Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Structural determinations of the magnesium(II) and barium(II) salts of pyromellitic acid (benzene-1,2,4,5-tetra­carboxyl­ic acid) are presented. Hexa­aqua­magnesium(II) benzene-1,2,4,5-tetra­carboxyl­ate(2-), [Mg(H2O)6](C10H4O8), (I), and penta­aqua­[benzene-1,2,4,5-tetra­carboxyl­ato(2-)]­barium(II), [Ba(C10H4O8)(H2O)5], (II), are both centrosymmetric and both possess a 1:1 metal-ligand ratio, but the two structures are found to differ in that the magnesium salt contains a hexaaqua cation and possesses only hydrogen-bonding interactions between cations and anions, while the barium salt exhibits coordination of the carboxyl­ate ligand to the nine-coordinate metal centre. In (I), both ions sit on a 2/m site symmetry, and in (II), the cation and anion are located on m and i site symmetries, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103023175/tr1069sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103023175/tr1069Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103023175/tr1069IIsup3.hkl
Contains datablock II

CCDC references: 229065; 229066

Comment top

Pyromellitic acid (H4PMA, benzene-1,2,4,5-tetracarboxylic acid), a member of the popular (large? well studied?) benzenepolycarboxylic acid family, has found applications in the creation of hydrogen-bonding arrays (Mrvoš-Sermek et al., 1996; Biradha & Zaworotko, 1998) and, in particular, in the synthesis of coordination polymers, including, for example, mixed-ligand systems (Poleti et al., 1988; Zhang et al., 2003). Many authors strive to form functional porous supramolecular arrays (Janiak, 1997; Yaghi et al., 1995, 1998) using benzenepolycarboxylic acids amongst a very large number of possible ligands, and it is with this intention that we too have investigated the salts of benzenepolycarboxylic acids, concentrating on their alkali and alkaline earth metal salts.

A search of the Cambridge Structural Database (CSD; Version 5.24, July 2003 update; Allen, 2002) highlights numerous determinations of group 1 salts (Li+, Na+, K+ and Cs+) of H4PMA (Jessen & Küppers, 1990, 1992; Hu & Ng, 2002; Emsley et al., 1986; Luehrs & Bowman-James, 1994), and yet, of the group 2 metals, only the Ca2+ salt [Ca2(PMA)(H2O)6]n (Robl, 1988) has been determined.

The magnesium salt, [Mg(H2O)6][H2PMA], (I) (Fig. 1), does not possess metal–carboxylate coordination, instead containing a hexaaquo metal cation, as has also been observed in, amongst a total of 86 examples, the structures of magnesium hydrogen phthalate (Kariuki & Jones, 1989) and magnesium hydrogen maleate (Vanhouteghem et al., 1987). (I) is isostructural with the previously determined Co2+ (Ward & Luehrs, 1983) and Ni2+ (Jessen & Küppers, 1992) salts, and the asymmetric unit comprises a quarter of an [Mg(H2O)6]2+ cation and a quarter of an H2PMA2− anion.

Atom Mg1 is positioned on an inversion centre, with a twofold axis through atoms Mg1 and O1 and a mirror plane through atoms Mg1, O2 and O3. The cation is almost perfectly octahedral, having an angle of 90.1 (2)° between the O atoms in the mirror plane (Table 1). The Mg—OH2 bond lengths compare well to the average value of 2.06 (2) Å, determined from 50 structures in the CSD containing the [Mg(H2O)6]2+ cation.

The H2PMA2− anion is positioned on a twofold axis, crossing through the non-substituted C atoms of the ring, and on a mirror plane bisecting the intramolecular O4—H4···O4' hydrogen bond, resulting in this short intramolecular hydrogen bond being refined as symmetrical (Table 2).

In addition to the intramolecular hydrogen bond, there are three further unique hydrogen bonds, all providing cation–anion interactions (Table 2). These hydrogen bonds create a three-dimensional structure, aided by the angle at which the planar anions lie with respect to the layers of [Mg(H2O)6]2+ cations (Fig. 2).

In contrast to (I), the barium salt [Ba(H2PMA)(H2O)5], (II) (Fig. 3), displays metal–carboyxlate coordination and yet still contains the same intramolecularly hydrogen-bonded H2PMA2− anion as (I). Atom Ba1 has a coordination number of nine, having four metal–carboxylate bonds and five terminal metal–OH2 bonds (Table 3), and these bond lengths compare well with average values determined from the CSD [2.798 (7) Å for Ba–carboxylate bonds and 2.847 (7) Å for Ba–OH2 bonds]. The asymmetric unit comprises half of a formula unit, with atoms Ba1, O6, O7 and O8 positioned on a mirror plane and the H2PMA2− anion on an inversion centre.

The anions in (I) and (II) show expected geometrical similarities (Table 3); however, while the intramolecular hydrogen bond in (I) is constrained as symmetrical as a result of the symmetry of the system, the same bond in (II) is freely refined (Table 4). While the unique carboxyl group in (I) is approximately coplanar with the aromatic ring [with a dihedral angle of 2.35 (7)°], the carboxyl groups in (II) show greater deviation from the plane of the aromatic ring [dihedral angles of 15.2 (4) and 20.6 (4)°].

Each anion in (II) bridges four Ba2+ centres, thus creating a two-dimensional coordination polymer, which extends as sheets in the ab plane, with extensive H2O···H2O and carboxylate O···H2O O—H···O hydrogen bonding supporting the network and extending it into the third dimension (Fig. 4 and Table 4).

Experimental top

For the preparation of (I), H4PMA (5 equivalents) and 4MgCO3·Mg(OH)2·5H2O (1 eq) were refluxed in H2O for 18 h. Slow cooling of the resulting solution produced large, X-ray quality, colourless crystals of (I) in quantitaive yield, which were observed to desolvate? at 343–348 K. IR (KBr, νmax, cm−1): 3418 (br, OH), 3134 and 2923 (aromatic C—H), 1681 (CO, acid), 1587 (asymm. CO2), 1556, 1538 and 1505 (aromatic CC), 1349 (symm. CO2), 1284, 1156 and 1097 (C—O), 745 and 702 (aromatic C—H), 669, 594. Analysis calculated for MgC10H16O14: C 31.24, H 4.19%; found: C 31.38, H 3.93%. For the preparation of (II), pale yellow, X–ray quality, crystals of (II) were produced by slowly diffusing together aqueous solutions of H4PMA (1 equivalent) and BaBr2·2H2O (1 equivalent) at room temperature. The crystals were observed to desolvate at 290 K. IR (KBr, νmax, cm−1): 3410 (br, OH), 1686 (CO, acid), 1592 (asymm. CO2), 1350 (symm. CO2), 1285, 1142 and 1096 (C—O), 756 (aromatic C—H), 621. Analysis calculated for BaC10H14O13: C 25.05, H 2.94%; found: C 24.39, H 3.00%.

Refinement top

Aromatic H atoms were placed geometrically (C—H = 0.95 Å) and treated using a riding model, while the coordinates of hydroxy and water H atoms were refined using geometric restraints. Uiso(H) values were set to 1.2Ueq(C) for aryl H atoms and 1.5Ueq(O) for hydroxy H atoms. The largest residual electron-density peak in (I) is 1.0 Å from atom Mg1 and is probably caused by marginal crystal quality or lack of absorption correction. The data set resolution for (I) was truncated to θ=26° prior to the final refinement.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii and hydrogen bonds are shown as dashed lines. [Symmetry codes: (A) x, 1 − y, z; (B) 1 − x, y, 2 − z; (C) 1 − x, 1 − y, 2 − z; (D) −x, −y, −z.]
[Figure 2] Fig. 2. The crystal packing of (I), showing the three-dimensional hydrogen-bonding array, viewed along the crystallographic b axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A view of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii and hydrogen bonds are shown as dashed lines. [Symmetry codes: (E) −x, 1 − y, 1 − z; (F) x, 0.5 − y, z; (G) 1 − x, 1 − y, 1 − z; (H) 1 − x, y − 0.5, 1 − z.]
[Figure 4] Fig. 4. The crystal packing of (II), viewed along the crystallographic c axis. The coordinated sheets lie in the ab plane, with hydrogen bonds linking neighbouring sheets. H atoms and hydrogen bonds have been omitted for clarity.
(I) hexaaquamagnesium(II) benzene-1,2,4,5-tetracarboxylate(2-) top
Crystal data top
[Mg(H2O)6](C10H4O8)F(000) = 200
Mr = 384.54Dx = 1.705 Mg m3
Monoclinic, P2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yCell parameters from 1696 reflections
a = 6.447 (3) Åθ = 3.5–28.7°
b = 9.942 (4) ŵ = 0.20 mm1
c = 6.455 (3) ÅT = 150 K
β = 115.148 (7)°Block, colourless
V = 374.5 (3) Å30.25 × 0.21 × 0.10 mm
Z = 1
Data collection top
Bruker SMART 1000 CCD
diffractometer
683 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.022
Graphite monochromatorθmax = 26.0°, θmin = 2.1°
ω rotation with narrow frames scansh = 77
2794 measured reflectionsk = 1212
771 independent reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: All non-H atoms found by direct methods
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: Geom except OH coords freely refined
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.1034P)2 + 0.4203P]
where P = (Fo2 + 2Fc2)/3
771 reflections(Δ/σ)max < 0.001
74 parametersΔρmax = 1.17 e Å3
4 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Mg(H2O)6](C10H4O8)V = 374.5 (3) Å3
Mr = 384.54Z = 1
Monoclinic, P2/mMo Kα radiation
a = 6.447 (3) ŵ = 0.20 mm1
b = 9.942 (4) ÅT = 150 K
c = 6.455 (3) Å0.25 × 0.21 × 0.10 mm
β = 115.148 (7)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
683 reflections with I > 2σ(I)
2794 measured reflectionsRint = 0.022
771 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0614 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 1.17 e Å3
771 reflectionsΔρmin = 0.34 e Å3
74 parameters
Special details top

Experimental. SADABS v.2.03 (sheldrick, 2001) used for interframe scaling and rejection of outliers. No additional spherical absorption correction applied (low mu*r).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.00000.00000.00000.0144 (5)
O10.00000.2079 (3)0.00000.0218 (7)
H10.058 (6)0.260 (3)0.112 (5)0.033*
O20.2537 (8)0.00000.3230 (6)0.0465 (12)
H20.270 (9)0.066 (4)0.408 (8)0.070*
O30.2395 (9)0.00000.1285 (9)0.0554 (13)
H30.274 (10)0.066 (4)0.184 (9)0.083*
C10.50000.3642 (4)1.00000.0165 (8)
H1A0.50000.26861.00000.020*
C20.3925 (4)0.4294 (3)0.7898 (4)0.0152 (6)
C30.2930 (5)0.3331 (3)0.5877 (5)0.0184 (7)
O40.1954 (4)0.3800 (2)0.3824 (3)0.0238 (6)
H40.193 (9)0.50000.380 (10)0.036*
O50.3100 (4)0.2118 (2)0.6230 (4)0.0287 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0189 (10)0.0114 (9)0.0108 (9)0.0000.0044 (7)0.000
O10.0339 (17)0.0129 (15)0.0118 (13)0.0000.0032 (12)0.000
O20.075 (3)0.0148 (16)0.0156 (17)0.0000.0129 (16)0.000
O30.089 (3)0.0187 (18)0.104 (4)0.0000.085 (3)0.000
C10.0197 (19)0.0099 (17)0.0190 (19)0.0000.0075 (15)0.000
C20.0152 (13)0.0168 (15)0.0134 (13)0.0012 (10)0.0061 (10)0.0021 (10)
C30.0214 (14)0.0163 (15)0.0157 (14)0.0008 (11)0.0062 (11)0.0012 (10)
O40.0370 (13)0.0163 (11)0.0118 (10)0.0014 (8)0.0045 (8)0.0013 (7)
O50.0466 (14)0.0126 (11)0.0190 (11)0.0014 (9)0.0063 (10)0.0023 (8)
Geometric parameters (Å, º) top
Mg1—O22.031 (3)C1—C21.394 (3)
Mg1—O2i2.031 (3)C1—H1A0.9500
Mg1—O32.040 (4)C2—C2iii1.403 (5)
Mg1—O3i2.040 (4)C2—C31.522 (4)
Mg1—O1i2.067 (3)C3—O51.224 (4)
Mg1—O12.067 (3)C3—O41.288 (3)
O1—H10.834 (17)O4—H41.194 (2)
O2—H20.83 (2)O4—O4iii2.387 (4)
O3—H30.83 (2)O4—H41.194 (2)
C1—C2ii1.394 (3)
O2—Mg1—O2i180.00 (15)Mg1—O1—H1128 (3)
O2—Mg1—O389.9 (2)Mg1—O2—H2120 (4)
O2i—Mg1—O390.1 (2)Mg1—O3—H3124 (4)
O2—Mg1—O3i90.1 (2)C2ii—C1—C2124.5 (4)
O2i—Mg1—O3i89.9 (2)C2ii—C1—H1A117.7
O3—Mg1—O3i180.00 (12)C2—C1—H1A117.7
O2—Mg1—O1i90.0C1—C2—C2iii117.73 (18)
O2i—Mg1—O1i90.0C1—C2—C3113.3 (3)
O3—Mg1—O1i90.0C2iii—C2—C3128.96 (15)
O3i—Mg1—O1i90.0O5—C3—O4120.9 (3)
O2—Mg1—O190.0O5—C3—C2119.3 (2)
O2i—Mg1—O190.0O4—C3—C2119.9 (2)
O3—Mg1—O190.0H4—O4—C3112 (3)
O3i—Mg1—O190.0C3—O4—O4iii111.17 (15)
O1i—Mg1—O1180.0C3—O4—H4112 (3)
C2ii—C1—C2—C2iii0.000 (1)C2iii—C2—C3—O41.2 (3)
C2ii—C1—C2—C3179.0 (2)O5—C3—O4—H4180 (3)
C1—C2—C3—O51.3 (4)C2—C3—O4—H41 (3)
C2iii—C2—C3—O5179.86 (19)O5—C3—O4—O4iii179.9 (2)
C1—C2—C3—O4177.7 (2)C2—C3—O4—O4iii1.0 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.84 (3)1.99 (3)2.822 (3)179 (4)
O2—H2···O50.83 (4)1.95 (4)2.778 (3)176 (5)
O3—H3···O5iv0.82 (5)1.99 (5)2.799 (5)169 (6)
O4—H4···O4iii1.19 (2)1.19 (2)2.387 (4)178 (5)
Symmetry codes: (iii) x, y+1, z; (iv) x, y, z1.
(II) pentaaqua[benzene-1,2,4,5-tetracarboxylate(2-)]barium(II) top
Crystal data top
[Ba(C10H4O8)(H2O)5]F(000) = 468
Mr = 479.55Dx = 2.097 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 5633 reflections
a = 6.6497 (4) Åθ = 3.4–29.1°
b = 19.1205 (10) ŵ = 2.69 mm1
c = 6.6971 (4) ÅT = 150 K
β = 116.865 (2)°Block, pale yellow
V = 759.61 (8) Å30.29 × 0.20 × 0.17 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
1890 independent reflections
Radiation source: sealed tube1805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω rotation with narrow frames scansθmax = 29.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 89
Tmin = 0.520, Tmax = 0.632k = 2426
6770 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: All non-H atoms found by direct methods
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: Geom except OH coords freely refined
wR(F2) = 0.033H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0099P)2 + 0.699P]
where P = (Fo2 + 2Fc2)/3
1890 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.71 e Å3
16 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Ba(C10H4O8)(H2O)5]V = 759.61 (8) Å3
Mr = 479.55Z = 2
Monoclinic, P21/mMo Kα radiation
a = 6.6497 (4) ŵ = 2.69 mm1
b = 19.1205 (10) ÅT = 150 K
c = 6.6971 (4) Å0.29 × 0.20 × 0.17 mm
β = 116.865 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1890 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1805 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.632Rint = 0.015
6770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01516 restraints
wR(F2) = 0.033H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.71 e Å3
1890 reflectionsΔρmin = 0.40 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.39996 (2)0.25000.57794 (2)0.01166 (4)
C10.0742 (3)0.45887 (8)0.3694 (3)0.0129 (3)
C20.1420 (3)0.52953 (8)0.4153 (3)0.0136 (3)
C30.0655 (3)0.56806 (8)0.5443 (3)0.0141 (3)
H3A0.11130.61550.57540.017*
C40.1307 (3)0.40684 (9)0.2299 (3)0.0139 (3)
O10.1064 (2)0.34358 (6)0.2545 (2)0.0172 (2)
O20.1931 (2)0.42962 (6)0.0868 (2)0.0196 (3)
C50.2926 (3)0.57098 (9)0.3418 (3)0.0156 (3)
O30.3315 (2)0.54684 (7)0.1811 (2)0.0228 (3)
H30.261 (4)0.4939 (13)0.127 (4)0.034*
O40.3710 (2)0.62701 (7)0.4316 (2)0.0219 (3)
O50.4284 (2)0.34852 (7)0.9128 (2)0.0203 (3)
H5A0.341 (3)0.3675 (11)0.949 (4)0.031*
H5B0.508 (4)0.3791 (10)0.909 (4)0.031*
O60.0078 (3)0.25000.5989 (3)0.0239 (4)
H6A0.112 (4)0.25000.493 (4)0.036*
H6B0.020 (6)0.25000.703 (4)0.036*
O70.5681 (3)0.25000.2590 (3)0.0200 (4)
H7A0.537 (4)0.2828 (9)0.175 (3)0.030*
O80.8456 (3)0.25000.9216 (3)0.0193 (4)
H8A0.910 (3)0.2827 (9)1.003 (3)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01243 (7)0.01135 (7)0.01310 (7)0.0000.00744 (5)0.000
C10.0136 (8)0.0120 (7)0.0126 (7)0.0010 (6)0.0054 (6)0.0010 (6)
C20.0139 (8)0.0132 (7)0.0145 (7)0.0000 (6)0.0071 (7)0.0020 (6)
C30.0165 (8)0.0111 (7)0.0151 (8)0.0015 (6)0.0075 (7)0.0005 (6)
C40.0117 (7)0.0151 (8)0.0137 (7)0.0010 (6)0.0047 (6)0.0008 (6)
O10.0218 (6)0.0119 (5)0.0191 (6)0.0013 (5)0.0102 (5)0.0007 (5)
O20.0287 (7)0.0163 (6)0.0218 (6)0.0000 (5)0.0183 (6)0.0014 (5)
C50.0138 (8)0.0158 (8)0.0182 (8)0.0009 (6)0.0082 (7)0.0028 (6)
O30.0304 (7)0.0195 (6)0.0292 (7)0.0074 (5)0.0229 (6)0.0050 (5)
O40.0264 (7)0.0171 (6)0.0300 (7)0.0075 (5)0.0195 (6)0.0046 (5)
O50.0254 (7)0.0166 (6)0.0278 (7)0.0009 (5)0.0197 (6)0.0017 (5)
O60.0170 (9)0.0350 (11)0.0240 (10)0.0000.0129 (8)0.000
O70.0269 (10)0.0183 (9)0.0182 (9)0.0000.0133 (8)0.000
O80.0206 (9)0.0169 (9)0.0159 (9)0.0000.0044 (7)0.000
Geometric parameters (Å, º) top
Ba1—O62.6742 (19)C3—H3A0.9500
Ba1—O1i2.8076 (12)C4—O11.241 (2)
Ba1—O12.8076 (12)C4—O21.281 (2)
Ba1—O82.8131 (18)O2—H31.30 (2)
Ba1—O4ii2.8183 (12)C5—O41.224 (2)
Ba1—O4iii2.8183 (12)C5—O31.300 (2)
Ba1—O72.8227 (18)O3—H31.10 (2)
Ba1—O52.8690 (13)O5—H5A0.807 (12)
Ba1—O5i2.8690 (13)O5—H5B0.795 (15)
C1—C3iv1.395 (2)O6—H6A0.793 (17)
C1—C21.413 (2)O6—H6B0.799 (16)
C1—C41.523 (2)O7—H7A0.804 (14)
C2—C31.395 (2)O8—H8A0.812 (15)
C2—C51.523 (2)
O6—Ba1—O1i71.71 (4)O4ii—Ba1—O5i136.07 (4)
O6—Ba1—O171.71 (4)O4iii—Ba1—O5i67.94 (4)
O1i—Ba1—O179.18 (5)O7—Ba1—O5i133.05 (3)
O6—Ba1—O8130.43 (6)O5—Ba1—O5i82.08 (5)
O1i—Ba1—O8137.67 (3)C3iv—C1—C2118.00 (15)
O1—Ba1—O8137.67 (3)C3iv—C1—C4114.05 (14)
O6—Ba1—O4ii123.44 (3)C2—C1—C4127.94 (15)
O1i—Ba1—O4ii135.13 (4)C3—C2—C1118.01 (15)
O1—Ba1—O4ii69.22 (4)C3—C2—C5113.75 (14)
O8—Ba1—O4ii68.80 (3)C1—C2—C5128.24 (15)
O6—Ba1—O4iii123.44 (3)C2—C3—C1iv123.99 (15)
O1i—Ba1—O4iii69.22 (4)C2—C3—H3A118.0
O1—Ba1—O4iii135.13 (4)C1iv—C3—H3A118.0
O8—Ba1—O4iii68.80 (3)O1—C4—O2122.41 (15)
O4ii—Ba1—O4iii113.11 (5)O1—C4—C1118.20 (14)
O6—Ba1—O7140.24 (6)O2—C4—C1119.34 (14)
O1i—Ba1—O777.95 (4)C4—O1—Ba1129.55 (11)
O1—Ba1—O777.95 (4)C4—O2—H3111.6 (10)
O8—Ba1—O789.33 (5)O4—C5—O3121.20 (15)
O4ii—Ba1—O765.16 (3)O4—C5—C2119.52 (15)
O4iii—Ba1—O765.16 (3)O3—C5—C2119.26 (15)
O6—Ba1—O571.36 (4)C5—O3—H3112.6 (12)
O1i—Ba1—O5143.02 (4)C5—O4—Ba1ii146.47 (11)
O1—Ba1—O587.82 (4)Ba1—O5—H5A136.4 (17)
O8—Ba1—O571.78 (4)Ba1—O5—H5B105.6 (17)
O4ii—Ba1—O567.94 (4)H5A—O5—H5B105 (2)
O4iii—Ba1—O5136.07 (4)Ba1—O6—H6A124 (3)
O7—Ba1—O5133.05 (3)Ba1—O6—H6B131 (3)
O6—Ba1—O5i71.36 (4)H6A—O6—H6B104 (3)
O1i—Ba1—O5i87.82 (4)Ba1—O7—H7A117.8 (16)
O1—Ba1—O5i143.02 (4)Ba1—O8—H8A126.0 (16)
O8—Ba1—O5i71.78 (4)
C3iv—C1—C2—C30.1 (3)O1i—Ba1—O1—C4163.22 (12)
C4—C1—C2—C3178.61 (15)O8—Ba1—O1—C48.00 (16)
C3iv—C1—C2—C5179.93 (16)O4ii—Ba1—O1—C415.62 (13)
C4—C1—C2—C51.6 (3)O4iii—Ba1—O1—C4117.97 (13)
C1—C2—C3—C1iv0.1 (3)O7—Ba1—O1—C483.39 (14)
C5—C2—C3—C1iv179.96 (15)O5—Ba1—O1—C451.58 (14)
C3iv—C1—C4—O119.7 (2)O5i—Ba1—O1—C4125.34 (13)
C2—C1—C4—O1161.76 (16)C3—C2—C5—O414.3 (2)
C3iv—C1—C4—O2157.83 (15)C1—C2—C5—O4165.50 (16)
C2—C1—C4—O220.7 (2)C3—C2—C5—O3164.19 (15)
O2—C4—O1—Ba199.31 (17)C1—C2—C5—O316.0 (3)
C1—C4—O1—Ba183.24 (17)O3—C5—O4—Ba1ii9.3 (3)
O6—Ba1—O1—C4122.65 (14)C2—C5—O4—Ba1ii169.15 (13)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1; (iv) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O21.10 (2)1.30 (2)2.397 (2)174 (2)
O5—H5A···O2v0.81 (2)2.01 (2)2.803 (2)165 (2)
O5—H5B···O3ii0.80 (2)2.02 (2)2.803 (2)166 (2)
O6—H6A···O7vi0.79 (3)1.99 (3)2.778 (3)172 (3)
O6—H6B···O8vi0.80 (3)2.03 (4)2.818 (3)169 (4)
O7—H7A···O5vii0.80 (2)2.01 (2)2.800 (2)167 (2)
O8—H8A···O1viii0.81 (2)1.98 (2)2.772 (2)166 (2)
Symmetry codes: (ii) x+1, y+1, z+1; (v) x, y, z+1; (vi) x1, y, z; (vii) x, y, z1; (viii) x+1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Mg(H2O)6](C10H4O8)[Ba(C10H4O8)(H2O)5]
Mr384.54479.55
Crystal system, space groupMonoclinic, P2/mMonoclinic, P21/m
Temperature (K)150150
a, b, c (Å)6.447 (3), 9.942 (4), 6.455 (3)6.6497 (4), 19.1205 (10), 6.6971 (4)
β (°) 115.148 (7) 116.865 (2)
V3)374.5 (3)759.61 (8)
Z12
Radiation typeMo KαMo Kα
µ (mm1)0.202.69
Crystal size (mm)0.25 × 0.21 × 0.100.29 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Bruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.520, 0.632
No. of measured, independent and
observed [I > 2σ(I)] reflections
2794, 771, 683 6770, 1890, 1805
Rint0.0220.015
(sin θ/λ)max1)0.6170.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.171, 1.17 0.015, 0.033, 1.10
No. of reflections7711890
No. of parameters74134
No. of restraints416
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.17, 0.340.71, 0.40

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Sheldrick, 2000), SHELXTL and local programs.

Selected geometric parameters (Å, º) for (I) top
Mg1—O22.031 (3)Mg1—O12.067 (3)
Mg1—O32.040 (4)
O2—Mg1—O389.9 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.84 (3)1.99 (3)2.822 (3)179 (4)
O2—H2···O50.83 (4)1.95 (4)2.778 (3)176 (5)
O3—H3···O5i0.82 (5)1.99 (5)2.799 (5)169 (6)
O4—H4···O4ii1.19 (2)1.19 (2)2.387 (4)178 (5)
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z.
Selected bond lengths (Å) for (II) top
Ba1—O62.6742 (19)C1—C41.523 (2)
Ba1—O12.8076 (12)C2—C31.395 (2)
Ba1—O82.8131 (18)C2—C51.523 (2)
Ba1—O4i2.8183 (12)C4—O11.241 (2)
Ba1—O4ii2.8183 (12)C4—O21.281 (2)
Ba1—O72.8227 (18)C5—O41.224 (2)
Ba1—O52.8690 (13)C5—O31.300 (2)
C1—C21.413 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O21.10 (2)1.30 (2)2.397 (2)174 (2)
O5—H5A···O2iii0.81 (2)2.01 (2)2.803 (2)165 (2)
O5—H5B···O3i0.80 (2)2.02 (2)2.803 (2)166 (2)
O6—H6A···O7iv0.79 (3)1.99 (3)2.778 (3)172 (3)
O6—H6B···O8iv0.80 (3)2.03 (4)2.818 (3)169 (4)
O7—H7A···O5v0.80 (2)2.01 (2)2.800 (2)167 (2)
O8—H8A···O1vi0.81 (2)1.98 (2)2.772 (2)166 (2)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x1, y, z; (v) x, y, z1; (vi) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds