Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The stoichiometric reaction of 1,10-phenanthroline (phen), imino­di­acetic acid (IDA-H2) and Cu(ClO4)2 in a H2O-CH3OH (2:1) solution yields [mu]-imino­diacetato-2:1[kappa]4O,N,O':O''-tris(1,10-phenanthroline)-1[kappa]4N,N';2[kappa]2N,N'-dicopper(II) diperchlorate methanol solvate, [Cu2(C4H5NO4)(C12H8N2)3](ClO4)2·CH3OH. The IDA ligand bridges the two CuII ions via a carboxyl­ate group and uses one further N and an O atom of the second carboxylate group to complete a fac-tridentate coordination at one Cu centre. A phen ligand completes a distorted square-pyramidal coordination at this metal atom, although there is weak coordination by a perchlorate O atom at a sixth position. The second Cu centre has a distorted trigonal-bipyramidal coordination to two phen moieties and a carboxyl­ate O atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010402102X/tr1091sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010402102X/tr1091Isup2.hkl
Contains datablock I

CCDC reference: 254906

Comment top

On account of the tridentate chelating property of the iminodiacetate (IDA) ligand and the flexibility of the CuII coordination stereochemistry, extensive research has been devoted to the structures of a variety of {Cu(IDA)(H2O)2}n mixed-ligand complexes of CuII, with IDA-like groups as primary ligands and N-heterocyclic donors as auxiliary ligands (Bugella-Altamirano Choquesillo et al., 2002; Bugella-Altamirano González et al., 2002; Chatterjee & Stephen, 2001; de la Cueva et al., 1998). Such ternary complexes are bio-inorganic model compounds for mono- and dinuclear copper proteins. In this context, the CuII complex serves as a metal centre, while the tridentate IDA ligand or IDA derivative acts as a protein-like moiety and the N-heterocyclic donors play the role of substrate or inhibitor. All mixed-ligand complexes having a Cu:IDA-like:N-heterocyclic donor ratio of 1:1:2 exhibit an IDA-like ligand in a fac-chelating conformation. In contrast, complexes with an equimolar Cu:IDA-like:N-heterocyclic donor ratio (1:1:1) have the CuII ion in a distorted square-pyramidal coordination (4 + 1 type), or more rarely in an elongated octahedral coordination (4 + 2 or 4 + 1+1 type), and the IDA-like ligand adopts a mer-tridentate chelating role (Brandi-Blanco et al., 2003; Román-Alpiste et al., 1999). It was demonstrated that the stoichiometry and coordination character of the auxiliary ligand influence the coordination geometry of IDA. Compared with 2,2'-bipyridyl (Abarca et al., 1993), 1,10-phenanthroline (phen) possesses a stronger coordination ability. On this basis, we selected phen as the secondary ligand and synthesized the title dinuclear CuII complex, (I). \sch

The molecular structure and crystal packing of (I) are illustrated in Figs. 1–3. Selected geometric parameters are listed in Table 1. In this new mixed-ligand dinuclear complex, IDA serves as a bridging ligand linking two different moieties, Cu(phen)2]2+ and [Cu(phen)]2+, via a carboxylate group. Unexpectedly, the two CuII ions exhibit totally different coordination geometries. The coordination polyhedron around Cu1 can be described as a distorted trigonal bipyramid, similar to those reported previously (Boys & Escobar, 1981; Anderson, 1975; Wei & Yang, 2004).

We are primarily interested in the coordination around Cu2, which shows a distorted square pyramid with a bidentate phen ligand and an O,N,O'-tridentate chelating IDA ligand. Atom O2 of IDA occupies the apical position. The atoms in the basal plane, N6, N7 from phen, and N5 and O4 from IDA, are displaced from the least-squares plane by −0.24 (2)–0.23 (3) Å, with a tetrahedral distortion. Atom Cu2 is displaced by 0.13 (4) Å from the mean plane towards atom O2, a distance almost twice as far as the value reported for compound (II), (2,2'-bipyridyl)(iminodiacetato)copper(II) hexahydrate (Abarca et al., 1993).

All phen ligands in (I) have a nearly planar conformation [maximum deviation 0.048 (6) Å]. Atom N7 of phen is in a trans position to atom N5 of IDA. The entry of atom N6 forces the IDA-Cu2 chelate ring to bend along the Cu2—N5 bond. Thus, the IDA ligand forms two five-membered chelate rings sharing the Cu2—N5 bond, with a dihedral angle of 71.34 (19)°, adopting a fac-tridentate chelating role in accordance with the 1:1:2 coordination rule. In addition, atom Cu2 is weakly coordinated by a sixth atom, O8 of the ClO4 anion, with a Cu2—O8 distance of 3.232 (11) Å (Fig. 3). Therefore, the overall coordination configuration around Cu2 is actually a distorted octahedron. Thus, IDA plays dual roles, as a tridentate chelate to Cu2 and as a bridge between Cu1 and Cu2.

In this dinuclear complex, it is noticeable that the source of the tridentate chelate atoms of IDA is different from those of the earlier reported complexes. In the latter, no matter which conformation IDA assumes, mer or fac, the carboxylate group is distorted by coordination so that the longer C—O bond is bound to the metal. However, in (I), one carboxylate group binds to two Cu atoms, and it is notable that the longer C—O bond is bound to Cu1 and the shorter to Cu2, where it is part of the tridentate coordination. This is in accord with the corresponding Cu—O bonds, that to Cu2 being longer than that to Cu1. Furthermore, while the binding to Cu1 takes place in the equatorial plane of the trigonal bipyramid, that to Cu2 lies on the Jahn-Teller axis (along with the perchlorate) and would be expected to lengthened.

Details of the hydrogen-bonding geometry of (I) are listed in Table 2. As illustrated in Fig. 2, the packing has a network of hydrogen bonds. These are mainly formed between methanol molecules, the N5 atom of IDA and the O atoms of the ClO4 anion.

Furthermore, a more interesting phenomenon observed is shown in Fig. 3. Pairs of phen ligands from neighbouring complexes are interleaved to form a stack along the b axis. Phen planes (1) (C13A—C24A/N3A/N4A) and (2) (C13—C24/N3/N4) are symmetry-related and oriented in a parallel fashion, the shortest interatomic distance C18—C20(1 − x, −y, 1 − z) being 3.294 (11) Å, which is shorter than the distance (3.4 Å) between neighbouring base pairs in DNA (Neidle, 1999), indicating significant ππ packing interactions. Phen plane (3) (C29—C40/N6/N7) is non-parallel to plane (1), the angle between them being 20.0 (5)°. The shortest interatomic distance, C19—C33(1 − x, −y, 1 − z), is 3.126 (11) Å, showing an even stronger ππ stacking interaction. Therefore, ππ stacking interactions dominate throughout the crystal of (I), stabilizing the crystal packing together with hydrogen-bonding interactions.

Experimental top

1,10-Phenanthroline (0.0793 g, 0.4 mmol), iminodiacetic acid (0.0266 g, 0.2 mmol) and Cu(ClO4)2 (0.0766 g, 0.4 mmol) were dissolved in an H2O:CH3OH (2:1) solution. The mixture was refluxed for 30 min with stirring and then cooled slowly, before being filtered and kept at room temperature. Blue block-shaped crystals of (I) grew after two weeks.

Refinement top

All H atoms were treated as riding atoms, with C—H(CH) = 0.93, C—H(CH2) = 0.97, C—H(CH3) = 0.96, N—H(NH) = 0.80 and O—H(OH) = 0.96 Å, and with Uiso(H) = 1.2Ueq(CH, NH, CH2) or 1.5Ueq(CH3, OH).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms, solvent molecules and counterions have been omitted for clarity.
[Figure 2] Fig. 2. The hydrogen-bonding network and octahedral coordination geometry around Cu2. [Symmetry code: (i) 1 + x, y, z]. Please clarify - symmetry code does not match that in Table 2 for N5···O13i.
[Figure 3] Fig. 3. The ππ stacking interaction in (I). Solvent molecules and counterions have been omitted for clarity. [Symmetry code: (ii) 1 − x,-y,1 − z].
µ-iminodiacetato-1:2κ4O,N,O':O''-tris(1,10-phenanthroline)- 1κ4N,N';2κ2N,N'-dicopper(II) diperchlorate methanol solvate top
Crystal data top
[Cu2(C4H5NO4)(C12H8N2)3](ClO4)2·CH4OZ = 2
Mr = 1029.74F(000) = 1048
Triclinic, P1Dx = 1.638 Mg m3
Hall symbol: -P 1Melting point: none K
a = 10.511 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.707 (4) ÅCell parameters from 2337 reflections
c = 15.551 (5) Åθ = 2.3–22.0°
α = 72.785 (4)°µ = 1.22 mm1
β = 82.336 (4)°T = 297 K
γ = 78.048 (5)°Block, blue
V = 2087.6 (11) Å30.30 × 0.30 × 0.30 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
7184 independent reflections
Radiation source: fine-focus sealed tube4501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1112
Tmin = 0.710, Tmax = 0.710k = 716
8597 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0826P)2]
where P = (Fo2 + 2Fc2)/3
7184 reflections(Δ/σ)max < 0.001
587 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu2(C4H5NO4)(C12H8N2)3](ClO4)2·CH4Oγ = 78.048 (5)°
Mr = 1029.74V = 2087.6 (11) Å3
Triclinic, P1Z = 2
a = 10.511 (3) ÅMo Kα radiation
b = 13.707 (4) ŵ = 1.22 mm1
c = 15.551 (5) ÅT = 297 K
α = 72.785 (4)°0.30 × 0.30 × 0.30 mm
β = 82.336 (4)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
7184 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4501 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.710Rint = 0.032
8597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.03Δρmax = 0.71 e Å3
7184 reflectionsΔρmin = 0.43 e Å3
587 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.52692 (7)0.06800 (6)0.21839 (5)0.0445 (3)
Cu20.41049 (7)0.44114 (6)0.25825 (5)0.0475 (3)
Cl10.1402 (2)0.72913 (18)0.27285 (13)0.0705 (6)
Cl20.9659 (2)0.21298 (19)0.26841 (17)0.0813 (6)
O10.3918 (4)0.1873 (3)0.1719 (3)0.0452 (10)
O20.4595 (4)0.2821 (3)0.2437 (3)0.0477 (11)
O30.4989 (6)0.6167 (4)0.0196 (3)0.0880 (18)
O40.5131 (5)0.5153 (4)0.1597 (3)0.0685 (14)
O50.1024 (6)0.6730 (6)0.3583 (4)0.129 (3)
O60.0293 (8)0.7674 (8)0.2251 (5)0.163 (4)
O70.1845 (8)0.8141 (6)0.2763 (7)0.169 (4)
O80.2448 (8)0.6728 (7)0.2352 (6)0.173 (4)
O90.8432 (8)0.1944 (7)0.3038 (6)0.157 (3)
O101.0270 (6)0.1373 (6)0.2242 (5)0.119 (2)
O111.0420 (9)0.2326 (8)0.3205 (7)0.189 (4)
O120.9278 (10)0.3097 (6)0.2020 (6)0.176 (4)
O130.9918 (8)0.5167 (11)0.2051 (7)0.240 (6)
H13A1.03460.45270.19260.361*
N10.6604 (5)0.1122 (4)0.1192 (3)0.0462 (13)
N20.5346 (5)0.0461 (4)0.1473 (3)0.0419 (12)
N30.4122 (5)0.0051 (4)0.3236 (3)0.0450 (13)
N40.6684 (5)0.0125 (4)0.3069 (4)0.0469 (13)
N50.2834 (5)0.4564 (4)0.1685 (3)0.0468 (13)
H50.21100.47480.18740.056*
N60.2935 (5)0.4191 (4)0.3758 (3)0.0450 (13)
N70.5441 (5)0.4197 (4)0.3433 (3)0.0456 (13)
C10.7217 (6)0.1912 (5)0.1079 (5)0.0575 (18)
H10.69400.23590.14410.069*
C20.8237 (7)0.2086 (6)0.0451 (5)0.066 (2)
H20.86810.26220.04060.079*
C30.8597 (7)0.1466 (7)0.0110 (5)0.065 (2)
H30.92640.16030.05610.078*
C40.7986 (6)0.0631 (6)0.0021 (4)0.0517 (18)
C50.6986 (6)0.0493 (5)0.0649 (4)0.0428 (15)
C60.6304 (6)0.0360 (5)0.0789 (4)0.0418 (15)
C70.8281 (6)0.0054 (7)0.0568 (4)0.064 (2)
H70.89460.00420.10280.077*
C80.7646 (7)0.0831 (7)0.0454 (5)0.066 (2)
H80.78680.12600.08360.079*
C90.6633 (6)0.1016 (6)0.0243 (4)0.0517 (17)
C100.5919 (7)0.1815 (6)0.0416 (5)0.0593 (19)
H100.60930.22690.00570.071*
C110.4988 (7)0.1931 (6)0.1090 (5)0.062 (2)
H110.45300.24750.12120.074*
C120.4703 (6)0.1238 (5)0.1611 (4)0.0492 (17)
H120.40400.13200.20730.059*
C130.7968 (7)0.0233 (6)0.2963 (6)0.067 (2)
H130.83610.00880.24070.080*
C140.8743 (8)0.0803 (7)0.3650 (7)0.082 (3)
H140.96460.08760.35540.098*
C150.8183 (11)0.1259 (6)0.4465 (7)0.081 (3)
H150.87030.16270.49370.098*
C160.6839 (9)0.1180 (5)0.4604 (6)0.064 (2)
C170.6148 (7)0.0626 (5)0.3865 (4)0.0451 (16)
C180.4768 (7)0.0517 (5)0.3947 (4)0.0477 (17)
C190.6167 (11)0.1647 (6)0.5433 (5)0.077 (3)
H190.66390.20220.59280.093*
C200.4893 (11)0.1559 (6)0.5512 (5)0.076 (3)
H200.44810.18620.60660.092*
C210.4125 (9)0.1011 (5)0.4769 (5)0.0579 (19)
C220.2786 (10)0.0881 (6)0.4794 (6)0.076 (3)
H220.23160.11870.53200.092*
C230.2161 (8)0.0317 (7)0.4064 (6)0.078 (2)
H230.12600.02470.40810.093*
C240.2850 (7)0.0169 (6)0.3277 (5)0.0573 (18)
H240.24030.05790.27790.069*
C250.3888 (6)0.2706 (5)0.1923 (4)0.0413 (15)
C260.2836 (6)0.3577 (5)0.1498 (5)0.0539 (18)
H26A0.29390.36830.08490.065*
H26B0.19950.33720.17130.065*
C270.3194 (8)0.5383 (5)0.0888 (4)0.064 (2)
H27A0.25840.60230.08730.077*
H27B0.31220.51900.03470.077*
C280.4556 (8)0.5567 (6)0.0885 (6)0.066 (2)
C290.1672 (6)0.4183 (5)0.3893 (5)0.0527 (17)
H290.11810.43320.34000.063*
C300.1058 (7)0.3952 (6)0.4769 (6)0.064 (2)
H300.01690.39370.48490.077*
C310.1730 (7)0.3756 (6)0.5484 (5)0.063 (2)
H310.13120.36250.60620.075*
C320.3066 (7)0.3751 (5)0.5357 (5)0.0522 (17)
C330.3618 (6)0.3983 (5)0.4478 (4)0.0435 (15)
C340.4986 (6)0.3970 (5)0.4303 (4)0.0436 (15)
C350.3912 (9)0.3505 (5)0.6063 (5)0.066 (2)
H350.35560.33540.66580.079*
C360.5209 (8)0.3482 (6)0.5904 (5)0.066 (2)
H360.57330.33120.63830.079*
C370.5763 (7)0.3717 (5)0.5009 (5)0.0552 (18)
C380.7118 (7)0.3691 (6)0.4760 (6)0.067 (2)
H380.76980.35220.52060.081*
C390.7567 (8)0.3907 (6)0.3892 (6)0.074 (2)
H390.84550.38880.37330.089*
C400.6704 (7)0.4159 (6)0.3235 (5)0.062 (2)
H400.70240.43080.26320.074*
C410.8982 (17)0.5854 (13)0.1220 (16)0.304 (14)
H41A0.83690.63850.14160.457*
H41B0.85200.54050.10610.457*
H41C0.95170.61680.07040.457*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0514 (5)0.0414 (5)0.0408 (5)0.0131 (4)0.0031 (4)0.0108 (4)
Cu20.0504 (5)0.0492 (5)0.0461 (5)0.0153 (4)0.0052 (4)0.0176 (4)
Cl10.0690 (13)0.0864 (15)0.0556 (12)0.0275 (12)0.0082 (10)0.0150 (11)
Cl20.0690 (14)0.0806 (16)0.0964 (17)0.0165 (12)0.0146 (12)0.0348 (14)
O10.053 (3)0.039 (3)0.047 (3)0.011 (2)0.007 (2)0.013 (2)
O20.062 (3)0.043 (3)0.041 (2)0.002 (2)0.017 (2)0.016 (2)
O30.141 (5)0.070 (4)0.059 (3)0.054 (4)0.033 (3)0.021 (3)
O40.070 (3)0.083 (4)0.052 (3)0.031 (3)0.011 (3)0.013 (3)
O50.100 (5)0.182 (7)0.065 (4)0.040 (5)0.000 (3)0.030 (4)
O60.135 (6)0.255 (11)0.094 (5)0.036 (7)0.054 (5)0.020 (6)
O70.141 (7)0.113 (6)0.275 (10)0.072 (5)0.051 (7)0.082 (7)
O80.169 (7)0.164 (8)0.187 (8)0.027 (6)0.087 (6)0.097 (7)
O90.147 (6)0.174 (8)0.185 (7)0.079 (6)0.088 (6)0.112 (6)
O100.086 (4)0.152 (6)0.130 (5)0.022 (4)0.003 (4)0.089 (5)
O110.170 (8)0.239 (11)0.215 (9)0.034 (7)0.076 (7)0.169 (9)
O120.228 (9)0.095 (6)0.177 (8)0.026 (6)0.013 (7)0.001 (6)
O130.110 (6)0.386 (18)0.187 (9)0.035 (9)0.040 (7)0.064 (10)
N10.043 (3)0.048 (3)0.044 (3)0.012 (3)0.001 (2)0.005 (3)
N20.047 (3)0.039 (3)0.041 (3)0.010 (3)0.003 (2)0.015 (2)
N30.055 (3)0.049 (3)0.038 (3)0.020 (3)0.006 (3)0.018 (3)
N40.056 (4)0.035 (3)0.053 (4)0.008 (3)0.010 (3)0.014 (3)
N50.052 (3)0.036 (3)0.047 (3)0.000 (3)0.003 (2)0.011 (3)
N60.046 (3)0.039 (3)0.052 (3)0.007 (3)0.003 (3)0.020 (3)
N70.043 (3)0.053 (3)0.053 (3)0.012 (3)0.003 (3)0.030 (3)
C10.059 (4)0.053 (4)0.056 (4)0.016 (4)0.002 (4)0.006 (4)
C20.054 (5)0.075 (6)0.062 (5)0.025 (4)0.005 (4)0.001 (5)
C30.044 (4)0.092 (6)0.040 (4)0.015 (4)0.005 (3)0.015 (4)
C40.043 (4)0.066 (5)0.033 (4)0.008 (4)0.001 (3)0.003 (4)
C50.042 (4)0.047 (4)0.035 (3)0.000 (3)0.008 (3)0.008 (3)
C60.036 (3)0.048 (4)0.035 (3)0.000 (3)0.007 (3)0.006 (3)
C70.039 (4)0.104 (7)0.040 (4)0.001 (4)0.001 (3)0.015 (4)
C80.064 (5)0.089 (6)0.045 (4)0.002 (5)0.003 (4)0.027 (4)
C90.052 (4)0.067 (5)0.036 (4)0.001 (4)0.004 (3)0.020 (4)
C100.068 (5)0.066 (5)0.054 (5)0.009 (4)0.011 (4)0.033 (4)
C110.077 (5)0.054 (5)0.069 (5)0.023 (4)0.008 (4)0.029 (4)
C120.051 (4)0.051 (4)0.048 (4)0.013 (4)0.003 (3)0.015 (3)
C130.060 (5)0.055 (5)0.087 (6)0.008 (4)0.015 (4)0.022 (4)
C140.057 (5)0.072 (6)0.120 (8)0.007 (5)0.036 (6)0.033 (6)
C150.120 (8)0.044 (5)0.086 (7)0.011 (5)0.052 (6)0.025 (5)
C160.089 (6)0.039 (4)0.075 (6)0.002 (4)0.026 (5)0.029 (4)
C170.058 (4)0.032 (4)0.049 (4)0.007 (3)0.012 (3)0.015 (3)
C180.079 (5)0.032 (4)0.035 (4)0.014 (4)0.000 (3)0.012 (3)
C190.149 (9)0.032 (4)0.046 (5)0.003 (6)0.012 (6)0.011 (4)
C200.153 (9)0.034 (4)0.039 (5)0.018 (6)0.011 (6)0.012 (4)
C210.102 (6)0.034 (4)0.044 (4)0.023 (4)0.007 (4)0.019 (3)
C220.116 (8)0.060 (5)0.060 (5)0.043 (5)0.032 (5)0.026 (5)
C230.071 (5)0.100 (7)0.078 (6)0.040 (5)0.022 (5)0.045 (6)
C240.060 (5)0.067 (5)0.051 (4)0.020 (4)0.002 (4)0.022 (4)
C250.052 (4)0.041 (4)0.030 (3)0.015 (3)0.005 (3)0.007 (3)
C260.052 (4)0.042 (4)0.066 (5)0.006 (3)0.021 (3)0.008 (4)
C270.093 (6)0.042 (4)0.049 (4)0.014 (4)0.006 (4)0.000 (4)
C280.093 (6)0.053 (5)0.057 (5)0.024 (5)0.020 (5)0.026 (4)
C290.047 (4)0.054 (4)0.056 (4)0.004 (3)0.004 (3)0.017 (4)
C300.046 (4)0.061 (5)0.080 (6)0.011 (4)0.011 (4)0.018 (4)
C310.069 (5)0.061 (5)0.058 (5)0.018 (4)0.024 (4)0.024 (4)
C320.069 (5)0.040 (4)0.054 (4)0.013 (4)0.001 (4)0.023 (3)
C330.059 (4)0.034 (4)0.042 (4)0.010 (3)0.000 (3)0.018 (3)
C340.050 (4)0.042 (4)0.048 (4)0.009 (3)0.006 (3)0.025 (3)
C350.100 (6)0.051 (5)0.049 (5)0.015 (5)0.001 (4)0.019 (4)
C360.084 (6)0.065 (5)0.062 (5)0.015 (5)0.015 (4)0.032 (4)
C370.067 (5)0.043 (4)0.066 (5)0.017 (4)0.001 (4)0.027 (4)
C380.064 (5)0.063 (5)0.086 (6)0.005 (4)0.029 (5)0.032 (5)
C390.053 (5)0.091 (6)0.095 (7)0.015 (4)0.003 (5)0.052 (5)
C400.052 (4)0.076 (5)0.068 (5)0.020 (4)0.006 (4)0.036 (4)
C410.168 (15)0.164 (16)0.54 (4)0.041 (13)0.05 (2)0.02 (2)
Geometric parameters (Å, º) top
Cu1—O11.956 (4)C10—C111.332 (9)
Cu1—N11.984 (5)C10—H100.9300
Cu1—N31.986 (5)C11—C121.386 (9)
Cu1—N42.071 (5)C11—H110.9300
Cu1—N22.150 (5)C12—H120.9300
Cu2—O41.907 (5)C13—C141.374 (10)
Cu2—N71.975 (5)C13—H130.9300
Cu2—N51.997 (5)C14—C151.352 (11)
Cu2—N62.043 (5)C14—H140.9300
Cu2—O22.205 (4)C15—C161.386 (11)
Cl1—O71.358 (7)C15—H150.9300
Cl1—O81.375 (7)C16—C171.380 (9)
Cl1—O51.376 (5)C16—C191.424 (11)
Cl1—O61.390 (7)C17—C181.420 (9)
Cl2—O111.326 (8)C18—C211.412 (9)
Cl2—O91.377 (7)C19—C201.311 (11)
Cl2—O101.410 (6)C19—H190.9300
Cl2—O121.437 (8)C20—C211.427 (11)
O1—C251.266 (7)C20—H200.9300
O2—C251.224 (7)C21—C221.378 (11)
O3—C281.238 (8)C22—C231.337 (11)
O4—C281.256 (9)C22—H220.9300
O13—C411.66 (2)C23—C241.395 (9)
O13—H13A0.9600C23—H230.9300
N1—C11.328 (8)C24—H240.9300
N1—C51.348 (8)C25—C261.506 (8)
N2—C121.326 (7)C26—H26A0.9700
N2—C61.360 (7)C26—H26B0.9700
N3—C241.309 (8)C27—C281.504 (10)
N3—C181.327 (8)C27—H27A0.9700
N4—C131.320 (8)C27—H27B0.9700
N4—C171.339 (7)C29—C301.402 (9)
N5—C261.465 (8)C29—H290.9300
N5—C271.472 (7)C30—C311.327 (9)
N5—H50.7965C30—H300.9300
N6—C291.318 (7)C31—C321.391 (9)
N6—C331.338 (8)C31—H310.9300
N7—C401.316 (8)C32—C331.382 (8)
N7—C341.340 (7)C32—C351.425 (9)
C1—C21.361 (9)C33—C341.425 (8)
C1—H10.9300C34—C371.375 (9)
C2—C31.357 (10)C35—C361.348 (10)
C2—H20.9300C35—H350.9300
C3—C41.390 (10)C36—C371.406 (9)
C3—H30.9300C36—H360.9300
C4—C51.378 (8)C37—C381.421 (10)
C4—C71.408 (10)C38—C391.336 (10)
C5—C61.442 (8)C38—H380.9300
C6—C91.377 (9)C39—C401.376 (10)
C7—C81.328 (10)C39—H390.9300
C7—H70.9300C40—H400.9300
C8—C91.420 (9)C41—H41A0.9600
C8—H80.9300C41—H41B0.9600
C9—C101.395 (9)C41—H41C0.9600
O1—Cu1—N194.56 (18)N4—C13—C14122.0 (8)
O1—Cu1—N393.7 (2)N4—C13—H13119.0
N1—Cu1—N3171.7 (2)C14—C13—H13119.0
O1—Cu1—N4152.25 (19)C15—C14—C13119.6 (8)
N1—Cu1—N491.9 (2)C15—C14—H14120.2
N3—Cu1—N481.1 (2)C13—C14—H14120.2
O1—Cu1—N2109.21 (18)C14—C15—C16120.5 (8)
N1—Cu1—N280.3 (2)C14—C15—H15119.7
N3—Cu1—N296.21 (19)C16—C15—H15119.7
N4—Cu1—N298.48 (19)C17—C16—C15115.7 (8)
O4—Cu2—N792.2 (2)C17—C16—C19119.9 (8)
O4—Cu2—N586.5 (2)C15—C16—C19124.4 (9)
N7—Cu2—N5176.2 (2)N4—C17—C16124.4 (7)
O4—Cu2—N6156.0 (2)N4—C17—C18116.3 (6)
N7—Cu2—N681.2 (2)C16—C17—C18119.3 (7)
N5—Cu2—N6101.3 (2)N3—C18—C21122.1 (7)
O4—Cu2—O2102.52 (19)N3—C18—C17118.1 (6)
N7—Cu2—O295.05 (18)C21—C18—C17119.8 (7)
N5—Cu2—O281.80 (18)C20—C19—C16121.2 (8)
N6—Cu2—O2101.02 (17)C20—C19—H19119.4
O7—Cl1—O8104.6 (5)C16—C19—H19119.4
O7—Cl1—O5110.5 (6)C19—C20—C21121.6 (8)
O8—Cl1—O5111.0 (5)C19—C20—H20119.2
O7—Cl1—O6105.5 (6)C21—C20—H20119.2
O8—Cl1—O6117.6 (6)C22—C21—C18116.5 (7)
O5—Cl1—O6107.5 (4)C22—C21—C20125.3 (8)
O11—Cl2—O9118.3 (6)C18—C21—C20118.1 (8)
O11—Cl2—O10114.2 (5)C23—C22—C21120.2 (7)
O9—Cl2—O10109.6 (4)C23—C22—H22119.9
O11—Cl2—O12105.8 (6)C21—C22—H22119.9
O9—Cl2—O1298.2 (6)C22—C23—C24120.6 (8)
O10—Cl2—O12109.2 (5)C22—C23—H23119.7
C25—O1—Cu1118.7 (4)C24—C23—H23119.7
C25—O2—Cu2110.7 (4)N3—C24—C23120.2 (7)
C28—O4—Cu2114.5 (5)N3—C24—H24119.9
C41—O13—H13A109.1C23—C24—H24119.9
C1—N1—C5118.7 (5)O2—C25—O1125.4 (6)
C1—N1—Cu1125.6 (5)O2—C25—C26120.9 (6)
C5—N1—Cu1115.4 (4)O1—C25—C26113.7 (6)
C12—N2—C6117.4 (5)N5—C26—C25114.4 (5)
C12—N2—Cu1132.5 (4)N5—C26—H26A108.7
C6—N2—Cu1110.1 (4)C25—C26—H26A108.7
C24—N3—C18120.4 (6)N5—C26—H26B108.7
C24—N3—Cu1126.2 (5)C25—C26—H26B108.7
C18—N3—Cu1113.4 (4)H26A—C26—H26B107.6
C13—N4—C17117.7 (6)N5—C27—C28112.6 (6)
C13—N4—Cu1131.1 (5)N5—C27—H27A109.1
C17—N4—Cu1111.1 (4)C28—C27—H27A109.1
C26—N5—C27114.0 (5)N5—C27—H27B109.1
C26—N5—Cu2111.8 (4)C28—C27—H27B109.1
C27—N5—Cu2105.3 (4)H27A—C27—H27B107.8
C26—N5—H5106.2O3—C28—O4125.3 (8)
C27—N5—H5108.9O3—C28—C27117.0 (8)
Cu2—N5—H5110.6O4—C28—C27117.6 (7)
C29—N6—C33118.3 (6)N6—C29—C30121.0 (6)
C29—N6—Cu2129.8 (5)N6—C29—H29119.5
C33—N6—Cu2111.8 (4)C30—C29—H29119.5
C40—N7—C34118.7 (6)C31—C30—C29120.8 (7)
C40—N7—Cu2126.9 (5)C31—C30—H30119.6
C34—N7—Cu2114.0 (4)C29—C30—H30119.6
N1—C1—C2122.0 (7)C30—C31—C32119.1 (7)
N1—C1—H1119.0C30—C31—H31120.5
C2—C1—H1119.0C32—C31—H31120.5
C3—C2—C1119.0 (7)C33—C32—C31117.5 (7)
C3—C2—H2120.5C33—C32—C35117.5 (7)
C1—C2—H2120.5C31—C32—C35124.9 (7)
C2—C3—C4121.1 (7)N6—C33—C32123.2 (6)
C2—C3—H3119.4N6—C33—C34116.4 (6)
C4—C3—H3119.4C32—C33—C34120.3 (6)
C5—C4—C3116.0 (7)N7—C34—C37123.7 (6)
C5—C4—C7118.4 (7)N7—C34—C33116.4 (6)
C3—C4—C7125.5 (7)C37—C34—C33119.9 (6)
N1—C5—C4123.0 (6)C36—C35—C32122.7 (7)
N1—C5—C6117.4 (5)C36—C35—H35118.7
C4—C5—C6119.6 (6)C32—C35—H35118.7
N2—C6—C9123.5 (6)C35—C36—C37119.4 (7)
N2—C6—C5116.4 (6)C35—C36—H36120.3
C9—C6—C5120.1 (6)C37—C36—H36120.3
C8—C7—C4122.5 (6)C34—C37—C36120.2 (7)
C8—C7—H7118.8C34—C37—C38115.4 (7)
C4—C7—H7118.8C36—C37—C38124.4 (7)
C7—C8—C9120.8 (7)C39—C38—C37120.6 (7)
C7—C8—H8119.6C39—C38—H38119.7
C9—C8—H8119.6C37—C38—H38119.7
C6—C9—C10116.6 (6)C38—C39—C40119.4 (7)
C6—C9—C8118.6 (7)C38—C39—H39120.3
C10—C9—C8124.8 (7)C40—C39—H39120.3
C11—C10—C9120.5 (7)N7—C40—C39122.2 (7)
C11—C10—H10119.7N7—C40—H40118.9
C9—C10—H10119.7C39—C40—H40118.9
C10—C11—C12119.8 (7)O13—C41—H41A109.5
C10—C11—H11120.1O13—C41—H41B109.5
C12—C11—H11120.1H41A—C41—H41B109.5
N2—C12—C11122.2 (6)O13—C41—H41C109.5
N2—C12—H12118.9H41A—C41—H41C109.5
C11—C12—H12118.9H41B—C41—H41C109.5
N1—Cu1—O1—C2585.2 (4)C9—C10—C11—C121.7 (11)
N3—Cu1—O1—C2595.6 (4)C6—N2—C12—C110.3 (9)
N4—Cu1—O1—C2517.7 (6)Cu1—N2—C12—C11175.2 (5)
N2—Cu1—O1—C25166.5 (4)C10—C11—C12—N21.2 (11)
O4—Cu2—O2—C2586.8 (4)C17—N4—C13—C142.4 (10)
N7—Cu2—O2—C25179.8 (4)Cu1—N4—C13—C14179.5 (5)
N5—Cu2—O2—C252.3 (4)N4—C13—C14—C151.1 (12)
N6—Cu2—O2—C2597.8 (4)C13—C14—C15—C162.0 (12)
N7—Cu2—O4—C28172.1 (5)C14—C15—C16—C170.5 (11)
N5—Cu2—O4—C2811.4 (5)C14—C15—C16—C19178.9 (7)
N6—Cu2—O4—C2898.9 (7)C13—N4—C17—C165.2 (9)
O2—Cu2—O4—C2892.2 (5)Cu1—N4—C17—C16176.3 (5)
O1—Cu1—N1—C171.8 (5)C13—N4—C17—C18178.3 (6)
N4—Cu1—N1—C181.2 (5)Cu1—N4—C17—C180.2 (7)
N2—Cu1—N1—C1179.4 (5)C15—C16—C17—N44.2 (10)
O1—Cu1—N1—C5114.8 (4)C19—C16—C17—N4177.2 (6)
N4—Cu1—N1—C592.2 (4)C15—C16—C17—C18179.4 (6)
N2—Cu1—N1—C56.0 (4)C19—C16—C17—C180.9 (9)
O1—Cu1—N2—C1287.5 (6)C24—N3—C18—C210.1 (9)
N1—Cu1—N2—C12179.0 (6)Cu1—N3—C18—C21178.6 (5)
N3—Cu1—N2—C128.7 (6)C24—N3—C18—C17179.6 (6)
N4—Cu1—N2—C1290.5 (6)Cu1—N3—C18—C171.7 (7)
O1—Cu1—N2—C696.7 (4)N4—C17—C18—N31.0 (8)
N1—Cu1—N2—C65.2 (4)C16—C17—C18—N3177.7 (5)
N3—Cu1—N2—C6167.1 (4)N4—C17—C18—C21179.3 (5)
N4—Cu1—N2—C685.3 (4)C16—C17—C18—C212.6 (9)
O1—Cu1—N3—C2427.4 (5)C17—C16—C19—C200.2 (11)
N4—Cu1—N3—C24180.0 (6)C15—C16—C19—C20178.6 (8)
N2—Cu1—N3—C2482.4 (5)C16—C19—C20—C211.2 (12)
O1—Cu1—N3—C18151.2 (4)N3—C18—C21—C220.5 (9)
N4—Cu1—N3—C181.3 (4)C17—C18—C21—C22179.2 (6)
N2—Cu1—N3—C1899.0 (4)N3—C18—C21—C20176.7 (6)
O1—Cu1—N4—C13101.6 (7)C17—C18—C21—C203.6 (9)
N1—Cu1—N4—C131.9 (6)C19—C20—C21—C22179.9 (8)
N3—Cu1—N4—C13177.4 (6)C19—C20—C21—C183.0 (11)
N2—Cu1—N4—C1382.4 (6)C18—C21—C22—C230.4 (11)
O1—Cu1—N4—C1780.2 (5)C20—C21—C22—C23177.4 (7)
N1—Cu1—N4—C17176.3 (4)C21—C22—C23—C241.7 (12)
N3—Cu1—N4—C170.8 (4)C18—N3—C24—C231.2 (10)
N2—Cu1—N4—C1795.8 (4)Cu1—N3—C24—C23179.8 (5)
O4—Cu2—N5—C26108.2 (4)C22—C23—C24—N32.1 (11)
N6—Cu2—N5—C2694.6 (4)Cu2—O2—C25—O1178.6 (5)
O2—Cu2—N5—C265.0 (4)Cu2—O2—C25—C261.2 (7)
O4—Cu2—N5—C2716.1 (4)Cu1—O1—C25—O24.5 (8)
N6—Cu2—N5—C27141.0 (4)Cu1—O1—C25—C26177.9 (4)
O2—Cu2—N5—C27119.3 (4)C27—N5—C26—C25112.2 (6)
O4—Cu2—N6—C29105.4 (7)Cu2—N5—C26—C257.1 (7)
N7—Cu2—N6—C29179.1 (6)O2—C25—C26—N55.6 (8)
N5—Cu2—N6—C291.9 (6)O1—C25—C26—N5176.7 (5)
O2—Cu2—N6—C2985.6 (6)C26—N5—C27—C28104.6 (6)
O4—Cu2—N6—C3377.8 (7)Cu2—N5—C27—C2818.3 (6)
N7—Cu2—N6—C332.3 (4)Cu2—O4—C28—O3172.4 (6)
N5—Cu2—N6—C33174.9 (4)Cu2—O4—C28—C273.0 (8)
O2—Cu2—N6—C3391.1 (4)N5—C27—C28—O3172.8 (6)
O4—Cu2—N7—C4026.6 (6)N5—C27—C28—O411.4 (9)
N6—Cu2—N7—C40176.5 (6)C33—N6—C29—C300.6 (9)
O2—Cu2—N7—C4076.1 (6)Cu2—N6—C29—C30176.0 (5)
O4—Cu2—N7—C34160.1 (4)N6—C29—C30—C311.3 (11)
N6—Cu2—N7—C343.3 (4)C29—C30—C31—C322.0 (11)
O2—Cu2—N7—C3497.1 (4)C30—C31—C32—C331.9 (10)
C5—N1—C1—C21.8 (9)C30—C31—C32—C35176.9 (7)
Cu1—N1—C1—C2171.4 (5)C29—N6—C33—C320.6 (9)
N1—C1—C2—C33.5 (10)Cu2—N6—C33—C32176.6 (5)
C1—C2—C3—C43.3 (11)C29—N6—C33—C34178.2 (6)
C2—C3—C4—C51.5 (10)Cu2—N6—C33—C341.0 (7)
C2—C3—C4—C7179.7 (7)C31—C32—C33—N61.2 (10)
C1—N1—C5—C40.1 (9)C35—C32—C33—N6177.6 (6)
Cu1—N1—C5—C4174.0 (4)C31—C32—C33—C34178.8 (6)
C1—N1—C5—C6179.8 (5)C35—C32—C33—C340.0 (9)
Cu1—N1—C5—C65.9 (7)C40—N7—C34—C371.2 (10)
C3—C4—C5—N10.2 (9)Cu2—N7—C34—C37175.0 (5)
C7—C4—C5—N1178.1 (6)C40—N7—C34—C33177.6 (6)
C3—C4—C5—C6179.7 (5)Cu2—N7—C34—C333.7 (7)
C7—C4—C5—C62.0 (9)N6—C33—C34—N71.7 (8)
C12—N2—C6—C90.0 (9)C32—C33—C34—N7179.5 (5)
Cu1—N2—C6—C9176.5 (5)N6—C33—C34—C37177.1 (6)
C12—N2—C6—C5179.8 (5)C32—C33—C34—C370.7 (9)
Cu1—N2—C6—C53.7 (6)C33—C32—C35—C360.7 (10)
N1—C5—C6—N21.1 (8)C31—C32—C35—C36178.1 (7)
C4—C5—C6—N2178.8 (5)C32—C35—C36—C370.6 (11)
N1—C5—C6—C9178.7 (5)N7—C34—C37—C36179.5 (6)
C4—C5—C6—C91.4 (9)C33—C34—C37—C360.8 (10)
C5—C4—C7—C81.0 (10)N7—C34—C37—C381.0 (10)
C3—C4—C7—C8179.1 (7)C33—C34—C37—C38177.8 (6)
C4—C7—C8—C90.7 (11)C35—C36—C37—C340.2 (10)
N2—C6—C9—C100.5 (9)C35—C36—C37—C38178.2 (7)
C5—C6—C9—C10179.3 (6)C34—C37—C38—C390.3 (11)
N2—C6—C9—C8179.6 (5)C36—C37—C38—C39178.7 (7)
C5—C6—C9—C80.2 (9)C37—C38—C39—C400.1 (12)
C7—C8—C9—C61.3 (10)C34—N7—C40—C390.7 (11)
C7—C8—C9—C10179.7 (7)Cu2—N7—C40—C39173.7 (5)
C6—C9—C10—C111.3 (10)C38—C39—C40—N70.1 (12)
C8—C9—C10—C11179.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O120.962.413.064 (17)125
N5—H5···O13i0.802.263.027 (11)163
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C4H5NO4)(C12H8N2)3](ClO4)2·CH4O
Mr1029.74
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)10.511 (3), 13.707 (4), 15.551 (5)
α, β, γ (°)72.785 (4), 82.336 (4), 78.048 (5)
V3)2087.6 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.710, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
8597, 7184, 4501
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.179, 1.03
No. of reflections7184
No. of parameters587
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.43

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC.

Selected geometric parameters (Å, º) top
Cu1—O11.956 (4)Cu2—N62.043 (5)
Cu1—N11.984 (5)Cu2—O22.205 (4)
Cu1—N31.986 (5)O1—C251.266 (7)
Cu1—N42.071 (5)O2—C251.224 (7)
Cu1—N22.150 (5)O3—C281.238 (8)
Cu2—O41.907 (5)O4—C281.256 (9)
Cu2—N71.975 (5)N5—C261.465 (8)
Cu2—N51.997 (5)N5—C271.472 (7)
O1—Cu1—N194.56 (18)O4—Cu2—N792.2 (2)
O1—Cu1—N393.7 (2)O4—Cu2—N586.5 (2)
N1—Cu1—N3171.7 (2)N7—Cu2—N5176.2 (2)
O1—Cu1—N4152.25 (19)O4—Cu2—N6156.0 (2)
N1—Cu1—N491.9 (2)N7—Cu2—N681.2 (2)
N3—Cu1—N481.1 (2)N5—Cu2—N6101.3 (2)
O1—Cu1—N2109.21 (18)O4—Cu2—O2102.52 (19)
N1—Cu1—N280.3 (2)N7—Cu2—O295.05 (18)
N3—Cu1—N296.21 (19)N5—Cu2—O281.80 (18)
N4—Cu1—N298.48 (19)N6—Cu2—O2101.02 (17)
N1—Cu1—O1—C2585.2 (4)N5—Cu2—O2—C252.3 (4)
N3—Cu1—O1—C2595.6 (4)N6—Cu2—O2—C2597.8 (4)
N4—Cu1—O1—C2517.7 (6)N7—Cu2—O4—C28172.1 (5)
N2—Cu1—O1—C25166.5 (4)N5—Cu2—O4—C2811.4 (5)
O4—Cu2—O2—C2586.8 (4)N6—Cu2—O4—C2898.9 (7)
N7—Cu2—O2—C25179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O120.962.413.064 (17)125
N5—H5···O13i0.802.263.027 (11)163
Symmetry code: (i) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds