Download citation
Download citation
link to html
The synthesis and crystal structure of the mononuclear title compound, [Co(C2O4)(C10H8N2)2]·5H2O, is reported. The Co atom is six-coordinated by two O atoms of a bidentate oxalate group and by four N atoms of two bi­pyridine ligands. The neutral [Co(C2O4)(C10H8N2)2] entities are connected by [pi]-[pi] stacking interactions of the aromatic systems into a two-dimensional layer, interconnected through a ladder-like hydrogen-bonding pattern of solvate water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104025181/tr1107sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104025181/tr1107Isup2.hkl
Contains datablock I

CCDC reference: 256998

Comment top

Oxalate-bridged polymeric compounds of transition metal elements have attracted significant attention in the literature, mainly due to their interesting magnetic properties (Castillo Luque & Román, 2001). Polymeric chain structures are predominant in the solid-state chemistry of cobalt(II), as represented by the compounds {[Co(µ-C2O4)L2)].mH2O}n [where L is H2O (García-Couceiro et al., 2004), n-aminopyridine (Castillo Luque Román et al., 2001), and 3-hydroxypyridine and isoquinoline (Castillo Luque Lloret & Román, 2001)] and Na2[Co2(C2O4)3(H2O)2] (Price et al., 2000), although two-dimensional [Co(µ-C2O4)(4,4'-bpy)]n (Lu et al., 1999; Zheng et al., 1999) and three-dimensional [Co(2,2'-bpy)3][Co2(C2O4)3]ClO4 (Hernández-Molina et al., 1998) have also been described. Fewer data exist on the preparation and structures of simple mononuclear cobalt(II) oxalate compounds. The reason for this situation is the polydentate nature of the oxalate ligand, which can be bi-, tri- or tetradentate. Recently, the compounds [Co(C2O4)(2,2'-bpy)]·4H2O and [Co(C2O4)(4,4'-bpy)1.5]·2H2O have been reported, but were characterized by analytical, spectroscopic (IR and UV) and thermal data only (Czakis-Sulikowska et al., 2000). Data on the crystal structures of simple mononuclear cobalt(II) oxalate compounds are non-existent to date. Against this background, we present here the crystal structure of the title mononuclear cobalt(II) oxalate complex, (I). \sch

The crystal structure of the title compound, (I), consists of neutral mononuclear [Co(C2O4)(bpy)2] units and five solvate water molecules, held together by intermolecular ππ stacking interactions and an extensive hydrogen-bonding network. A view of the mononuclear complex entity, with the atom-numbering scheme, is given in Fig. 1, and selected geometric parameters are listed in Table 1.

Two O atoms from one bidentate oxalate anion and four N atoms from two chelating bipyridine ligands form a distorted octahedron around the metal atom. Each ligand exhibits a cis arrangement of its two donor atoms coordinated to the CoII atom. The C—O bond lengths are as expected for a bidentate oxalate ligand (Zheng et al., 1999), and the C—N bond lengths are comparable with those found in [Ni(ox)(bpy)2]·4H2O (Román et al., 1995). The N—Co—N and O—Co—O bite angles deviate considerably from the ideal of 90° because of the constrained geometry of the bipyridine and oxalate ligands. The best least-squares plane of the CoN4O2 chromophore is defined by atoms O2, N11, N12 and N21 [greatest deviation 0.1381 (19) Å for N11], and the Co atom is 0.0294 (2) Å out of this plane. The individual pyridine rings of the two bipyridine ligands are planar [greatest deviations from the mean planes are 0.006 (2) Å for atoms C24 and N22]. One bipyridine, labelled bpy(1), is planar [dihedral angle between pyridine rings py(1) (atoms N11/C11—C15) and py(2) (atoms N12/C16—C110) is 1.38 (12)°], while the other, labelled bpy(2), is twisted, with a dihedral angle between pyridine rings py(3) (atoms N21/C21—C25) and py(4) (atoms N22/C26—C210) of 6.18 (10)°. The oxalate anion shows some deviation from planarity, with the O1—C1—C2—O2 and O11—C1—C2—O22 torsion angles being 13.1 (3) and 14.0 (3)°, respectively. The three ligands around the CoII atom are almost perpendicular to each other. The dihedral angles between the mean oxalate plane and the mean bipyridine planes are 89.74 (7) and 89.27 (7)°, respectively, whereas that between the two mean bipyridine planes is 86.61 (6)°.

The neutral complex entities of (I) are stacked together by means of ππ intermolecular interactions between the aromatic systems of the bipyridine ligands (Fig. 2). Two different stacking interactions can be distinguished in the crystal structure. The first interaction (grey dashed lines in Fig. 2) involves ring py(3) from one entity (A) and ring py(4)ii from a neighbouring entity (Aii), mutually related through the glide-plane symmetry [symmetry code (ii): x, 1/2 − y, 1/2 + z]. The distance between the centres of the py(4)ii and py(3) rings is 3.536 (2) Å, while the perpendicular distance from the centre of py(4)ii to the mean plane of py(3) is 3.388 (2) Å. The dihedral angle between the mean planes of these two pyridine rings is 1.71°. The glide-plane symmetry results in an interaction between py(4) of A and py(3)iii of a neighbouring entity [Aiii; symmetry code (iii): x, 1/2 − y, z − 1/2]. This entity is related to Aii through a translation by one repeat along the crystallographic c axis. In this way, one-dimensional stacking motifs are formed. The second interaction represents stacking of the bpy(1) ligands (grey dotted lines in Fig. 2). The bpy(1)ii ligand from one entity (Aii) interacts with the bpy(1)iv ligand in a neighbouring entity [Aiv; symmetry code: (iv) 1 − x, 1/2 + y, 1/2 − z]. These two latter entities are related through a centre of symmetry, i, so that the dihedral angle between the mean planes of the two stacked bipyridines is 0°. The distance between their mean planes is 3.498 (2) Å, while the distance between their centres of gravity is 3.880 (2) Å. The fact that the entire bpy(1) ligand is involved in the stacking interaction, in contrast with the bpy(2) ligands, where only individual py(3) and py(4) pyridine rings interact, could explain the greater planarity of the bpy(1) ligand. A stacking interaction between bpy(1) ligands connects one-dimensional stacking motifs, formed by interaction of the bpy(2) ligands, into two-dimensional layers parallel to the bc plane of the monoclinic unit cell.

Solvate water molecules are located between the layers of neutral entities in the structure of (I). One hydrogen-bonding motif can be described as a pentagon, with the graph-set descriptor R33(10) (Etter et al., 1990). This involves all five solvate water molecules, connected by O6—H61···O8, O6—H62···O5, O7—H71···O9, O7—H72···O5 and O9—H91···O8 hydrogen bonds (Fig. 3, Table 2). These pentagonal rings are mutually connected by O9—H92···O6 and O8—H82···O7 hydrogen bonds (Fig. 3, Table 2), thus forming a ladder pattern which extends along the crystallographic c axis. A smaller four-membered ring motif of graph set R44(8) can also be recognized inside the ladder pattern (Fig. 3). The remaining three hydrogen bonds include two water molecules (O8 and O5) as donors and three O atoms from oxalate ligands (O2, O11 and O22) as acceptors (Table 2). Two of them (O8—H81···O2ii and O5—H52···O22) connect a hydrogen-bonding ladder pattern with only one layer of neutral entities formed by stacking interactions. The hydrogen bond O5—H51···O11i connects the hydrogen-bonding ladder pattern with a second layer of neutral entities [symmetry code (i): −x, −y, 1 − z]. Thus, this hydrogen bond completes the three-dimensional crystal structure of (I).

This type of crystal packing is identical to that observed in the crystal structure of [Cu(ox)(phen)2]·5H2O, although the latter compound contains 1,10-phenanthroline (phen) instead of bipyridine (Castillo Luque & Román, 2001). On the other hand, the compound [Ni(ox)(bipy)2]·4H2O, with an identical set of ligands bonded to the central metal atom, has a different crystal structure (Román et al., 1995). In spite of the fact that [Ni(ox)(bipy)2]·4H2O crystallizes in the same space group as (I), it can be shown that the characteristic structural patterns formed by intermolecular ππ stacking interactions of the aromatic systems in this compound are one-dimensional chains (Román et al., 1995). As shown in the present work, the characteristic structural patterns in (I) are two-dimensional layers connected by the hydrogen-bonded solvate water molecules.

Experimental top

A few single crystals of (I) were formed simultaneously with [Co(bpy)3]2[NbO(C2O4)3]Cl.12H2O after mixing and slowly evaporating an aqueous solution of [Co(bpy)3]Cl2·6H2O and Rb3[NbO(C2O4)3]·2H2O (Šestan et al., 2004).

Refinement top

H atoms were located from a difference Fourier synthesis. In the final refinements, O—H bonds were restrained to the target value of 0.84 Å and H—O—H angles were restrained to the target value of 104°. All other H atoms were treated as riding, with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C). Please check added text.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. A view of the mononuclear [Co(ox)(bipy)2] entity in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of mononuclear entites in the unit cell of (I). The two different stacking interactions of the aromatic systems in the bipyridine ligands are shown as grey dashed and grey dotted lines [symmetry codes: (ii) x, 1/2 − y, 1/2 + z; (iv) 1 − x, 1/2 + y, 1/2 − z; (v) 1 − x, 1 − y, 1 − z].
[Figure 3] Fig. 3. The hydrogen-bonding pattern formed by the solvate water molecules of (I). Ring motifs are denoted by their graph-set descriptors. Symmetry codes are as given in Table 2.
Bis(2,2'-bipyridine-κ2N,N')(oxalato-κ2O,O')cobalt(II) pentahydrate top
Crystal data top
[Co(C2O4)(C10H8N2)2]·5H2OF(000) = 1140
Mr = 549.40Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13313 reflections
a = 10.001 (2) Åθ = 2.1–30.0°
b = 22.861 (5) ŵ = 0.77 mm1
c = 10.844 (2) ÅT = 200 K
β = 103.57 (3)°Needle, yellow
V = 2410.1 (9) Å30.2 × 0.1 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
6777 independent reflections
Radiation source: fine-focus sealed tube4778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 18.4 pixels mm-1θmax = 30.0°, θmin = 2.1°
ω scansh = 1414
Absorption correction: multi-scan
DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 3232
Tmin = 0.85, Tmax = 0.96l = 1414
13313 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0794P)2]
where P = (Fo2 + 2Fc2)/3
6777 reflections(Δ/σ)max = 0.001
365 parametersΔρmax = 0.57 e Å3
15 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Co(C2O4)(C10H8N2)2]·5H2OV = 2410.1 (9) Å3
Mr = 549.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.001 (2) ŵ = 0.77 mm1
b = 22.861 (5) ÅT = 200 K
c = 10.844 (2) Å0.2 × 0.1 × 0.05 mm
β = 103.57 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
6777 independent reflections
Absorption correction: multi-scan
DENZO and SCALEPACK (Otwinowski & Minor, 1997)
4778 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.96Rint = 0.033
13313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04015 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.57 e Å3
6777 reflectionsΔρmin = 1.02 e Å3
365 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.34837 (3)0.10931 (1)0.20159 (3)0.0217 (1)
O10.37199 (14)0.03005 (6)0.30112 (16)0.0284 (5)
O20.18640 (15)0.10765 (6)0.28336 (16)0.0285 (5)
O110.26261 (19)0.03588 (8)0.3881 (2)0.0600 (8)
O220.09613 (17)0.05168 (8)0.41702 (18)0.0408 (6)
N110.24973 (18)0.07340 (8)0.00717 (19)0.0288 (6)
N120.49447 (19)0.09560 (8)0.09472 (19)0.0267 (5)
N210.46502 (16)0.15650 (8)0.36772 (18)0.0236 (5)
N220.31238 (17)0.19805 (8)0.14104 (18)0.0247 (5)
C10.2787 (2)0.01383 (9)0.3483 (2)0.0283 (7)
C20.1769 (2)0.06156 (9)0.3516 (2)0.0252 (6)
C110.1239 (2)0.06317 (11)0.0311 (3)0.0367 (8)
C120.0657 (3)0.04060 (12)0.1579 (3)0.0437 (9)
C130.1381 (3)0.02838 (12)0.2499 (3)0.0445 (9)
C140.2667 (3)0.03866 (11)0.2125 (3)0.0377 (8)
C150.3207 (2)0.06134 (9)0.0832 (2)0.0275 (7)
C160.4583 (2)0.07438 (9)0.0340 (2)0.0273 (7)
C170.5446 (3)0.06548 (10)0.1154 (3)0.0347 (8)
C180.6706 (3)0.07939 (11)0.0625 (3)0.0409 (9)
C190.7083 (3)0.10081 (11)0.0698 (3)0.0416 (9)
C210.5438 (2)0.13265 (10)0.4776 (2)0.0284 (7)
C220.6232 (2)0.16559 (11)0.5787 (2)0.0320 (7)
C230.6215 (2)0.22576 (11)0.5643 (3)0.0357 (8)
C240.5417 (2)0.25079 (10)0.4512 (2)0.0329 (7)
C250.46306 (19)0.21564 (9)0.3543 (2)0.0233 (6)
C260.3730 (2)0.23856 (9)0.2312 (2)0.0241 (6)
C270.3490 (2)0.29794 (10)0.2079 (2)0.0320 (7)
C280.2631 (3)0.31571 (11)0.0905 (3)0.0365 (8)
C290.2031 (2)0.27473 (11)0.0017 (3)0.0360 (8)
C1100.6175 (2)0.10822 (10)0.1450 (3)0.0329 (7)
C2100.2300 (2)0.21628 (10)0.0270 (2)0.0299 (7)
O50.09322 (19)0.10425 (8)0.5176 (2)0.0390 (6)
O60.0140 (2)0.18470 (10)0.7282 (2)0.0493 (7)
O70.18266 (18)0.19293 (9)0.33292 (19)0.0416 (6)
O80.00548 (18)0.31158 (8)0.68004 (19)0.0392 (6)
O90.1433 (2)0.30887 (10)0.4059 (2)0.0486 (7)
H110.065950.070160.022970.0441*
H120.028600.033730.179450.0524*
H130.097050.014190.330210.0534*
H140.325410.031940.266010.0452*
H170.515550.051300.197740.0416*
H180.738080.075850.108260.0491*
H190.800180.109860.104160.0496*
H210.544740.092140.485740.0341*
H220.674330.147690.651670.0384*
H230.672060.249500.628140.0429*
H240.541400.291180.440780.0395*
H270.388620.325560.268490.0384*
H280.246500.355330.074460.0438*
H290.147310.286280.079040.0432*
H1100.644890.121720.228060.0395*
H2100.191030.188240.032860.0359*
H510.130 (3)0.0771 (10)0.547 (2)0.039 (8)*
H520.053 (3)0.0885 (13)0.467 (3)0.058 (10)*
H610.020 (4)0.2166 (10)0.694 (3)0.073 (12)*
H620.025 (4)0.1656 (14)0.663 (3)0.083 (14)*
H710.171 (3)0.2259 (9)0.369 (3)0.051 (9)*
H720.162 (4)0.1686 (13)0.395 (3)0.086 (14)*
H810.045 (3)0.3388 (11)0.712 (3)0.063 (10)*
H820.062 (4)0.3091 (18)0.729 (3)0.094 (14)*
H910.103 (3)0.3120 (14)0.4815 (17)0.050 (10)*
H920.093 (3)0.3115 (16)0.353 (3)0.070 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0176 (1)0.0198 (2)0.0280 (2)0.0014 (1)0.0059 (1)0.0012 (1)
O10.0207 (7)0.0229 (8)0.0436 (10)0.0009 (6)0.0114 (7)0.0011 (7)
O20.0195 (7)0.0239 (8)0.0442 (10)0.0025 (6)0.0115 (7)0.0010 (7)
O110.0350 (10)0.0335 (10)0.1173 (19)0.0047 (8)0.0297 (11)0.0310 (11)
O220.0300 (8)0.0426 (10)0.0575 (12)0.0025 (7)0.0256 (9)0.0021 (9)
N110.0256 (8)0.0258 (10)0.0341 (11)0.0028 (7)0.0050 (8)0.0025 (8)
N120.0241 (8)0.0227 (9)0.0355 (11)0.0028 (7)0.0115 (8)0.0015 (8)
N210.0175 (8)0.0217 (9)0.0316 (11)0.0012 (6)0.0060 (7)0.0007 (8)
N220.0203 (8)0.0231 (9)0.0306 (11)0.0014 (7)0.0061 (8)0.0018 (8)
C10.0234 (10)0.0243 (11)0.0364 (14)0.0020 (8)0.0057 (10)0.0031 (10)
C20.0209 (9)0.0264 (11)0.0285 (12)0.0044 (8)0.0062 (9)0.0053 (9)
C110.0258 (11)0.0365 (14)0.0441 (15)0.0066 (9)0.0007 (10)0.0025 (11)
C120.0385 (13)0.0376 (14)0.0476 (17)0.0086 (11)0.0046 (12)0.0007 (12)
C130.0535 (16)0.0349 (14)0.0351 (15)0.0084 (12)0.0098 (12)0.0031 (12)
C140.0500 (15)0.0290 (12)0.0340 (14)0.0044 (11)0.0097 (12)0.0028 (11)
C150.0343 (11)0.0191 (10)0.0287 (13)0.0006 (8)0.0068 (10)0.0006 (9)
C160.0334 (11)0.0180 (10)0.0336 (13)0.0007 (8)0.0140 (10)0.0013 (9)
C170.0450 (14)0.0264 (12)0.0382 (15)0.0038 (10)0.0211 (12)0.0005 (10)
C180.0401 (13)0.0328 (14)0.0602 (19)0.0060 (11)0.0327 (13)0.0033 (12)
C190.0268 (11)0.0351 (14)0.068 (2)0.0013 (9)0.0217 (12)0.0026 (13)
C210.0232 (10)0.0264 (11)0.0350 (14)0.0022 (9)0.0054 (9)0.0009 (10)
C220.0221 (10)0.0404 (14)0.0307 (13)0.0038 (9)0.0005 (9)0.0008 (11)
C230.0262 (11)0.0365 (13)0.0411 (15)0.0047 (10)0.0011 (10)0.0124 (11)
C240.0282 (11)0.0242 (11)0.0447 (15)0.0025 (9)0.0054 (10)0.0057 (10)
C250.0182 (9)0.0228 (10)0.0297 (12)0.0007 (8)0.0073 (9)0.0026 (9)
C260.0199 (9)0.0232 (10)0.0312 (12)0.0013 (8)0.0098 (9)0.0001 (9)
C270.0318 (11)0.0225 (11)0.0415 (15)0.0004 (9)0.0082 (11)0.0017 (10)
C280.0367 (12)0.0265 (12)0.0477 (16)0.0062 (10)0.0128 (12)0.0092 (11)
C290.0298 (11)0.0394 (14)0.0379 (14)0.0058 (10)0.0062 (10)0.0138 (12)
C1100.0266 (11)0.0313 (12)0.0431 (15)0.0051 (9)0.0127 (10)0.0037 (11)
C2100.0248 (10)0.0315 (12)0.0322 (13)0.0024 (9)0.0040 (9)0.0042 (10)
O50.0341 (9)0.0303 (10)0.0568 (13)0.0004 (7)0.0192 (9)0.0013 (9)
O60.0500 (12)0.0476 (12)0.0526 (14)0.0059 (10)0.0165 (11)0.0037 (11)
O70.0306 (9)0.0487 (12)0.0444 (12)0.0004 (8)0.0065 (9)0.0014 (10)
O80.0294 (9)0.0441 (11)0.0448 (12)0.0097 (8)0.0103 (8)0.0069 (9)
O90.0412 (11)0.0595 (13)0.0461 (14)0.0080 (9)0.0120 (10)0.0067 (11)
Geometric parameters (Å, º) top
Co—O12.0939 (15)C14—C151.474 (4)
Co—O22.0213 (17)C15—C161.387 (3)
Co—N112.262 (2)C16—C171.387 (4)
Co—N122.091 (2)C17—C181.296 (4)
Co—N212.1872 (19)C18—C191.479 (4)
Co—N222.1367 (19)C19—C1101.366 (4)
O1—C11.222 (3)C21—C221.411 (3)
O2—C21.304 (3)C22—C231.384 (4)
O11—C11.239 (3)C23—C241.418 (4)
O22—C21.215 (3)C24—C251.407 (3)
O5—H520.83 (3)C25—C261.518 (3)
O5—H510.82 (2)C26—C271.391 (3)
O6—H610.83 (3)C27—C281.418 (4)
O6—H620.85 (3)C28—C291.399 (4)
O7—H710.85 (2)C29—C2101.384 (3)
O7—H720.86 (3)C11—H110.9299
O8—H810.83 (3)C12—H120.9302
O8—H820.86 (4)C13—H130.9297
N11—C111.251 (3)C14—H140.9300
N11—C151.366 (3)C17—H170.9301
N12—C161.441 (3)C18—H180.9303
N12—C1101.257 (3)C19—H190.9302
N21—C251.360 (3)C21—H210.9301
N21—C211.377 (3)C22—H220.9302
N22—C2101.380 (3)C23—H230.9302
N22—C261.380 (3)C24—H240.9302
O9—H920.85 (3)C27—H270.9302
O9—H910.83 (2)C28—H280.9299
C1—C21.499 (3)C29—H290.9300
C11—C121.456 (4)C110—H1100.9305
C12—C131.392 (4)C210—H2100.9303
C13—C141.276 (4)
Co···H81i3.28 (3)C23···C26v3.497 (3)
O1···O22.542 (2)C23···C27v3.484 (3)
O1···N123.169 (3)C24···C29v3.589 (3)
O1···N213.071 (2)C24···C210v3.488 (3)
O1···C22.264 (3)C25···C29v3.339 (3)
O1···C213.252 (3)C26···C23i3.497 (3)
O1···C17ii3.211 (3)C27···C23i3.484 (3)
O2···O8i2.709 (2)C27···C22i3.461 (3)
O2···N223.025 (2)C28···C21i3.519 (4)
O2···O12.542 (2)C28···O6i3.191 (4)
O2···N212.942 (2)C29···C25i3.339 (3)
O2···C12.376 (3)C29···C24i3.589 (3)
O5···C22iii3.366 (3)C1···H51iv2.94 (3)
O5···O72.843 (3)C1···H12viii2.9397
O5···O11iv2.678 (3)C2···H12viii3.0217
O5···O222.681 (3)C2···H28v3.0241
O5···O62.932 (3)C2···H522.93 (3)
O6···C28v3.191 (4)C2···H81i2.88 (3)
O6···O82.946 (3)C110···C14ii3.571 (4)
O6···O9v2.763 (3)C110···O7xii3.160 (3)
O6···O52.932 (3)C11···H2102.9381
O7···O92.768 (3)C14···H172.4731
O7···O52.843 (3)C16···H27i3.0992
O7···C110iii3.160 (3)C17···H27i3.0499
O7···O8i2.698 (3)C17···H142.5260
O8···O62.946 (3)C19···H91xi3.05 (3)
O8···O92.970 (3)C24···H272.7871
O8···O2v2.709 (2)C27···H242.7971
O8···C210v3.247 (3)C28···H61i3.00 (4)
O8···O7v2.698 (3)C210···C24i3.488 (3)
O9···O82.970 (3)C210···O8i3.247 (3)
O9···C19vi3.296 (4)H12···O11viii2.8485
O9···O72.768 (3)H12···C2viii3.0217
O9···C18vi3.226 (4)H12···C1viii2.9397
O9···O6i2.763 (3)H13···O22xiii2.8699
O11···C22vii3.168 (3)H13···O22viii2.4562
O11···C21vii3.073 (3)H14···C172.5260
O11···O222.669 (3)H14···H171.9234
O11···O5iv2.678 (3)H17···C142.4731
O22···C13viii3.183 (4)H17···H141.9234
O22···O112.669 (3)H17···O1ii2.5636
O22···O52.681 (3)H18···O9xi2.8794
O1···H212.7175H19···H82xi2.5078
O1···H17ii2.5636H19···O8xi2.6324
O2···H81i1.89 (3)H19···H91xi2.5500
O5···H721.99 (3)H21···O11vii2.4497
O5···H622.10 (3)H21···O12.7175
O6···H210ix2.7753H22···O11vii2.6916
O6···H92v1.91 (3)H23···O7xiv2.6945
O7···H82i1.84 (4)H24···H272.2591
O7···H922.85 (4)H24···C272.7971
O7···H110iii2.4490H27···C17v3.0499
O7···H23x2.6945H27···C242.7871
O8···H612.19 (2)H27···H242.2591
O8···H912.145 (19)H27···C16v3.0992
O8···H19vi2.6324H28···C2i3.0241
O8···H29ix2.7607H28···O22i2.9139
O9···H18vi2.8794H29···H81xiii2.5564
O9···H711.95 (2)H29···O8xiii2.7607
O11···H22vii2.6916H51···C1iv2.94 (3)
O11···H51iv1.89 (3)H51···O11iv1.89 (3)
O11···H12viii2.8485H51···H622.48 (4)
O11···H21vii2.4497H52···H722.18 (4)
O22···H28v2.9139H52···O221.90 (3)
O22···H13ix2.8699H52···C22.93 (3)
O22···H521.90 (3)H61···C28v3.00 (4)
O22···H13viii2.4562H61···H92v2.36 (5)
N11···C162.233 (3)H61···H822.33 (5)
N11···N122.462 (3)H61···O82.19 (2)
N11···N223.193 (3)H62···H92v2.38 (5)
N11···C2103.282 (3)H62···O52.10 (3)
N12···C152.405 (3)H62···H512.48 (4)
N12···N223.080 (3)H71···H912.33 (4)
N12···N112.462 (3)H71···H922.13 (4)
N12···O13.169 (3)H71···O91.95 (2)
N21···O22.942 (2)H71···H82i2.22 (5)
N21···C1103.332 (3)H72···H110iii2.5525
N21···C262.433 (3)H72···H82i2.31 (5)
N21···O13.071 (2)H72···O51.99 (3)
N21···N222.741 (3)H72···H522.18 (4)
N22···N212.741 (3)H81···C2v2.88 (3)
N22···N113.193 (3)H81···O2v1.89 (3)
N22···O23.025 (2)H81···Cov3.28 (3)
N22···C252.479 (3)H81···H29ix2.5564
N22···N123.080 (3)H82···H71v2.22 (5)
N11···H2102.7030H82···H19vi2.5078
N21···H1102.7277H82···H612.33 (5)
C13···O22viii3.183 (4)H82···H72v2.31 (5)
C14···C19ii3.527 (4)H82···O7v1.84 (4)
C14···C110ii3.571 (4)H91···H712.33 (4)
C15···C18ii3.576 (3)H91···C19vi3.05 (3)
C16···C17ii3.588 (3)H91···O82.145 (19)
C16···C16ii3.538 (3)H91···H19vi2.5500
C17···C16ii3.588 (3)H92···O6i1.91 (3)
C17···O1ii3.211 (3)H92···H61i2.36 (5)
C18···C15ii3.576 (3)H92···H712.13 (4)
C18···O9xi3.226 (4)H92···O72.85 (4)
C19···O9xi3.296 (4)H92···H62i2.38 (5)
C19···C14ii3.527 (4)H110···O7xii2.4490
C21···O11vii3.073 (3)H110···H72xii2.5524
C21···C28v3.519 (4)H110···N212.7277
C22···C27v3.461 (3)H210···C112.9381
C22···O5xii3.366 (3)H210···N112.7030
C22···O11vii3.168 (3)H210···O6xiii2.7753
O1—Co—O276.27 (7)C16—C17—C18111.6 (3)
O1—Co—N1197.94 (7)C17—C18—C19120.7 (3)
O1—Co—N1298.45 (7)C18—C19—C110124.5 (3)
O1—Co—N2191.63 (7)N21—C21—C22124.4 (2)
O1—Co—N22166.06 (7)C21—C22—C23116.9 (2)
O2—Co—N11100.54 (7)C22—C23—C24119.2 (2)
O2—Co—N12167.58 (7)C23—C24—C25121.2 (2)
O2—Co—N2188.59 (7)C24—C25—C26124.89 (19)
O2—Co—N2293.33 (7)N21—C25—C26115.35 (18)
N11—Co—N1268.75 (8)N21—C25—C24119.76 (19)
N11—Co—N21168.08 (7)N22—C26—C27119.86 (19)
N11—Co—N2293.04 (8)N22—C26—C25117.58 (18)
N12—Co—N21102.91 (8)C25—C26—C27122.55 (19)
N12—Co—N2293.51 (8)C26—C27—C28119.0 (2)
N21—Co—N2278.68 (8)C27—C28—C29121.2 (2)
Co—O1—C1118.26 (14)C28—C29—C210117.3 (3)
Co—O2—C2115.90 (13)N12—C110—C19115.7 (3)
H51—O5—H52105 (3)N11—C11—H11119.07
H61—O6—H6299 (3)C12—C11—H11119.09
H71—O7—H72104 (3)C11—C12—H12117.01
H81—O8—H82103 (3)C13—C12—H12116.96
C11—N11—C15112.1 (2)C14—C13—H13123.53
Co—N11—C11124.18 (19)C12—C13—H13123.50
Co—N11—C15123.74 (15)C15—C14—H14120.51
Co—N12—C110117.74 (18)C13—C14—H14120.53
C16—N12—C110119.7 (2)C18—C17—H17124.25
Co—N12—C16122.55 (15)C16—C17—H17124.15
Co—N21—C21127.13 (15)C19—C18—H18119.65
Co—N21—C25114.26 (14)C17—C18—H18119.63
C21—N21—C25118.50 (19)C110—C19—H19117.77
Co—N22—C26113.91 (14)C18—C19—H19117.73
Co—N22—C210125.76 (15)C22—C21—H21117.80
C26—N22—C210120.21 (19)N21—C21—H21117.85
H91—O9—H92116 (3)C21—C22—H22121.53
O1—C1—C2112.26 (18)C23—C22—H22121.53
O11—C1—C2121.0 (2)C24—C23—H23120.39
O1—C1—O11126.7 (2)C22—C23—H23120.38
O22—C2—C1115.29 (19)C23—C24—H24119.40
O2—C2—O22129.0 (2)C25—C24—H24119.39
O2—C2—C1115.76 (18)C28—C27—H27120.51
N11—C11—C12121.8 (2)C26—C27—H27120.48
C11—C12—C13126.0 (3)C27—C28—H28119.41
C12—C13—C14113.0 (3)C29—C28—H28119.40
C13—C14—C15119.0 (3)C210—C29—H29121.38
N11—C15—C16108.44 (19)C28—C29—H29121.37
C14—C15—C16123.4 (2)N22—C210—C29122.5 (2)
N11—C15—C14128.1 (2)C19—C110—H110122.21
N12—C16—C17127.9 (2)N12—C110—H110122.14
C15—C16—C17115.7 (2)C29—C210—H210118.74
N12—C16—C15116.48 (19)N22—C210—H210118.79
O2—Co—O1—C18.60 (16)Co—N12—C16—C152.2 (3)
N11—Co—O1—C190.38 (17)Co—N12—C16—C17177.64 (18)
N12—Co—O1—C1159.95 (16)C110—N12—C16—C15180.0 (2)
N21—Co—O1—C196.75 (17)C110—N12—C16—C170.2 (3)
O1—Co—O2—C20.38 (15)Co—N12—C110—C19177.41 (17)
N11—Co—O2—C295.31 (15)C16—N12—C110—C190.5 (3)
N21—Co—O2—C292.40 (15)Co—N21—C21—C22176.14 (16)
N22—Co—O2—C2170.97 (15)C25—N21—C21—C220.3 (3)
O1—Co—N11—C1184.0 (2)Co—N21—C25—C24175.77 (15)
O1—Co—N11—C1597.23 (17)Co—N21—C25—C264.1 (2)
O2—Co—N11—C116.6 (2)C21—N21—C25—C240.6 (3)
O2—Co—N11—C15174.65 (16)C21—N21—C25—C26179.52 (18)
N12—Co—N11—C11180.0 (2)Co—N22—C26—C254.2 (2)
N12—Co—N11—C151.20 (16)Co—N22—C26—C27175.03 (16)
N22—Co—N11—C1187.4 (2)C210—N22—C26—C25179.66 (18)
N22—Co—N11—C1591.39 (17)C210—N22—C26—C271.1 (3)
O1—Co—N12—C1696.97 (16)Co—N22—C210—C29174.89 (17)
O1—Co—N12—C11085.15 (18)C26—N22—C210—C290.8 (3)
N11—Co—N12—C161.69 (15)O1—C1—C2—O213.1 (3)
N11—Co—N12—C110179.6 (2)O11—C1—C2—O2214.0 (3)
N21—Co—N12—C16169.39 (16)O1—C1—C2—O22167.4 (2)
N21—Co—N12—C1108.49 (19)O11—C1—C2—O2165.5 (2)
N22—Co—N12—C1690.21 (16)N11—C11—C12—C130.6 (4)
N22—Co—N12—C11087.67 (18)C11—C12—C13—C140.4 (4)
O1—Co—N21—C2112.52 (17)C12—C13—C14—C150.3 (4)
O1—Co—N21—C25171.44 (14)C13—C14—C15—C16179.4 (2)
O2—Co—N21—C2188.75 (17)C13—C14—C15—N110.2 (4)
O2—Co—N21—C2595.21 (14)N11—C15—C16—C17178.88 (19)
N12—Co—N21—C2186.53 (18)C14—C15—C16—N12179.3 (2)
N12—Co—N21—C2589.51 (15)C14—C15—C16—C170.8 (3)
N22—Co—N21—C21177.58 (18)N11—C15—C16—N121.0 (3)
N22—Co—N21—C251.53 (14)N12—C16—C17—C180.6 (3)
O2—Co—N22—C2686.38 (15)C15—C16—C17—C18179.2 (2)
O2—Co—N22—C21089.54 (17)C16—C17—C18—C191.0 (3)
N11—Co—N22—C26172.87 (15)C17—C18—C19—C1100.7 (4)
N11—Co—N22—C21011.22 (18)C18—C19—C110—N120.2 (4)
N12—Co—N22—C26103.99 (15)N21—C21—C22—C230.6 (3)
N12—Co—N22—C21080.10 (18)C21—C22—C23—C240.1 (3)
N21—Co—N22—C261.52 (14)C22—C23—C24—C250.8 (3)
N21—Co—N22—C210177.43 (18)C23—C24—C25—N211.2 (3)
Co—O1—C1—O11164.92 (19)C23—C24—C25—C26179.0 (2)
Co—O1—C1—C213.6 (2)N21—C25—C26—C27173.56 (19)
Co—O2—C2—O22174.4 (2)C24—C25—C26—C276.6 (3)
Co—O2—C2—C16.2 (2)C24—C25—C26—N22174.2 (2)
Co—N11—C11—C12179.34 (19)N21—C25—C26—N225.6 (3)
C15—N11—C11—C120.5 (3)N22—C26—C27—C280.6 (3)
Co—N11—C15—C14179.22 (18)C25—C26—C27—C28179.8 (2)
Co—N11—C15—C160.5 (2)C26—C27—C28—C290.3 (4)
C11—N11—C15—C140.3 (3)C27—C28—C29—C2100.6 (4)
C11—N11—C15—C16179.4 (2)C28—C29—C210—N220.1 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y, z+1; (v) x, y+1/2, z+1/2; (vi) x1, y+1/2, z+1/2; (vii) x+1, y, z+1; (viii) x, y, z; (ix) x, y, z+1; (x) x1, y+1/2, z1/2; (xi) x+1, y+1/2, z1/2; (xii) x+1, y, z; (xiii) x, y, z1; (xiv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O11iv0.82 (2)1.89 (3)2.678 (3)159 (3)
O5—H52···O220.83 (3)1.90 (3)2.681 (3)156 (3)
O6—H61···O80.83 (3)2.19 (2)2.946 (3)153 (3)
O6—H62···O50.85 (3)2.10 (3)2.932 (3)168 (3)
O7—H71···O90.85 (2)1.95 (2)2.768 (3)164 (3)
O7—H72···O50.86 (3)1.99 (3)2.843 (3)169 (3)
O8—H81···O2v0.83 (3)1.89 (3)2.709 (2)170 (3)
O8—H82···O7v0.86 (4)1.84 (4)2.698 (3)178 (4)
O9—H91···O80.83 (2)2.145 (19)2.970 (3)174 (3)
O9—H92···O6i0.85 (3)1.91 (3)2.763 (3)177 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (iv) x, y, z+1; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C2O4)(C10H8N2)2]·5H2O
Mr549.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.001 (2), 22.861 (5), 10.844 (2)
β (°) 103.57 (3)
V3)2410.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.2 × 0.1 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.85, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
13313, 6777, 4778
Rint0.033
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.137, 1.07
No. of reflections6777
No. of parameters365
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 1.02

Computer programs: COLLECT (Nonius, 1998), DENZO-SCALEPACK (Otwinowski & Minor, 1997), DENZO-SCALEPACK, SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997), PLATON.

Selected geometric parameters (Å, º) top
Co—O12.0939 (15)Co—N122.091 (2)
Co—O22.0213 (17)Co—N212.1872 (19)
Co—N112.262 (2)Co—N222.1367 (19)
O1—Co—O276.27 (7)O2—Co—N2293.33 (7)
O1—Co—N1197.94 (7)N11—Co—N1268.75 (8)
O1—Co—N1298.45 (7)N11—Co—N21168.08 (7)
O1—Co—N2191.63 (7)N11—Co—N2293.04 (8)
O1—Co—N22166.06 (7)N12—Co—N21102.91 (8)
O2—Co—N11100.54 (7)N12—Co—N2293.51 (8)
O2—Co—N12167.58 (7)N21—Co—N2278.68 (8)
O2—Co—N2188.59 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O11i0.82 (2)1.89 (3)2.678 (3)159 (3)
O5—H52···O220.83 (3)1.90 (3)2.681 (3)156 (3)
O6—H61···O80.83 (3)2.19 (2)2.946 (3)153 (3)
O6—H62···O50.85 (3)2.10 (3)2.932 (3)168 (3)
O7—H71···O90.85 (2)1.95 (2)2.768 (3)164 (3)
O7—H72···O50.86 (3)1.99 (3)2.843 (3)169 (3)
O8—H81···O2ii0.83 (3)1.89 (3)2.709 (2)170 (3)
O8—H82···O7ii0.86 (4)1.84 (4)2.698 (3)178 (4)
O9—H91···O80.83 (2)2.145 (19)2.970 (3)174 (3)
O9—H92···O6iii0.85 (3)1.91 (3)2.763 (3)177 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds