Download citation
Download citation
link to html
In the structures of 3,3,3',3'-tetra­ethyl-1,1'-(propane-1,3-diyl­dicarbon­yl)bis­(thio­urea), C15H28N4O2S2, (I), 3,3,3',3'-tetra­ethyl-1,1'-(butane-1,4-diyldicarbon­yl)bis­(thio­urea), C16H30N4O2S2, (II), and 3,3,3',3'-tetra­butyl-1,1'-(hexane-1,6-diyl­di­car­bon­yl)bis­(thio­urea), C26H50N4O2S2, (III), compound (I) displays resonance-assisted hydrogen bonding, (II) exhibits an inversion centre, and both (II) and (III) are characterized by inter­molecular hydrogen bonds between the carbonyl O atoms and thio­amide H atoms, leading to chains of hydrogen-bonded mol­ecules throughout the structures. The accurate structural data for these molecules is expected to assist in molecular modelling and other studies currently in progress.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108002783/tr3036sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108002783/tr3036Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108002783/tr3036IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108002783/tr3036IIIsup4.hkl
Contains datablock III

CCDC references: 682831; 682832; 682833

Comment top

N,N-dialkyl-N'-aryl(aroyl)thioureas coordinate to a diverse array of transition metal ions, usually in an S,O-bidentate manner, although several examples of coordination through the S atom and an S,N-donor-atom set have been reported (Koch et al., 2001). In view of the interesting practical applications of metal complexes of this class of ligands, a considerable number of both ligands and metal complexes have been studied, and several have been structurally characterized (Sacht et al., 2000; Hernandez et al., 2005). Potentially `bipodal' derivatives of N,N-dialkyl-N'-aroylthioureas in which two potentially S,O-chelating acylthiourea motifs are linked through a `spacer' R (see scheme) were reported as early as 1965 (Goerdeler & Stadelbauer, 1965). More recently, work on bipodal derivatives based on para-substituted phenyl ring spacers [as in 3,3,3',3'-tetraethyl-1,1'-terephthaloylbis(thiourea) or 3,3,3',3'-tetra-n-butyl-1,1'-terephthaloylbis(thiourea)] has shown that with d8 metal ions, such ligands form almost exclusively 3:3 metallamacrocycles of NiII (Köhler et al., 1986), PtII (Koch et al., 1999) and PdII (Koch et al., 2001). In this context, we showed that the corresponding meta-substituted phenyl ligands [3,3,3',3'-tetra-n-ethyl-1,1'-isophthaloylbis(thiourea)] undergo `self-assembly' with d8 metal ions to form exclusively the corresponding 2:2 metallamacrocycles, largely as a result of the strong tendency of these ligands to form cis-coordinated metal complexes (Koch et al., 1999). The pyridine adducts of 2:2 and 3:3 nickel(II) complexes of 3,3,3',3'-tetraethyl-1,1'-terephthaloylbis(thiourea) show some interesting host–guest chemistry in the solid state (Hallale et al., 2005). Recently, the corresponding diiodoplatinum(IV) adducts were prepared and characterized after electrochemically induced oxidative addition of I2 to the corresponding 2:2 and 3:3 PtII complexes of 3,3,3',3'-tetraethyl-1,1'-isophthaloylbis(thiourea) and 3,3,3',3'-tetraethyl-1,1'-terephthaloylbis(thiourea) (Westra et al., 2005). A similar bipodal ligand with a 2,6-substituted pyridine ring as spacer and its AgI coordination polymer have been described (Schröder et al., 2000). In all these bipodal ligands the spacer moiety was a planar, 'rigid' phenyl or pyridyl ring.

As part of our continuing interest in such bipodal ligands, we have prepared a series of N,N-dialkyl-N'-(acyl)thioureas with flexible C3, C4 and C6 spacers and report here the crystal and molecular structures of 3,3,3',3'-tetraethyl-1,1'-glutaroylbis(thiourea) (I), 3,3,3',3'-tetraethyl-1,1'-adipoylbis(thiourea) (II) and 3,3,3',3'-tetrabutyl-1,1'-suberoylbis(thiourea) (III). König et al.(1987) reported the synthesis of a variety of 3,3,3',3'-tetraalkyl-1,1'-alkanedioylbis(thioureas) and the NiII, CuII, PdII and PtII metal complexes of 3,3,3',3'-tetraethyl-1,1'-adipoylbis(thiourea), although no structural characterization was carried out.

In view of the nomenclature and atom-numbering schemes of compounds of this type reported in the literature historically being inconsistent, we here follow an atom-numbering scheme for molecules (I)–(III) to correspond to the bipodal molecules with rigid `spacers' as reported by Westra et al. (2005), as this method offers the most clarity.

Compound (I) crystallizes in the space group P21/n and the molecule adopts a conformation such that the two acylthiourea motifs are at an approximate right angle to one another, owing to the flexible nature of the spacer group (Fig. 1). The donor O and S atoms in each acylthiourea unit assume opposing orientations indicated by the O—C(O)—N—C(O)—C(S) and S—C(S)—N—C(S)—C(O) torsion angles (Table 1). Table 1 shows that the N—C bond lengths are all shorter than the average C—N single bond length of 1.472 (5) Å (Allen et al., 1987), but follow the expected order in which the thioamide N1—C12 bond length is relatively the longest, followed by the amide N1—C11 bond; the second thioamide N2—C12 bond is the shortest. This trend is consistent with that generally observed for a variety of related simple N,N-dialkyl-N'-benzoylthioureas (Koch et al., 1995; Dillen et al., 2006).

In the crystal structure, molecules of (I) are linked by two intermolecular hydrogen bonds (Table 2) between the S atom of one molecule and the thioamide H atom of a neighbouring molecule (Fig. 2). The acylthiourea unit consists of a donor–acceptor pair connected by a `resonant π system', evident from the shortening of the amide and thioamide C—N bonds. This leads to one molecule being hydrogen bonded to two others, as shown in Fig. 2, and this type of hydrogen-bond formation represents an example of π-bond cooperativity or resonance-assisted hydrogen bonding (Steiner, 2002). This, to the best of our knowledge, is the first time that hydrogen bonding of this type has been reported for these compounds. Similar observations have been made for the closely related N,N-diethyl-N'-benzoylselenourea (Bruce et al., 2007).

The relative orientations of the acylthiourea units are exchanged, such that, if a plane is defined by C11/C1–C3/C31 along the length of the spacer group, the O atom of one acylthiourea unit is above the plane and the corresponding S atom below, while in the second acylthiourea unit, the O atom is below the plane while the corresponding S atom lies above the plane.

Compound (II) crystallizes in the space group P1, exhibiting an inversion centre located midway between atoms C2 and C2', resulting in only half the molecule appearing in the asymmetric unit. The remainder of the molecule can be generated with the symmetry operator (-x, -y, 1 - z) and the whole molecule is shown in Fig. 3. The C—N bond lengths of (II) are similar to those in (I) in that the C—N bond lengths in the acylthiourea unit are all shorter than the average C—N single bond length of 1.472 (5) Å and are consistent with the trend described previously for (I). It is noteworthy that the molecule of (II) with the C4 flexible spacer assumes an approximately linear conformation in the solid state, in contrast to that of (I) in which the molecule with the C3 spacer is significantly `bent'. Moreover, the relative anti orientations of the S and O donor atoms in (I) are not observed in (II), for which the torsion angles O1—C11—N1—C12 [7.1 (4)°] and S1—C12—N1—C11 [45.5 (3)°] are substantially different from the corresponding angles [12.6 (4)° and 125.7 (2)°] in (I). This is most likely due to the involvement of the O-atom donor in the intramolecular hydrogen bond exhibited by (II) (see below).

The intermolecular hydrogen-bonding pattern observed for (II) is quite different to that seen in (I). In (II) the thioamide H atoms (H1 and H1') hydrogen bond to the carbonyl O atoms (O1 and O1') of a neighbouring molecule (Table 4), as shown in Fig. 4, thus precluding the formation of resonance-assisted hydrogen bonding as observed in the crystal structure of (I).

Despite crystallizing in the same space group as (II), the molecule (III) with the C6 spacer does not exhibit an inversion centre, the whole molecule being contained in the asymmetric unit and shown in Fig. 5. The overall conformation that molecule (III) adopts differs from both (I) and (II); while the C6 spacer of the molecule remains reasonably linear, the molecule assumes an overall U shape with the dibutyl groups of the terminal thioamide units extending above and below this conformation (Fig. 5). As for the previous compounds, the relative orientations of the S and O donor atoms of the acylthiourea groups on either side of the C6 spacer differ in that the carbonyl O atom of one acylthiourea residue is situated above the C11/C1–C6/C61 plane, while the other carbonyl O atom is below the plane. In each case, the S atom of the thiocarbonyl group has an anti orientation relative to that of the carbonyl O atom, as indicated by the torsion angles in Table 5. This is reminiscent of (I) and different from (II), which interestingly exhibits similar hydrogen bonding.

Similarly to (I), the C—N bond lengths in each chelate ring are not identical to the corresponding C—N bonds in the second ring; however, they are all shorter than the average single C—N bond length of 1.472 (5) Å, and the trend described for (I) is maintained here. Intermolecular hydrogen bonding (Table 6) between the carbonyl O atom of one molecule and thioamide H atom of a neighbouring molecule is evident, and the molecular arrangement in this compound is similar to that in (II), in that each molecule has two hydrogen bonds to each neighbour on either side of the central molecule, as shown in Fig. 6.

Related literature top

For related literature, see: Allen et al. (1987); Bruce et al. (2007); Dillen et al. (2006); Goerdeler & Stadelbauer (1965); Hallale et al. (2005); Hernandez et al. (2005); Köhler et al. (1986); König et al. (1987); Koch et al. (1995, 1999, 2001); Sacht et al. (2000); Schröder et al. (2000); Steiner (2002); Westra et al. (2005).

Experimental top

All reactions were carried out under an inert N2 atmosphere. All reagents and solvents used were commercially available and used without further purification, except for the acetone which was distilled prior to use. One molar equivalent of the appropriate acid dichloride in acetone was added dropwise to two molar equivalents of KSCN in acetone. The mixture was heated to reflux for 45 min, after which it was cooled to room temperature and the dropwise addition of two molar equivalents of the appropriate secondary amine in acetone followed. The mixture was heated to reflux for a further 45 min and cooled to room temperature followed by the addition of water. Slow evaporation of the acetone afforded a crystalline product and recrystallization from acetone/water solutions yielded crystals suitable for analysis.

Analysis for (I) (yield 53%, m.p. 392.6–393.4 K). 1H NMR (400 MHz, CDCl3, p.p.m.): 9.58 (s, 2H, –NH–), 3.96 [br s, 4H, –N(CH2CH3)2], 3.61 [br s, 4H, –N(CH2CH3)2], 2.39 (t, 4H, –CH2—CH2—CH2–), 2.19 (m, 2H, –CH2—CH2—CH2–), 1.30 [m, 12H, –N(CH2CH3)2]. 13C NMR (100 MHz, CDCl3, p.p.m.): 179.4 (CS), 170.6 (CO), 47.6 [–N(CH2CH3)2], 47.3 [–N(CH2CH3)2], 34.7 [CH2—CH2—CH2], 24.0 (–CH2—CH2—CH2–), 13.4 [–N(CH2CH3)2], 11,2 [–N(CH2CH3)2].

Compound (II) (yield 58%, m.p. 394.7–395.5 K). 1H NMR (400 MHz, CDCl3, p.p.m.): 7.96 (s, 2H, –NH–), 3.94 [br s, 4H, –N(CH2CH3)2], 3.53 [br s, 4H, –N(CH2CH3)2], 2.40 [t, 4H, –CH2—(CH2)2—CH2–], 1.74 [q, 4H, –CH2—(CH2)2—CH2–], 1.29 [s, 12H, –N(CH2CH3)2]. 13C NMR (100 MHz, CDCl3, p.p.m.): 178.9 (CS), 169.8 (CO), 47.6 [N(CH2CH3)2], 36.3 [CH2—(CH2)2—CH2], 24.2 [CH2—(CH2)2—CH2], 13.2 [N(CH2CH3)2], 11.6 [N(CH2CH3)2].

Compound (III) (yield 76.1%, m.p. 353.2–355.2 K. 1H NMR (400 MHz, CDCl3, p.p.m.): 8.82 (s, 2H, –NH–), 3.88 [br t, 4H, –N(CH2CH2CH2CH3)2], 3.44 [br t, 4H, –N(CH2CH2CH2CH3)2], 2.34 [t, 4H, –CH2—(CH2)4—CH2–],1.67 [m, 12H, –CH2—(CH2)4—CH2– and –N(CH2CH2CH2CH3)2], 1.36 [m, 12H, –CH2—(CH2)4—CH2– and –N(CH2CH2CH2CH3)2], 0.92 [m, 12H, –N(CH2CH2CH2CH3)2]. 13C NMR (100 MHz, CDCl3, p.p.m.): 179.5 (CS), 169.9 (CO), 53.1 [–N(CH2CH2CH2CH3)2], 52.9 [–N(CH2CH2CH2CH3)2], 36.1 [–CH2—(CH2)4—CH2–], 30.0 [–N(CH2CH2CH2CH3)2], 28.4 [–N(CH2CH2CH2CH3)2], 28.0 [–CH2—(CH2)4—CH2–), 24.8 [–CH2—(CH2)4—CH2–), 20.0 [–N(CH2CH2CH2CH3)2], 13.8 [–N(CH2CH2CH2CH3)2],13.7 [–N(CH2CH2CH2CH3)2].

Refinement top

H atoms involved in hydrogen bonding were located from a difference electron-density map and all other H atoms were placed in geometrically calculated positions. N-bound H atoms in (I) and (III) were refined freely (refined distances are given in Tables 2, 4 and 6). All other H atoms were treated as riding [C—H = 0.99 Å (for –CH2), 0.98 Å (for –CH3), N—H = 0.88 Å, and Uiso (H) = 1.2Ueq (C,N) for –CH2 and amine or Uiso(H) = 1.5Ueq(C) for –CH3]. Please check changes to text.

Computing details top

For all compounds, data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Version 2.0; Barbour, 2001); software used to prepare material for publication: X-SEED (Version 2.0; Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atomic numbering shown. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the structure of (I), showing the intermolecular N—H···S hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 50% probability level. H atoms, except H1 and H3, have been omitted for clarity. [Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.]
[Figure 3] Fig. 3. The molecular structure of (II), with the atomic numbering shown. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, -y, -z + 1.]
[Figure 4] Fig. 4. The structure of (II), showing intermolecular N—H···O hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 50% probability level. H atoms, except H1, have been omitted for clarity. [Symmetry codes: (i) -x, -y, -z + 1; (ii) x + 1, y, z; (iii) -x + 1, -y, -z + 1; (iv) x - 1, y, z; (v) -x - 1, -y, 1 - z.]
[Figure 5] Fig. 5. The molecular structure of (III), with the atomic numbering shown. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 6] Fig. 6. The structure of (III), showing intermolecular N—H···O hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 50% probability level. H atoms, except H1, have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y + 1, -z.]
(I) 3,3,3',3'-Tetraethyl-1,1'-(propane-1,3-diyldicarbonyl)bis(thiourea) top
Crystal data top
C15H28N4O2S2F(000) = 776
Mr = 360.53Dx = 1.277 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1566 reflections
a = 7.1475 (18) Åθ = 2.3–23.0°
b = 27.999 (7) ŵ = 0.30 mm1
c = 9.387 (2) ÅT = 100 K
β = 93.026 (5)°Block, colourless
V = 1875.9 (8) Å30.22 × 0.21 × 0.18 mm
Z = 4
Data collection top
Bruker APEX I CCD area-detector
diffractometer
3685 independent reflections
Radiation source: fine-focus sealed tube2845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
\w scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.937, Tmax = 0.948k = 3432
10628 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[\s^2^(Fo^2^) + (0.0666P)^2^]
where P = (Fo^2^ + 2Fc^2^)/3
3685 reflections(Δ/σ)max = 0.011
220 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C15H28N4O2S2V = 1875.9 (8) Å3
Mr = 360.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1475 (18) ŵ = 0.30 mm1
b = 27.999 (7) ÅT = 100 K
c = 9.387 (2) Å0.22 × 0.21 × 0.18 mm
β = 93.026 (5)°
Data collection top
Bruker APEX I CCD area-detector
diffractometer
3685 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2845 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.948Rint = 0.050
10628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.66 e Å3
3685 reflectionsΔρmin = 0.47 e Å3
220 parameters
Special details top

Experimental. Proton chemical shifts are quoted relative to the residual CHCl3 solvent resonance at 7.26 p.p.m.., and 13 C chemical shifts relative to the CDCl3 triplet at 77.0 p.p.m.. (centre peak). J values are given in Hz.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29349 (9)0.86228 (3)0.69586 (7)0.0248 (2)
O10.6668 (2)0.97690 (6)0.60062 (17)0.0180 (4)
N10.5780 (3)0.89967 (8)0.5646 (2)0.0174 (5)
C10.6717 (3)0.94653 (9)0.3616 (3)0.0173 (5)
H1A0.57850.96850.31510.021*
H1B0.65440.91460.31760.021*
H10.545 (4)0.8809 (10)0.501 (3)0.023 (8)*
S21.48544 (8)0.82024 (2)0.29718 (7)0.01825 (18)
O20.9727 (2)0.88464 (6)0.17027 (18)0.0219 (4)
N20.6099 (3)0.89814 (7)0.8145 (2)0.0148 (4)
C20.8686 (3)0.96459 (9)0.3373 (3)0.0185 (6)
H2A0.87940.97080.23420.022*
H2B0.88830.99530.38820.022*
N31.1458 (3)0.85024 (8)0.3537 (2)0.0177 (5)
C31.0215 (3)0.92982 (9)0.3877 (3)0.0188 (6)
H3A1.14300.94690.39370.023*
H3B0.99580.91870.48480.023*
H31.195 (4)0.8563 (9)0.426 (3)0.012 (7)*
N41.1578 (3)0.78830 (7)0.1870 (2)0.0174 (5)
C110.6392 (3)0.94339 (9)0.5200 (3)0.0149 (5)
C120.5056 (3)0.88878 (9)0.6977 (3)0.0171 (6)
C130.5350 (3)0.88874 (9)0.9555 (3)0.0185 (6)
H13A0.64090.88551.02720.022*
H13B0.46640.85800.95180.022*
C140.4047 (4)0.92781 (10)1.0027 (3)0.0270 (6)
H14A0.30220.93210.93020.041*
H14B0.47460.95781.01470.041*
H14C0.35310.91881.09350.041*
C150.8116 (3)0.91021 (9)0.8186 (3)0.0185 (6)
H15A0.85270.91240.71970.022*
H15B0.88370.88420.86730.022*
C160.8551 (4)0.95695 (9)0.8952 (3)0.0234 (6)
H16A0.81140.95530.99230.035*
H16B0.79150.98320.84340.035*
H16C0.99070.96250.89940.035*
C311.0378 (3)0.88675 (9)0.2915 (3)0.0161 (5)
C321.2506 (3)0.81819 (9)0.2746 (3)0.0163 (5)
C330.9561 (3)0.77708 (10)0.1956 (3)0.0226 (6)
H33A0.90150.79910.26470.027*
H33B0.94370.74420.23260.027*
C340.8459 (4)0.78091 (11)0.0562 (3)0.0307 (7)
H34A0.88180.75500.00690.046*
H34B0.87180.81170.01180.046*
H34C0.71190.77860.07240.046*
C351.2618 (4)0.75827 (9)0.0876 (3)0.0222 (6)
H35A1.37250.77620.05770.027*
H35B1.18030.75190.00120.027*
C361.3261 (4)0.71136 (10)0.1520 (3)0.0313 (7)
H36A1.21870.69450.18890.047*
H36B1.41960.71730.23020.047*
H36C1.38200.69180.07890.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0203 (4)0.0358 (4)0.0179 (4)0.0092 (3)0.0014 (3)0.0001 (3)
O10.0228 (10)0.0151 (9)0.0156 (9)0.0017 (7)0.0022 (7)0.0028 (7)
N10.0210 (12)0.0170 (11)0.0140 (11)0.0024 (9)0.0014 (9)0.0029 (9)
C10.0199 (13)0.0177 (13)0.0140 (13)0.0044 (10)0.0025 (10)0.0002 (10)
S20.0152 (3)0.0186 (4)0.0208 (4)0.0010 (2)0.0010 (3)0.0031 (3)
O20.0267 (10)0.0221 (10)0.0163 (10)0.0055 (8)0.0046 (8)0.0047 (8)
N20.0149 (10)0.0159 (11)0.0135 (10)0.0003 (8)0.0004 (8)0.0006 (8)
C20.0261 (14)0.0139 (13)0.0156 (13)0.0024 (11)0.0028 (11)0.0022 (10)
N30.0183 (12)0.0223 (13)0.0122 (12)0.0004 (9)0.0035 (10)0.0040 (9)
C30.0175 (13)0.0205 (14)0.0188 (13)0.0004 (11)0.0031 (10)0.0057 (11)
N40.0142 (11)0.0183 (11)0.0198 (12)0.0001 (9)0.0008 (9)0.0019 (9)
C110.0116 (12)0.0164 (13)0.0163 (13)0.0032 (10)0.0014 (10)0.0014 (10)
C120.0175 (13)0.0156 (13)0.0183 (13)0.0034 (10)0.0011 (10)0.0005 (10)
C130.0195 (14)0.0213 (14)0.0146 (13)0.0024 (11)0.0001 (10)0.0020 (11)
C140.0269 (15)0.0311 (16)0.0236 (15)0.0049 (12)0.0064 (12)0.0009 (12)
C150.0145 (13)0.0215 (14)0.0192 (14)0.0005 (10)0.0015 (10)0.0015 (11)
C160.0227 (14)0.0265 (15)0.0204 (14)0.0087 (11)0.0044 (11)0.0023 (11)
C310.0135 (12)0.0175 (13)0.0176 (13)0.0009 (10)0.0019 (10)0.0007 (10)
C320.0211 (13)0.0152 (13)0.0125 (12)0.0019 (10)0.0010 (10)0.0048 (10)
C330.0135 (13)0.0251 (15)0.0292 (15)0.0037 (11)0.0015 (11)0.0069 (12)
C340.0203 (15)0.0368 (18)0.0348 (17)0.0002 (12)0.0013 (12)0.0120 (14)
C350.0175 (14)0.0248 (15)0.0241 (15)0.0002 (11)0.0005 (11)0.0100 (12)
C360.0297 (16)0.0215 (16)0.0431 (19)0.0007 (12)0.0059 (13)0.0061 (13)
Geometric parameters (Å, º) top
S1—C121.687 (3)N4—C351.485 (3)
O1—C111.215 (3)C13—C141.518 (3)
N1—C111.373 (3)C13—H13A0.9900
N1—C121.411 (3)C13—H13B0.9900
N1—H10.82 (3)C14—H14A0.9800
C1—C111.520 (3)C14—H14B0.9800
C1—C21.524 (3)C14—H14C0.9800
C1—H1A0.9900C15—C161.518 (4)
C1—H1B0.9900C15—H15A0.9900
S2—C321.682 (3)C15—H15B0.9900
O2—C311.208 (3)C16—H16A0.9800
N2—C121.319 (3)C16—H16B0.9800
N2—C131.477 (3)C16—H16C0.9800
N2—C151.480 (3)C33—C341.495 (4)
C2—C31.520 (3)C33—H33A0.9900
C2—H2A0.9900C33—H33B0.9900
C2—H2B0.9900C34—H34A0.9800
N3—C311.390 (3)C34—H34B0.9800
N3—C321.406 (3)C34—H34C0.9800
N3—H30.77 (3)C35—C361.508 (4)
C3—C311.515 (3)C35—H35A0.9900
C3—H3A0.9900C35—H35B0.9900
C3—H3B0.9900C36—H36A0.9800
N4—C321.326 (3)C36—H36B0.9800
N4—C331.482 (3)C36—H36C0.9800
C11—N1—C12126.9 (2)C13—C14—H14C109.5
C11—N1—H1116 (2)H14A—C14—H14C109.5
C12—N1—H1114 (2)H14B—C14—H14C109.5
C11—C1—C2110.83 (19)N2—C15—C16112.6 (2)
C11—C1—H1A109.5N2—C15—H15A109.1
C2—C1—H1A109.5C16—C15—H15A109.1
C11—C1—H1B109.5N2—C15—H15B109.1
C2—C1—H1B109.5C16—C15—H15B109.1
H1A—C1—H1B108.1H15A—C15—H15B107.8
C12—N2—C13119.6 (2)C15—C16—H16A109.5
C12—N2—C15125.0 (2)C15—C16—H16B109.5
C13—N2—C15114.59 (19)H16A—C16—H16B109.5
C3—C2—C1113.3 (2)C15—C16—H16C109.5
C3—C2—H2A108.9H16A—C16—H16C109.5
C1—C2—H2A108.9H16B—C16—H16C109.5
C3—C2—H2B108.9O2—C31—N3122.5 (2)
C1—C2—H2B108.9O2—C31—C3124.2 (2)
H2A—C2—H2B107.7N3—C31—C3113.2 (2)
C31—N3—C32123.1 (2)N4—C32—N3117.9 (2)
C31—N3—H3115 (2)N4—C32—S2124.26 (19)
C32—N3—H3112 (2)N3—C32—S2117.87 (19)
C31—C3—C2113.7 (2)N4—C33—C34114.0 (2)
C31—C3—H3A108.8N4—C33—H33A108.8
C2—C3—H3A108.8C34—C33—H33A108.8
C31—C3—H3B108.8N4—C33—H33B108.8
C2—C3—H3B108.8C34—C33—H33B108.8
H3A—C3—H3B107.7H33A—C33—H33B107.7
C32—N4—C33123.8 (2)C33—C34—H34A109.5
C32—N4—C35119.7 (2)C33—C34—H34B109.5
C33—N4—C35115.80 (19)H34A—C34—H34B109.5
O1—C11—N1122.9 (2)C33—C34—H34C109.5
O1—C11—C1122.5 (2)H34A—C34—H34C109.5
N1—C11—C1114.7 (2)H34B—C34—H34C109.5
N2—C12—N1118.4 (2)N4—C35—C36113.2 (2)
N2—C12—S1124.31 (19)N4—C35—H35A108.9
N1—C12—S1117.21 (18)C36—C35—H35A108.9
N2—C13—C14112.9 (2)N4—C35—H35B108.9
N2—C13—H13A109.0C36—C35—H35B108.9
C14—C13—H13A109.0H35A—C35—H35B107.8
N2—C13—H13B109.0C35—C36—H36A109.5
C14—C13—H13B109.0C35—C36—H36B109.5
H13A—C13—H13B107.8H36A—C36—H36B109.5
C13—C14—H14A109.5C35—C36—H36C109.5
C13—C14—H14B109.5H36A—C36—H36C109.5
H14A—C14—H14B109.5H36B—C36—H36C109.5
C11—C1—C2—C366.8 (3)C13—N2—C15—C1664.9 (3)
C1—C2—C3—C3173.9 (3)C32—N3—C31—O226.3 (4)
C12—N1—C11—O112.6 (4)C32—N3—C31—C3150.2 (2)
C12—N1—C11—C1167.9 (2)C2—C3—C31—O217.5 (4)
C2—C1—C11—O153.0 (3)C2—C3—C31—N3166.1 (2)
C2—C1—C11—N1126.5 (2)C33—N4—C32—N317.6 (3)
C13—N2—C12—N1177.8 (2)C35—N4—C32—N3172.0 (2)
C15—N2—C12—N112.9 (4)C33—N4—C32—S2162.39 (19)
C13—N2—C12—S15.0 (3)C35—N4—C32—S28.0 (3)
C15—N2—C12—S1164.31 (19)C31—N3—C32—N466.1 (3)
C11—N1—C12—N256.9 (3)C31—N3—C32—S2113.9 (2)
C11—N1—C12—S1125.7 (2)C32—N4—C33—C34130.6 (3)
C12—N2—C13—C1480.3 (3)C35—N4—C33—C3458.7 (3)
C15—N2—C13—C14109.4 (2)C32—N4—C35—C3688.1 (3)
C12—N2—C15—C16125.3 (3)C33—N4—C35—C3683.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.82 (3)2.58 (3)3.393 (2)173 (3)
N3—H3···S1ii0.77 (3)2.60 (3)3.344 (2)165 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
(II) 3,3,3',3'-tetraethyl-1,1'-(butane-1,4-diyldicarbonyl)bis(thiourea) top
Crystal data top
C16H30N4O2S2Z = 1
Mr = 374.56F(000) = 202
Triclinic, P1Dx = 1.304 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8287 (9) ÅCell parameters from 1762 reflections
b = 6.3977 (12) Åθ = 2.6–27.1°
c = 15.661 (3) ŵ = 0.30 mm1
α = 85.532 (3)°T = 100 K
β = 86.985 (3)°Needle, colourless
γ = 81.894 (3)°0.47 × 0.21 × 0.05 mm
V = 477.09 (16) Å3
Data collection top
Bruker APEX I CCD area-detector
diffractometer
1847 independent reflections
Radiation source: fine-focus sealed tube1611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
\w scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 55
Tmin = 0.874, Tmax = 0.985k = 77
4902 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.16 w = 1/[\s^2^(Fo^2^) + (0.0857P)^2^]
where P = (Fo^2^ + 2Fc^2^)/3
1847 reflections(Δ/σ)max = 0.010
111 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H30N4O2S2γ = 81.894 (3)°
Mr = 374.56V = 477.09 (16) Å3
Triclinic, P1Z = 1
a = 4.8287 (9) ÅMo Kα radiation
b = 6.3977 (12) ŵ = 0.30 mm1
c = 15.661 (3) ÅT = 100 K
α = 85.532 (3)°0.47 × 0.21 × 0.05 mm
β = 86.985 (3)°
Data collection top
Bruker APEX I CCD area-detector
diffractometer
1847 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1611 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.985Rint = 0.059
4902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.16Δρmax = 0.90 e Å3
1847 reflectionsΔρmin = 0.30 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11309 (15)0.28285 (11)0.17784 (4)0.0182 (3)
O10.1802 (4)0.3544 (3)0.37327 (12)0.0195 (5)
N10.2414 (5)0.3744 (3)0.31216 (14)0.0135 (5)
H10.42060.36990.32430.016*
C10.2095 (6)0.2747 (4)0.46408 (17)0.0168 (6)
H1A0.38520.21920.45380.020*
H1B0.25900.40300.49620.020*
N20.3359 (5)0.5793 (3)0.18682 (14)0.0132 (5)
C20.0228 (6)0.1082 (4)0.51824 (17)0.0152 (6)
H2A0.16120.15710.52270.018*
H2B0.10890.09460.57680.018*
C110.0684 (6)0.3347 (4)0.37849 (17)0.0137 (6)
C120.1625 (6)0.4225 (4)0.22492 (17)0.0134 (6)
C130.5374 (6)0.7262 (4)0.23549 (17)0.0154 (6)
H13A0.65420.64330.27500.018*
H13B0.66280.81540.19500.018*
C140.3930 (6)0.8680 (4)0.28672 (18)0.0193 (6)
H14A0.28420.78140.33100.029*
H14B0.53390.97040.31380.029*
H14C0.26760.94360.24840.029*
C150.3247 (6)0.6223 (5)0.09346 (17)0.0190 (6)
H15A0.51620.63310.07240.023*
H15B0.20900.50190.06710.023*
C160.2042 (7)0.8243 (5)0.06495 (19)0.0260 (7)
H16A0.32390.94540.08800.039*
H16B0.19550.84240.00220.039*
H16C0.01530.81560.08620.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0184 (4)0.0168 (4)0.0183 (4)0.0005 (3)0.0031 (3)0.0027 (3)
O10.0126 (11)0.0283 (12)0.0174 (11)0.0050 (8)0.0009 (8)0.0035 (8)
N10.0096 (11)0.0143 (12)0.0160 (12)0.0017 (9)0.0012 (9)0.0015 (9)
C10.0131 (15)0.0200 (15)0.0161 (14)0.0002 (11)0.0005 (11)0.0027 (11)
N20.0155 (12)0.0117 (11)0.0122 (11)0.0016 (9)0.0008 (9)0.0016 (9)
C20.0135 (14)0.0206 (15)0.0112 (13)0.0024 (11)0.0002 (10)0.0016 (11)
C110.0150 (15)0.0113 (13)0.0139 (14)0.0006 (11)0.0007 (11)0.0003 (10)
C120.0127 (14)0.0128 (13)0.0162 (14)0.0068 (10)0.0013 (11)0.0003 (11)
C130.0125 (14)0.0160 (14)0.0170 (14)0.0005 (11)0.0003 (11)0.0015 (11)
C140.0224 (16)0.0172 (14)0.0185 (15)0.0009 (12)0.0005 (12)0.0048 (11)
C150.0241 (16)0.0219 (15)0.0109 (14)0.0020 (12)0.0031 (11)0.0010 (11)
C160.0313 (19)0.0316 (18)0.0155 (15)0.0090 (14)0.0020 (13)0.0049 (13)
Geometric parameters (Å, º) top
S1—C121.666 (3)C2—H2B0.9900
O1—C111.223 (3)C13—C141.517 (4)
N1—C111.353 (3)C13—H13A0.9900
N1—C121.421 (3)C13—H13B0.9900
N1—H10.8800C14—H14A0.9800
C1—C111.518 (4)C14—H14B0.9800
C1—C21.528 (4)C14—H14C0.9800
C1—H1A0.9900C15—C161.517 (4)
C1—H1B0.9900C15—H15A0.9900
N2—C121.336 (4)C15—H15B0.9900
N2—C151.466 (3)C16—H16A0.9800
N2—C131.479 (3)C16—H16B0.9800
C2—C2i1.522 (5)C16—H16C0.9800
C2—H2A0.9900
C11—N1—C12126.5 (2)N2—C13—C14112.3 (2)
C11—N1—H1116.7N2—C13—H13A109.1
C12—N1—H1116.7C14—C13—H13A109.1
C11—C1—C2112.3 (2)N2—C13—H13B109.1
C11—C1—H1A109.1C14—C13—H13B109.1
C2—C1—H1A109.1H13A—C13—H13B107.9
C11—C1—H1B109.1C13—C14—H14A109.5
C2—C1—H1B109.1C13—C14—H14B109.5
H1A—C1—H1B107.9H14A—C14—H14B109.5
C12—N2—C15121.2 (2)C13—C14—H14C109.5
C12—N2—C13122.7 (2)H14A—C14—H14C109.5
C15—N2—C13116.1 (2)H14B—C14—H14C109.5
C2i—C2—C1113.2 (3)N2—C15—C16113.0 (2)
C2i—C2—H2A108.9N2—C15—H15A109.0
C1—C2—H2A108.9C16—C15—H15A109.0
C2i—C2—H2B108.9N2—C15—H15B109.0
C1—C2—H2B108.9C16—C15—H15B109.0
H2A—C2—H2B107.7H15A—C15—H15B107.8
O1—C11—N1124.3 (2)C15—C16—H16A109.5
O1—C11—C1120.8 (2)C15—C16—H16B109.5
N1—C11—C1114.9 (2)H16A—C16—H16B109.5
N2—C12—N1113.3 (2)C15—C16—H16C109.5
N2—C12—S1125.8 (2)H16A—C16—H16C109.5
N1—C12—S1120.89 (19)H16B—C16—H16C109.5
C11—C1—C2—C2i69.1 (4)C13—N2—C12—S1166.40 (19)
C12—N1—C11—O17.1 (4)C11—N1—C12—N2137.2 (3)
C12—N1—C11—C1176.4 (2)C11—N1—C12—S145.5 (3)
C2—C1—C11—O139.7 (3)C12—N2—C13—C1467.1 (3)
C2—C1—C11—N1143.7 (2)C15—N2—C13—C14109.5 (3)
C15—N2—C12—N1167.2 (2)C12—N2—C15—C16108.3 (3)
C13—N2—C12—N116.4 (3)C13—N2—C15—C1668.4 (3)
C15—N2—C12—S110.0 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.882.052.921 (3)171
Symmetry code: (ii) x1, y, z.
(III) 3,3,3',3'-tetrabutyl-1,1'-(hexane-1,6–diyldicarbonyl)bis(thiourea), top
Crystal data top
C26H50N4O2S2Z = 2
Mr = 514.82F(000) = 564
Triclinic, P1Dx = 1.160 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3206 (15) ÅCell parameters from 1708 reflections
b = 10.6717 (17) Åθ = 2.2–24.6°
c = 15.537 (2) ŵ = 0.21 mm1
α = 105.164 (3)°T = 100 K
β = 97.767 (3)°Plate, colourless
γ = 92.111 (3)°0.41 × 0.37 × 0.05 mm
V = 1473.7 (4) Å3
Data collection top
Bruker APEX I CCD area-detector
diffractometer
5709 independent reflections
Radiation source: fine-focus sealed tube3751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
\w scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1011
Tmin = 0.961, Tmax = 0.990k = 1313
10961 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[\s^2^(Fo^2^) + (0.0094P)^2^]
where P = (Fo^2^ + 2Fc^2^)/3
5709 reflections(Δ/σ)max = 0.002
319 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C26H50N4O2S2γ = 92.111 (3)°
Mr = 514.82V = 1473.7 (4) Å3
Triclinic, P1Z = 2
a = 9.3206 (15) ÅMo Kα radiation
b = 10.6717 (17) ŵ = 0.21 mm1
c = 15.537 (2) ÅT = 100 K
α = 105.164 (3)°0.41 × 0.37 × 0.05 mm
β = 97.767 (3)°
Data collection top
Bruker APEX I CCD area-detector
diffractometer
5709 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3751 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.990Rint = 0.059
10961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.36 e Å3
5709 reflectionsΔρmin = 0.28 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.97260 (7)0.28605 (6)0.37644 (4)0.01970 (17)
O10.65384 (18)0.48298 (15)0.24412 (11)0.0170 (4)
N10.8933 (2)0.4434 (2)0.23178 (14)0.0150 (5)
C10.8264 (3)0.6587 (2)0.15792 (15)0.0159 (6)
H1A0.76300.72080.17840.019*
H1B0.92750.68250.16410.019*
H10.973 (3)0.483 (2)0.2247 (16)0.024 (8)*
S20.52714 (7)0.15048 (6)0.21415 (4)0.01873 (17)
O20.84460 (17)0.40659 (15)0.21968 (10)0.0177 (4)
N20.7861 (2)0.23140 (19)0.27240 (13)0.0161 (5)
C20.8167 (3)0.6677 (2)0.05852 (16)0.0186 (6)
H2A0.87730.60260.03950.022*
H2B0.85720.75500.02110.022*
N30.6214 (2)0.40051 (19)0.26145 (13)0.0133 (5)
C30.6622 (3)0.6448 (2)0.04072 (15)0.0189 (6)
H3A0.60070.70650.06340.023*
H3B0.62410.55560.07580.023*
H30.535 (3)0.417 (2)0.2467 (15)0.020 (7)*
N40.7269 (2)0.27971 (18)0.35380 (12)0.0129 (5)
C40.6475 (3)0.6605 (2)0.05798 (15)0.0183 (6)
H4A0.69620.74550.09430.022*
H4B0.54330.66190.06430.022*
C50.7114 (3)0.5541 (2)0.09602 (15)0.0175 (6)
H5A0.81680.55530.09290.021*
H5B0.66590.46850.05850.021*
C60.6882 (3)0.5702 (2)0.19342 (15)0.0142 (6)
H6A0.74870.64740.23270.017*
H6B0.58520.58560.19870.017*
C110.7806 (3)0.5230 (2)0.21573 (16)0.0148 (6)
C120.8754 (3)0.3173 (2)0.29128 (16)0.0146 (6)
C130.7389 (3)0.1060 (2)0.33921 (16)0.0197 (6)
H13A0.77990.03470.31620.024*
H13B0.77740.10450.39580.024*
C140.5742 (3)0.0825 (2)0.35937 (16)0.0190 (6)
H14A0.54860.00360.40340.023*
H14B0.53690.07960.30320.023*
C150.4990 (3)0.1850 (2)0.39667 (17)0.0207 (6)
H15A0.53430.18710.45360.025*
H15B0.52500.27150.35320.025*
C160.3349 (3)0.1593 (2)0.41452 (17)0.0240 (7)
H16A0.30830.07620.46030.036*
H16B0.29100.22960.43610.036*
H16C0.29950.15550.35860.036*
C170.7336 (3)0.2505 (2)0.18479 (16)0.0184 (6)
H17A0.62690.25460.19390.022*
H17B0.77680.33480.14400.022*
C180.7713 (3)0.1423 (2)0.14014 (16)0.0206 (6)
H18A0.72140.05890.17850.025*
H18B0.87720.13340.13530.025*
C190.7270 (3)0.1691 (3)0.04664 (17)0.0320 (8)
H19A0.62080.17670.05190.038*
H19B0.77530.25350.00890.038*
C200.7660 (3)0.0634 (3)0.00020 (18)0.0374 (8)
H20A0.71850.02050.03670.056*
H20B0.73320.08470.05930.056*
H20C0.87150.05810.00810.056*
C610.7263 (3)0.4529 (2)0.22522 (15)0.0141 (6)
C620.6321 (2)0.2780 (2)0.28123 (15)0.0129 (6)
C630.7990 (3)0.4011 (2)0.41696 (15)0.0156 (6)
H63A0.83350.45820.38180.019*
H63B0.88500.37950.45370.019*
C640.7005 (3)0.4747 (2)0.47937 (16)0.0164 (6)
H64A0.65790.41570.51040.020*
H64B0.62010.50550.44360.020*
C650.7845 (3)0.5904 (2)0.54892 (16)0.0179 (6)
H65A0.83850.64180.51740.022*
H65B0.85660.55790.58920.022*
C660.6890 (3)0.6795 (2)0.60614 (16)0.0204 (6)
H66A0.61990.71520.56710.031*
H66B0.74990.75100.65000.031*
H66C0.63570.62970.63810.031*
C670.7603 (3)0.1598 (2)0.37981 (16)0.0179 (6)
H67A0.68780.08830.34470.021*
H67B0.75290.17320.44450.021*
C680.9123 (3)0.1204 (2)0.36342 (16)0.0186 (6)
H68A0.98390.19300.39760.022*
H68B0.93300.04460.38740.022*
C690.9330 (3)0.0855 (2)0.26471 (16)0.0195 (6)
H69A0.89350.15320.23710.023*
H69B1.03820.08520.26100.023*
C700.8593 (3)0.0461 (2)0.21132 (16)0.0241 (7)
H70A0.89770.11360.23830.036*
H70B0.87800.06450.14880.036*
H70C0.75440.04520.21230.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0183 (4)0.0257 (4)0.0174 (4)0.0043 (3)0.0085 (3)0.0065 (3)
O10.0113 (10)0.0188 (10)0.0210 (10)0.0025 (8)0.0021 (8)0.0053 (8)
N10.0092 (13)0.0171 (13)0.0186 (13)0.0005 (10)0.0027 (10)0.0043 (10)
C10.0133 (15)0.0169 (14)0.0187 (15)0.0020 (11)0.0049 (11)0.0059 (12)
S20.0173 (4)0.0186 (4)0.0194 (4)0.0001 (3)0.0003 (3)0.0054 (3)
O20.0129 (10)0.0223 (10)0.0211 (10)0.0055 (8)0.0066 (8)0.0088 (8)
N20.0147 (13)0.0179 (12)0.0173 (12)0.0027 (10)0.0064 (10)0.0054 (10)
C20.0186 (16)0.0209 (15)0.0156 (15)0.0029 (12)0.0016 (12)0.0037 (12)
N30.0083 (13)0.0188 (12)0.0154 (12)0.0043 (10)0.0027 (10)0.0083 (10)
C30.0192 (16)0.0234 (15)0.0161 (15)0.0042 (12)0.0027 (12)0.0085 (12)
N40.0116 (12)0.0141 (11)0.0132 (11)0.0006 (9)0.0033 (9)0.0035 (9)
C40.0201 (16)0.0175 (15)0.0181 (15)0.0055 (12)0.0049 (12)0.0048 (12)
C50.0170 (15)0.0200 (15)0.0164 (14)0.0022 (12)0.0056 (12)0.0048 (12)
C60.0108 (15)0.0179 (14)0.0143 (14)0.0019 (11)0.0037 (11)0.0040 (11)
C110.0186 (16)0.0183 (15)0.0118 (14)0.0033 (12)0.0050 (12)0.0100 (12)
C120.0111 (14)0.0190 (15)0.0150 (14)0.0063 (11)0.0002 (11)0.0075 (12)
C130.0195 (16)0.0198 (15)0.0192 (15)0.0039 (12)0.0027 (12)0.0042 (12)
C140.0196 (16)0.0179 (15)0.0185 (15)0.0009 (12)0.0044 (12)0.0023 (12)
C150.0207 (16)0.0220 (15)0.0210 (15)0.0022 (12)0.0049 (12)0.0079 (13)
C160.0186 (16)0.0301 (17)0.0277 (16)0.0035 (13)0.0049 (13)0.0144 (13)
C170.0177 (16)0.0187 (15)0.0221 (15)0.0045 (12)0.0103 (12)0.0068 (12)
C180.0193 (16)0.0243 (16)0.0202 (15)0.0086 (12)0.0070 (12)0.0067 (12)
C190.043 (2)0.0340 (18)0.0298 (18)0.0196 (15)0.0187 (15)0.0176 (15)
C200.051 (2)0.0404 (19)0.0312 (18)0.0209 (16)0.0171 (16)0.0208 (15)
C610.0169 (16)0.0137 (14)0.0104 (14)0.0003 (12)0.0011 (11)0.0018 (11)
C620.0075 (14)0.0181 (14)0.0160 (14)0.0044 (11)0.0089 (11)0.0056 (12)
C630.0150 (15)0.0164 (14)0.0139 (14)0.0009 (11)0.0013 (11)0.0034 (12)
C640.0136 (15)0.0177 (14)0.0198 (15)0.0022 (11)0.0059 (12)0.0065 (12)
C650.0166 (15)0.0194 (15)0.0181 (15)0.0023 (12)0.0032 (12)0.0050 (12)
C660.0192 (16)0.0227 (15)0.0175 (15)0.0011 (12)0.0032 (12)0.0026 (12)
C670.0217 (16)0.0180 (15)0.0148 (14)0.0015 (12)0.0017 (12)0.0065 (12)
C680.0170 (15)0.0153 (14)0.0230 (15)0.0022 (12)0.0000 (12)0.0059 (12)
C690.0147 (15)0.0206 (15)0.0246 (16)0.0052 (12)0.0045 (12)0.0071 (13)
C700.0236 (17)0.0248 (16)0.0236 (16)0.0066 (13)0.0074 (13)0.0032 (13)
Geometric parameters (Å, º) top
S1—C121.673 (2)C15—H15A0.9900
O1—C111.223 (3)C15—H15B0.9900
N1—C111.383 (3)C16—H16A0.9800
N1—C121.408 (3)C16—H16B0.9800
N1—H10.82 (2)C16—H16C0.9800
C1—C111.502 (3)C17—C181.523 (3)
C1—C21.537 (3)C17—H17A0.9900
C1—H1A0.9900C17—H17B0.9900
C1—H1B0.9900C18—C191.522 (3)
S2—C621.667 (2)C18—H18A0.9900
O2—C611.229 (3)C18—H18B0.9900
N2—C121.330 (3)C19—C201.524 (3)
N2—C131.473 (3)C19—H19A0.9900
N2—C171.475 (3)C19—H19B0.9900
C2—C31.525 (3)C20—H20A0.9800
C2—H2A0.9900C20—H20B0.9800
C2—H2B0.9900C20—H20C0.9800
N3—C611.363 (3)C63—C641.515 (3)
N3—C621.423 (3)C63—H63A0.9900
N3—H30.85 (2)C63—H63B0.9900
C3—C41.524 (3)C64—C651.519 (3)
C3—H3A0.9900C64—H64A0.9900
C3—H3B0.9900C64—H64B0.9900
N4—C621.331 (3)C65—C661.524 (3)
N4—C671.471 (3)C65—H65A0.9900
N4—C631.478 (3)C65—H65B0.9900
C4—C51.516 (3)C66—H66A0.9800
C4—H4A0.9900C66—H66B0.9800
C4—H4B0.9900C66—H66C0.9800
C5—C61.524 (3)C67—C681.527 (3)
C5—H5A0.9900C67—H67A0.9900
C5—H5B0.9900C67—H67B0.9900
C6—C611.499 (3)C68—C691.521 (3)
C6—H6A0.9900C68—H68A0.9900
C6—H6B0.9900C68—H68B0.9900
C13—C141.523 (3)C69—C701.516 (3)
C13—H13A0.9900C69—H69A0.9900
C13—H13B0.9900C69—H69B0.9900
C14—C151.517 (3)C70—H70A0.9800
C14—H14A0.9900C70—H70B0.9800
C14—H14B0.9900C70—H70C0.9800
C15—C161.519 (3)
C11—N1—C12123.6 (2)N2—C17—C18112.8 (2)
C11—N1—H1114.3 (17)N2—C17—H17A109.0
C12—N1—H1116.5 (18)C18—C17—H17A109.0
C11—C1—C2110.42 (19)N2—C17—H17B109.0
C11—C1—H1A109.6C18—C17—H17B109.0
C2—C1—H1A109.6H17A—C17—H17B107.8
C11—C1—H1B109.6C19—C18—C17112.0 (2)
C2—C1—H1B109.6C19—C18—H18A109.2
H1A—C1—H1B108.1C17—C18—H18A109.2
C12—N2—C13120.3 (2)C19—C18—H18B109.2
C12—N2—C17123.9 (2)C17—C18—H18B109.2
C13—N2—C17115.84 (19)H18A—C18—H18B107.9
C3—C2—C1113.5 (2)C18—C19—C20113.0 (2)
C3—C2—H2A108.9C18—C19—H19A109.0
C1—C2—H2A108.9C20—C19—H19A109.0
C3—C2—H2B108.9C18—C19—H19B109.0
C1—C2—H2B108.9C20—C19—H19B109.0
H2A—C2—H2B107.7H19A—C19—H19B107.8
C61—N3—C62122.1 (2)C19—C20—H20A109.5
C61—N3—H3116.8 (16)C19—C20—H20B109.5
C62—N3—H3113.5 (16)H20A—C20—H20B109.5
C4—C3—C2114.9 (2)C19—C20—H20C109.5
C4—C3—H3A108.6H20A—C20—H20C109.5
C2—C3—H3A108.6H20B—C20—H20C109.5
C4—C3—H3B108.6O2—C61—N3121.7 (2)
C2—C3—H3B108.6O2—C61—C6122.5 (2)
H3A—C3—H3B107.5N3—C61—C6115.7 (2)
C62—N4—C67121.7 (2)N4—C62—N3114.5 (2)
C62—N4—C63123.13 (19)N4—C62—S2127.16 (18)
C67—N4—C63115.07 (18)N3—C62—S2118.33 (17)
C5—C4—C3114.1 (2)N4—C63—C64113.1 (2)
C5—C4—H4A108.7N4—C63—H63A109.0
C3—C4—H4A108.7C64—C63—H63A109.0
C5—C4—H4B108.7N4—C63—H63B109.0
C3—C4—H4B108.7C64—C63—H63B109.0
H4A—C4—H4B107.6H63A—C63—H63B107.8
C4—C5—C6112.3 (2)C63—C64—C65110.7 (2)
C4—C5—H5A109.1C63—C64—H64A109.5
C6—C5—H5A109.1C65—C64—H64A109.5
C4—C5—H5B109.1C63—C64—H64B109.5
C6—C5—H5B109.1C65—C64—H64B109.5
H5A—C5—H5B107.9H64A—C64—H64B108.1
C61—C6—C5112.1 (2)C64—C65—C66113.7 (2)
C61—C6—H6A109.2C64—C65—H65A108.8
C5—C6—H6A109.2C66—C65—H65A108.8
C61—C6—H6B109.2C64—C65—H65B108.8
C5—C6—H6B109.2C66—C65—H65B108.8
H6A—C6—H6B107.9H65A—C65—H65B107.7
O1—C11—N1121.8 (2)C65—C66—H66A109.5
O1—C11—C1123.5 (2)C65—C66—H66B109.5
N1—C11—C1114.7 (2)H66A—C66—H66B109.5
N2—C12—N1116.6 (2)C65—C66—H66C109.5
N2—C12—S1125.50 (19)H66A—C66—H66C109.5
N1—C12—S1117.85 (18)H66B—C66—H66C109.5
N2—C13—C14112.1 (2)N4—C67—C68111.98 (19)
N2—C13—H13A109.2N4—C67—H67A109.2
C14—C13—H13A109.2C68—C67—H67A109.2
N2—C13—H13B109.2N4—C67—H67B109.2
C14—C13—H13B109.2C68—C67—H67B109.2
H13A—C13—H13B107.9H67A—C67—H67B107.9
C15—C14—C13114.0 (2)C69—C68—C67114.1 (2)
C15—C14—H14A108.7C69—C68—H68A108.7
C13—C14—H14A108.7C67—C68—H68A108.7
C15—C14—H14B108.7C69—C68—H68B108.7
C13—C14—H14B108.7C67—C68—H68B108.7
H14A—C14—H14B107.6H68A—C68—H68B107.6
C14—C15—C16112.4 (2)C70—C69—C68112.9 (2)
C14—C15—H15A109.1C70—C69—H69A109.0
C16—C15—H15A109.1C68—C69—H69A109.0
C14—C15—H15B109.1C70—C69—H69B109.0
C16—C15—H15B109.1C68—C69—H69B109.0
H15A—C15—H15B107.9H69A—C69—H69B107.8
C15—C16—H16A109.5C69—C70—H70A109.5
C15—C16—H16B109.5C69—C70—H70B109.5
H16A—C16—H16B109.5H70A—C70—H70B109.5
C15—C16—H16C109.5C69—C70—H70C109.5
H16A—C16—H16C109.5H70A—C70—H70C109.5
H16B—C16—H16C109.5H70B—C70—H70C109.5
C11—C1—C2—C364.5 (3)N2—C17—C18—C19175.4 (2)
C1—C2—C3—C4176.74 (19)C17—C18—C19—C20178.9 (2)
C2—C3—C4—C570.0 (3)C62—N3—C61—O210.6 (4)
C3—C4—C5—C6177.4 (2)C62—N3—C61—C6169.8 (2)
C4—C5—C6—C61169.5 (2)C5—C6—C61—O253.4 (3)
C12—N1—C11—O19.0 (4)C5—C6—C61—N3126.9 (2)
C12—N1—C11—C1173.5 (2)C67—N4—C62—N3175.01 (19)
C2—C1—C11—O183.2 (3)C63—N4—C62—N38.9 (3)
C2—C1—C11—N194.2 (2)C67—N4—C62—S25.6 (3)
C13—N2—C12—N1168.26 (19)C63—N4—C62—S2170.47 (18)
C17—N2—C12—N114.5 (3)C61—N3—C62—N474.4 (3)
C13—N2—C12—S114.6 (3)C61—N3—C62—S2106.2 (2)
C17—N2—C12—S1162.59 (17)C62—N4—C63—C6476.1 (3)
C11—N1—C12—N260.3 (3)C67—N4—C63—C64100.2 (2)
C11—N1—C12—S1122.3 (2)N4—C63—C64—C65174.03 (18)
C12—N2—C13—C14125.5 (2)C63—C64—C65—C66172.30 (19)
C17—N2—C13—C1457.1 (3)C62—N4—C67—C68108.5 (2)
N2—C13—C14—C1559.8 (3)C63—N4—C67—C6875.1 (3)
C13—C14—C15—C16179.1 (2)N4—C67—C68—C6963.9 (3)
C12—N2—C17—C18122.3 (2)C67—C68—C69—C7074.3 (3)
C13—N2—C17—C1855.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.85 (2)2.09 (2)2.902 (3)160 (2)
N1—H1···O2ii0.82 (2)2.01 (2)2.828 (3)172 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC15H28N4O2S2C16H30N4O2S2C26H50N4O2S2
Mr360.53374.56514.82
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Triclinic, P1
Temperature (K)100100100
a, b, c (Å)7.1475 (18), 27.999 (7), 9.387 (2)4.8287 (9), 6.3977 (12), 15.661 (3)9.3206 (15), 10.6717 (17), 15.537 (2)
α, β, γ (°)90, 93.026 (5), 9085.532 (3), 86.985 (3), 81.894 (3)105.164 (3), 97.767 (3), 92.111 (3)
V3)1875.9 (8)477.09 (16)1473.7 (4)
Z412
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.300.300.21
Crystal size (mm)0.22 × 0.21 × 0.180.47 × 0.21 × 0.050.41 × 0.37 × 0.05
Data collection
DiffractometerBruker APEX I CCD area-detector
diffractometer
Bruker APEX I CCD area-detector
diffractometer
Bruker APEX I CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.937, 0.9480.874, 0.9850.961, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
10628, 3685, 2845 4902, 1847, 1611 10961, 5709, 3751
Rint0.0500.0590.059
(sin θ/λ)max1)0.6170.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.129, 1.05 0.062, 0.156, 1.16 0.053, 0.085, 0.87
No. of reflections368518475709
No. of parameters220111319
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.470.90, 0.300.36, 0.28

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Version 2.0; Barbour, 2001).

Selected geometric parameters (Å, º) for (I) top
S1—C121.687 (3)O2—C311.208 (3)
O1—C111.215 (3)N2—C121.319 (3)
N1—C111.373 (3)N3—C311.390 (3)
N1—C121.411 (3)N3—C321.406 (3)
S2—C321.682 (3)N4—C321.326 (3)
C12—N1—C11—O112.6 (4)C32—N3—C31—O226.3 (4)
C11—N1—C12—S1125.7 (2)C31—N3—C32—S2113.9 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.82 (3)2.58 (3)3.393 (2)173 (3)
N3—H3···S1ii0.77 (3)2.60 (3)3.344 (2)165 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
S1—C121.666 (3)N1—C121.421 (3)
O1—C111.223 (3)N2—C121.336 (4)
N1—C111.353 (3)
C12—N1—C11—O17.1 (4)C11—N1—C12—S145.5 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.052.921 (3)170.5
Symmetry code: (i) x1, y, z.
Selected geometric parameters (Å, º) for (III) top
S1—C121.673 (2)O2—C611.229 (3)
O1—C111.223 (3)N2—C121.330 (3)
N1—C111.383 (3)N3—C611.363 (3)
N1—C121.408 (3)N3—C621.423 (3)
S2—C621.667 (2)N4—C621.331 (3)
C12—N1—C11—O19.0 (4)C62—N3—C61—O210.6 (4)
C11—N1—C12—S1122.3 (2)C61—N3—C62—S2106.2 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.85 (2)2.09 (2)2.902 (3)160 (2)
N1—H1···O2ii0.82 (2)2.01 (2)2.828 (3)172 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds