176 (3)
O1W—H2W···O50.82 (3)1.96 (3)2.763 (2)167 (3)
O2W—H3W···O60.90 (4)1.82 (4)2.707 (2)171 (3)
O3W—H5W···O2W0.96 (3)1.86 (3)2.804 (2)170 (2)
C1—H1···O3W0.99 (2)2.57 (2)3.544 (2)168 (2)
C3—H13···O3W0.93 (2)2.60 (2)3.208 (2)123 (2)
C4—H14···O1Wi0.95 (2)2.69 (2)3.611 (2)163 (2)
C6—H16···N11ii0.95 (2)2.66 (2)3.450 (2)141 (2)
C21—H21···O1Wiv0.98 (2)2.36 (2)3.280 (2)154 (2)
C31—H31···O1iv0.93 (2)2.58 (2)3.297 (2)135 (2)
C51—H51···O3iii0.94 (2)2.40 (2)3.319 (2)165 (2)
C61—H61···O20.90 (2)2.53 (2)3.397 (2)162 (2)
C22—H22···O3ii0.94 (2)2.65 (2)3.376 (2)135 (2)
C52—H52···O6vi0.96 (2)2.58 (2)3.304 (2)132 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+3/2, z+1; (iii) x, y+2, z+1/2; (iv) x+1, y, z+3/2; (v) x+3/2, y1/2, z+3/2; (vi) x, y+1, z+1/2; (vii) x+1, y+1, z+1.
(II) triammonium hydrogen [(5-methyl-2-pyridyl)aminomethylene]diphosphonate monohydrate top
Crystal data top
3NH4+·C7H9N2O6P23·H2OF(000) = 744
Mr = 351.24Dx = 1.540 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14567 reflections
a = 17.087 (3) Åθ = 2.9–36.7°
b = 6.216 (2) ŵ = 0.33 mm1
c = 15.159 (3) ÅT = 100 K
β = 109.84 (3)°Plate, colourless
V = 1514.5 (6) Å30.40 × 0.30 × 0.05 mm
Z = 4
Data collection top
KUMA KM-4 CCD κ-geometry
diffractometer with Sapphire CCD camera
6808 independent reflections
Radiation source: fine-focus sealed tube5206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 36.8°, θmin = 2.9°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 2628
Tmin = 0.894, Tmax = 0.984k = 108
21075 measured reflectionsl = 2517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.093All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.1044P]
where P = (Fo2 + 2Fc2)/3
6808 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
3NH4+·C7H9N2O6P23·H2OV = 1514.5 (6) Å3
Mr = 351.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.087 (3) ŵ = 0.33 mm1
b = 6.216 (2) ÅT = 100 K
c = 15.159 (3) Å0.40 × 0.30 × 0.05 mm
β = 109.84 (3)°
Data collection top
KUMA KM-4 CCD κ-geometry
diffractometer with Sapphire CCD camera
6808 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
5206 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.984Rint = 0.028
21075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.093All H-atom parameters refined
S = 1.06Δρmax = 0.66 e Å3
6808 reflectionsΔρmin = 0.33 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.341365 (15)0.26392 (4)0.201243 (16)0.00812 (5)
P20.345195 (14)0.31899 (4)0.407376 (16)0.00828 (5)
O10.42304 (4)0.14209 (12)0.23174 (5)0.01227 (13)
O20.34803 (5)0.50104 (12)0.18320 (5)0.01345 (13)
O30.27697 (4)0.14987 (12)0.11306 (5)0.01245 (13)
H30.2871 (13)0.200 (4)0.0597 (15)0.057 (6)*
O40.43163 (4)0.22149 (12)0.43485 (5)0.01294 (13)
O50.34573 (4)0.56480 (11)0.40984 (5)0.01209 (12)
O60.29515 (5)0.22658 (12)0.46570 (5)0.01318 (13)
N10.20612 (5)0.34165 (13)0.25093 (6)0.01076 (14)
H20.2079 (10)0.463 (3)0.2237 (11)0.022 (4)*
N20.12623 (5)0.02884 (14)0.23686 (6)0.01267 (14)
C10.28757 (6)0.23283 (14)0.28646 (6)0.00875 (14)
H10.2767 (9)0.079 (2)0.2879 (10)0.017 (3)*
C20.13340 (6)0.22849 (15)0.20717 (6)0.01032 (15)
C30.06779 (6)0.32694 (17)0.13447 (7)0.01346 (16)
H130.0772 (9)0.465 (2)0.1146 (10)0.015 (3)*
C40.00483 (6)0.21245 (18)0.09311 (7)0.01478 (17)
H140.0490 (9)0.276 (2)0.0425 (10)0.018 (4)*
C50.01379 (6)0.00307 (17)0.12347 (7)0.01391 (17)
C60.05399 (6)0.07791 (17)0.19519 (7)0.01433 (17)
H160.0510 (9)0.224 (3)0.2205 (10)0.019 (4)*
C70.09195 (7)0.12799 (19)0.08137 (8)0.01776 (19)
H7A0.0819 (11)0.274 (3)0.0922 (11)0.028 (4)*
H7B0.1148 (10)0.112 (3)0.0182 (12)0.028 (4)*
H7C0.1351 (10)0.096 (3)0.1099 (11)0.027 (4)*
O1W0.20391 (5)0.72573 (14)0.09839 (6)0.01815 (15)
H1W0.2482 (12)0.658 (3)0.1238 (13)0.034 (5)*
H2W0.2178 (13)0.859 (4)0.1133 (14)0.050 (6)*
N100.47082 (5)0.79552 (14)0.37136 (6)0.01251 (14)
H1N0.4288 (10)0.707 (3)0.3690 (11)0.020 (4)*
H2N0.4942 (10)0.741 (3)0.3331 (11)0.024 (4)*
H3N0.4521 (12)0.919 (3)0.3513 (13)0.035 (5)*
H4N0.5017 (10)0.803 (3)0.4326 (12)0.028 (4)*
N200.57577 (5)0.30123 (14)0.39476 (6)0.01189 (14)
H5N0.5238 (10)0.275 (2)0.3928 (10)0.019 (4)*
H6N0.6041 (9)0.338 (2)0.4535 (11)0.017 (3)*
H7N0.5745 (10)0.407 (3)0.3560 (11)0.025 (4)*
H8N0.5955 (11)0.187 (3)0.3767 (12)0.031 (4)*
N300.22178 (6)0.16098 (15)0.41713 (6)0.01423 (15)
H9N0.2511 (10)0.044 (3)0.4386 (11)0.029 (4)*
H10N0.1831 (10)0.128 (3)0.3594 (11)0.024 (4)*
H11N0.2574 (10)0.264 (3)0.4123 (11)0.026 (4)*
H12N0.1993 (11)0.203 (3)0.4567 (12)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.00843 (10)0.00862 (10)0.00760 (9)0.00073 (7)0.00307 (8)0.00001 (7)
P20.00825 (10)0.00945 (10)0.00719 (9)0.00029 (7)0.00271 (8)0.00095 (7)
O10.0110 (3)0.0153 (3)0.0114 (3)0.0025 (2)0.0050 (2)0.0006 (2)
O20.0165 (3)0.0089 (3)0.0162 (3)0.0021 (2)0.0073 (3)0.0016 (2)
O30.0142 (3)0.0152 (3)0.0077 (3)0.0046 (2)0.0033 (2)0.0010 (2)
O40.0097 (3)0.0169 (3)0.0111 (3)0.0024 (2)0.0020 (2)0.0010 (2)
O50.0136 (3)0.0099 (3)0.0124 (3)0.0011 (2)0.0040 (2)0.0021 (2)
O60.0159 (3)0.0161 (3)0.0101 (3)0.0035 (2)0.0077 (3)0.0021 (2)
N10.0081 (3)0.0105 (3)0.0126 (3)0.0005 (2)0.0022 (3)0.0006 (3)
N20.0110 (3)0.0130 (4)0.0127 (3)0.0012 (3)0.0024 (3)0.0005 (3)
C10.0086 (4)0.0090 (4)0.0091 (3)0.0001 (3)0.0036 (3)0.0002 (3)
C20.0089 (4)0.0129 (4)0.0092 (3)0.0000 (3)0.0031 (3)0.0009 (3)
C30.0110 (4)0.0151 (4)0.0132 (4)0.0004 (3)0.0026 (3)0.0022 (3)
C40.0102 (4)0.0194 (5)0.0132 (4)0.0004 (3)0.0021 (3)0.0015 (3)
C50.0103 (4)0.0185 (4)0.0127 (4)0.0021 (3)0.0036 (3)0.0021 (3)
C60.0124 (4)0.0145 (4)0.0155 (4)0.0018 (3)0.0040 (3)0.0001 (3)
C70.0126 (4)0.0205 (5)0.0185 (4)0.0040 (4)0.0032 (4)0.0019 (4)
O1W0.0176 (4)0.0149 (4)0.0218 (4)0.0011 (3)0.0065 (3)0.0009 (3)
N100.0121 (4)0.0108 (4)0.0144 (4)0.0015 (3)0.0041 (3)0.0014 (3)
N200.0118 (4)0.0120 (4)0.0120 (3)0.0004 (3)0.0042 (3)0.0021 (3)
N300.0132 (4)0.0131 (4)0.0159 (4)0.0003 (3)0.0044 (3)0.0012 (3)
Geometric parameters (Å, º) top
P1—O11.5155 (8)C5—C61.386 (2)
P1—O21.5105 (9)C5—C71.509 (2)
P1—O31.5817 (9)C6—H161.00 (2)
P1—C11.832 (1)C7—H7A0.93 (2)
P2—O41.5181 (8)C7—H7B0.91 (2)
P2—O51.5284 (9)C7—H7C0.99 (2)
P2—O61.5350 (8)O1W—H1W0.84 (2)
P2—C11.841 (1)O1W—H2W0.87 (2)
N1—C11.475 (2)N10—H1N0.90 (2)
N1—C21.385 (2)N10—H2N0.88 (2)
N2—C21.340 (2)N10—H3N0.84 (2)
N2—C61.354 (2)N10—H4N0.90 (2)
O3—H30.94 (2)N20—H5N0.89 (2)
N1—H20.86 (2)N20—H6N0.89 (2)
C1—H10.98 (2)N20—H7N0.88 (2)
C2—C31.417 (2)N20—H8N0.87 (2)
C3—C41.382 (2)N30—H9N0.88 (2)
C3—H130.94 (2)N30—H10N0.92 (2)
C4—C51.406 (2)N30—H11N0.90 (2)
C4—H140.96 (2)N30—H12N0.86 (2)
O1—P1—O2115.13 (4)C6—C5—C4115.98 (9)
O1—P1—O3109.77 (5)C6—C5—C7121.31 (10)
O2—P1—O3110.97 (4)C4—C5—C7122.71 (9)
O1—P1—C1111.26 (4)N2—C6—C5125.07 (10)
O2—P1—C1108.50 (4)N2—C6—H16115.2 (9)
O3—P1—C1100.20 (4)C5—C6—H16119.7 (9)
O4—P2—O5113.28 (4)C5—C7—H7A111.6 (11)
O4—P2—O6111.90 (5)C5—C7—H7B112.9 (11)
O5—P2—O6111.10 (4)H7A—C7—H7B106.3 (14)
O4—P2—C1107.38 (5)C5—C7—H7C112.9 (10)
O5—P2—C1108.17 (4)H7A—C7—H7C103.8 (13)
O6—P2—C1104.50 (4)H7B—C7—H7C108.6 (14)
C1—N1—C2121.58 (8)H1W—O1W—H2W103.5 (18)
C1—N1—H2113.1 (10)H1N—N10—H2N106.2 (14)
C2—N1—H2112.6 (10)H1N—N10—H3N109.9 (16)
P1—C1—P2116.39 (5)H2N—N10—H3N108.1 (16)
P1—C1—N1109.34 (6)H1N—N10—H4N104.8 (14)
P2—C1—N1110.46 (7)H2N—N10—H4N117.6 (15)
P1—O3—H3107.4 (14)H3N—N10—H4N110.1 (16)
C2—N2—C6118.03 (9)H5N—N20—H6N106.2 (13)
N1—C1—H1107.1 (9)H5N—N20—H7N108.4 (14)
P1—C1—H1105.3 (8)H6N—N20—H7N111.1 (15)
P2—C1—H1107.7 (8)H5N—N20—H8N109.1 (15)
N2—C2—N1118.61 (9)H6N—N20—H8N112.9 (15)
N2—C2—C3121.53 (9)H7N—N20—H8N108.9 (15)
N1—C2—C3119.83 (9)H9N—N30—H10N107.4 (14)
C4—C3—C2118.81 (10)H9N—N30—H11N107.4 (15)
C4—C3—H13123.3 (9)H10N—N30—H11N111.6 (14)
C2—C3—H13117.8 (9)H9N—N30—H12N109.3 (15)
C3—C4—C5120.58 (9)H10N—N30—H12N112.6 (15)
C3—C4—H14119.5 (9)H11N—N30—H12N108.4 (15)
C5—C4—H14119.9 (9)
O1—P1—C1—P257.76 (7)C2—N1—C1—P2131.69 (8)
O2—P1—C1—P269.88 (6)C1—N1—C2—N234.58 (12)
O3—P1—C1—P2173.79 (5)C1—N1—C2—C3147.18 (9)
O4—P2—C1—P148.06 (6)C6—N2—C2—N1178.27 (8)
O5—P2—C1—P174.53 (6)C6—N2—C2—C30.07 (14)
O6—P2—C1—P1167.04 (5)N2—C2—C3—C40.53 (14)
O1—P1—C1—N1176.25 (6)N1—C2—C3—C4178.71 (9)
O2—P1—C1—N156.11 (7)C2—C3—C4—C50.80 (15)
O3—P1—C1—N160.22 (7)C3—C4—C5—C60.60 (15)
O4—P2—C1—N1173.48 (6)C3—C4—C5—C7179.42 (9)
O5—P2—C1—N150.90 (7)C2—N2—C6—C50.14 (15)
O6—P2—C1—N167.53 (7)C4—C5—C6—N20.12 (15)
C2—N1—C1—P198.98 (9)C7—C5—C6—N2179.90 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.94 (2)1.55 (2)2.479 (1)174 (2)
O1W—H1W···O20.84 (2)1.91 (2)2.742 (2)179 (2)
O1W—H2W···O3ii0.87 (2)2.07 (2)2.893 (2)157 (2)
N1—H2···O1W0.86 (2)2.49 (2)3.315 (2)160 (2)
N10—H1N···O50.90 (2)1.94 (2)2.795 (2)158 (2)
N10—H2N···O1iii0.88 (2)2.07 (2)2.927 (2)165 (2)
N10—H3N···O1ii0.84 (2)2.20 (2)2.935 (2)145 (2)
N10—H3N···O4ii0.84 (2)2.36 (2)2.970 (2)130 (2)
N10—H4N···O4iv0.90 (2)1.95 (2)2.845 (2)173 (2)
N20—H5N···O10.89 (2)2.60 (2)3.085 (2)115 (1)
N20—H5N···O40.89 (2)1.92 (2)2.774 (2)160 (2)
N20—H6N···O5iv0.89 (2)2.05 (2)2.927 (2)172 (2)
N20—H7N···O1iii0.88 (2)1.99 (2)2.862 (2)177 (2)
N20—H8N···O2v0.87 (2)1.92 (2)2.760 (2)162 (2)
N30—H9N···O60.88 (2)1.83 (2)2.700 (2)169 (2)
N30—H10N···N20.92 (2)2.03 (2)2.915 (2)160 (2)
N30—H11N···O5vi0.90 (2)1.86 (2)2.750 (2)169 (2)
N30—H12N···O1Wvii0.86 (2)2.13 (2)2.894 (2)149 (2)
C1—H1···N20.98 (2)2.44 (2)2.892 (2)108 (1)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y1, z; (vii) x, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula2C5H7N2+·C7H10N2O6P22·2.4H2O3NH4+·C7H9N2O6P23·H2O
Mr513.60351.24
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/c
Temperature (K)100100
a, b, c (Å)20.385 (3), 17.838 (3), 13.038 (3)17.087 (3), 6.216 (2), 15.159 (3)
β (°) 101.89 (3) 109.84 (3)
V3)4639.3 (15)1514.5 (6)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.250.33
Crystal size (mm)0.30 × 0.25 × 0.220.40 × 0.30 × 0.05
Data collection
DiffractometerKUMA KM-4 CCD κ-geometry
diffractometer with Sapphire CCD camera
KUMA KM-4 CCD κ-geometry
diffractometer with Sapphire CCD camera
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.894, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
38561, 6761, 5813 21075, 6808, 5206
Rint0.0310.028
(sin θ/λ)max1)0.7030.843
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.07 0.032, 0.093, 1.06
No. of reflections67616808
No. of parameters408282
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.87, 0.310.66, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Version 5.1; Sheldrick, 2008) and DIAMOND (Brandenburg, 2008).

Selected geometric parameters (Å, º) for (I) top
P1—O11.5124 (9)P2—O61.5339 (10)
P1—O21.4991 (10)P2—C11.8425 (13)
P1—O31.5860 (10)N1—C11.460 (2)
P1—C11.8403 (12)N1—C21.346 (2)
P2—O41.5169 (10)N2—C21.348 (2)
P2—O51.5199 (10)N2—C61.353 (2)
O1—P1—O2116.23 (6)O4—P2—C1105.84 (6)
O1—P1—O3110.02 (6)O5—P2—C1108.13 (6)
O2—P1—O3107.74 (5)O6—P2—C1104.42 (5)
O1—P1—C1107.82 (5)C1—N1—C2125.05 (11)
O2—P1—C1111.56 (5)C1—N1—H2117.5 (13)
O3—P1—C1102.61 (5)C2—N1—H2116.6 (13)
O4—P2—O5114.25 (6)P1—C1—P2117.93 (6)
O4—P2—O6111.10 (6)P1—C1—N1112.16 (8)
O5—P2—O6112.34 (5)P2—C1—N1106.53 (8)
O1—P1—C1—P282.24 (8)O3—P1—C1—N137.33 (9)
O2—P1—C1—P246.54 (9)O4—P2—C1—N150.11 (9)
O3—P1—C1—P2161.63 (6)O5—P2—C1—N1172.95 (7)
O4—P2—C1—P176.95 (8)O6—P2—C1—N167.24 (9)
O5—P2—C1—P145.89 (8)C2—N1—C1—P1102.04 (12)
O6—P2—C1—P1165.71 (7)C2—N1—C1—P2127.53 (11)
O1—P1—C1—N1153.46 (8)C1—N1—C2—N2168.82 (11)
O2—P1—C1—N177.77 (9)C1—N1—C2—C310.3 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.81 (3)1.75 (3)2.556 (2)173 (3)
N1—H2···O40.95 (2)2.50 (2)2.934 (2)108 (2)
N1—H2···O4ii0.95 (2)2.02 (2)2.841 (2)143 (2)
N2—H4···O4ii0.93 (2)1.71 (2)2.599 (2)159 (2)
N11—H11···O50.87 (2)1.75 (2)2.618 (2)172 (2)
N41—H41A···O2iii0.87 (2)2.02 (2)2.885 (2)174 (2)
N41—H41B···O1iv0.87 (2)2.14 (2)2.979 (2)161 (2)
N12—H12···O60.93 (2)1.73 (2)2.658 (2)174 (2)
N42—H42A···O2v0.86 (2)1.95 (2)2.809 (2)176 (2)
N42—H42B···O6vi0.90 (2)2.04 (2)2.892 (2)158 (2)
O1W—H1W···O2Wvii0.84 (2)1.91 (1)2.746 (2)176 (3)
O1W—H2W···O50.82 (3)1.96 (3)2.763 (2)167 (3)
O2W—H3W···O60.90 (4)1.82 (4)2.707 (2)171 (3)
O3W—H5W···O2W0.96 (3)1.86 (3)2.804 (2)170 (2)
C1—H1···O3W0.99 (2)2.57 (2)3.544 (2)168 (2)
C3—H13···O3W0.93 (2)2.60 (2)3.208 (2)123 (2)
C4—H14···O1Wi0.95 (2)2.69 (2)3.611 (2)163 (2)
C6—H16···N11ii0.95 (2)2.66 (2)3.450 (2)141 (2)
C21—H21···O1Wiv0.98 (2)2.36 (2)3.280 (2)154 (2)
C31—H31···O1iv0.93 (2)2.58 (2)3.297 (2)135 (2)
C51—H51···O3iii0.94 (2)2.40 (2)3.319 (2)165 (2)
C61—H61···O20.90 (2)2.53 (2)3.397 (2)162 (2)
C22—H22···O3ii0.94 (2)2.65 (2)3.376 (2)135 (2)
C52—H52···O6vi0.96 (2)2.58 (2)3.304 (2)132 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+3/2, z+1; (iii) x, y+2, z+1/2; (iv) x+1, y, z+3/2; (v) x+3/2, y1/2, z+3/2; (vi) x, y+1, z+1/2; (vii) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
P1—O11.5155 (8)P2—O61.5350 (8)
P1—O21.5105 (9)P2—C11.841 (1)
P1—O31.5817 (9)N1—C11.475 (2)
P1—C11.832 (1)N1—C21.385 (2)
P2—O41.5181 (8)N2—C21.340 (2)
P2—O51.5284 (9)N2—C61.354 (2)
O1—P1—O2115.13 (4)O4—P2—C1107.38 (5)
O1—P1—O3109.77 (5)O5—P2—C1108.17 (4)
O2—P1—O3110.97 (4)O6—P2—C1104.50 (4)
O1—P1—C1111.26 (4)C1—N1—C2121.58 (8)
O2—P1—C1108.50 (4)C1—N1—H2113.1 (10)
O3—P1—C1100.20 (4)C2—N1—H2112.6 (10)
O4—P2—O5113.28 (4)P1—C1—P2116.39 (5)
O4—P2—O6111.90 (5)P1—C1—N1109.34 (6)
O5—P2—O6111.10 (4)P2—C1—N1110.46 (7)
O1—P1—C1—P257.76 (7)O3—P1—C1—N160.22 (7)
O2—P1—C1—P269.88 (6)O4—P2—C1—N1173.48 (6)
O3—P1—C1—P2173.79 (5)O5—P2—C1—N150.90 (7)
O4—P2—C1—P148.06 (6)O6—P2—C1—N167.53 (7)
O5—P2—C1—P174.53 (6)C2—N1—C1—P198.98 (9)
O6—P2—C1—P1167.04 (5)C2—N1—C1—P2131.69 (8)
O1—P1—C1—N1176.25 (6)C1—N1—C2—N234.58 (12)
O2—P1—C1—N156.11 (7)C1—N1—C2—C3147.18 (9)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.94 (2)1.55 (2)2.479 (1)174 (2)
O1W—H1W···O20.84 (2)1.91 (2)2.742 (2)179 (2)
O1W—H2W···O3ii0.87 (2)2.07 (2)2.893 (2)157 (2)
N1—H2···O1W0.86 (2)2.49 (2)3.315 (2)160 (2)
N10—H1N···O50.90 (2)1.94 (2)2.795 (2)158 (2)
N10—H2N···O1iii0.88 (2)2.07 (2)2.927 (2)165 (2)
N10—H3N···O1ii0.84 (2)2.20 (2)2.935 (2)145 (2)
N10—H3N···O4ii0.84 (2)2.36 (2)2.970 (2)130 (2)
N10—H4N···O4iv0.90 (2)1.95 (2)2.845 (2)173 (2)
N20—H5N···O10.89 (2)2.60 (2)3.085 (2)115 (1)
N20—H5N···O40.89 (2)1.92 (2)2.774 (2)160 (2)
N20—H6N···O5iv0.89 (2)2.05 (2)2.927 (2)172 (2)
N20—H7N···O1iii0.88 (2)1.99 (2)2.862 (2)177 (2)
N20—H8N···O2v0.87 (2)1.92 (2)2.760 (2)162 (2)
N30—H9N···O60.88 (2)1.83 (2)2.700 (2)169 (2)
N30—H10N···N20.92 (2)2.03 (2)2.915 (2)160 (2)
N30—H11N···O5vi0.90 (2)1.86 (2)2.750 (2)169 (2)
N30—H12N···O1Wvii0.86 (2)2.13 (2)2.894 (2)149 (2)
C1—H1···N20.98 (2)2.44 (2)2.892 (2)108 (1)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y1, z; (vii) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds