Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The conformational features of the title compound, C28H44S6, are compared with previously reported analogous macrocycles. The type of substituent affects considerably the conformation of the macrocycle. A 1H NMR titration of the title compound with AgBF4 indicated the formation of the 1:1 complex, which was not crystallized.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103008369/tr1053sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008369/tr1053Isup2.hkl
Contains datablock I

CCDC reference: 214401

Comment top

Macrocyclic thiaethers have been a topic of interest because of their moderately low σ-donating and π-accepting properties. They also reveal increased thermodynamic stability over open-chain analogues as a result of the macrocyclic effect (Blake & Schroeder, 1990). These crown-like molecules have been extensively used as chelators for specific metal ions and phase-transfer catalysts. Recently, a series of cage-annulated sulfur-containing crown-ethers and cryptands were synthesized and their complexation properties evaluated (Williams et al., 2002). As a possible specific metal host system we have designed and prepared an adamantylidene-derived thiaether, (I) (Mlinarić-Majerski et al., 2002). The C—C bonds inside the 16-membered macrocycle [in the range 1.490 (13)–1.520 (15) Å] are considerably shorter than expected for Csp3—Csp3 linkages (Allen et al., 1987; Allen, 2002). This phenomenon has already been observed in numerous macrocyclic structures (Hill & Feller, 2000; Maverick et al., 1980; Dunitz & Seiler, 1974).

Generally, the conformation of a macrocyclic thiaether is determined by the torsional angles along the [–S—CH2—CH2]-S-[CH2—CH2—S–] moieties designated as brackets according to De Groot and Loeb (1989). These brackets are formed because S—C bonds tend to adopt a gauche conformation, and C—C bonds tend to favor an anti conformation inside the bracket. The molecule of (I) consists of two brackets (S11—C12—C13—S14—C15—C16—S1 and S3—C4—C5—S6—C7—C8—S9) joined by two methylene bridges at atoms C2 and C10 in a spiro junction to the two adamantyl moieties. According to DeSimone & Glick (1976) the orientations of the S atoms in macrocyclic thiaethers can be described as endo- or exodentate. In the structure of (I), atoms S6 and S14 are exodentate, whereas the remaining four S atoms (S1, S3, S9 and S11) are endodentate. Four endocyclic C—C bonds (C4—C5, C7—C8, C12—C13 and C15—C16) strictly obey the above-quoted rule with an anti conformation about four S—C—C—S units. Consequently, the exodentate orientation of atoms S6 and S14 occurred. Four out of eight S—C bonds inside the brackets (involving bonds with two central sulfur atoms, viz. S6—C5, S6—C7, S14—C13 and S14—C15) adopt the gauche conformation. The remaining four S—C bonds (involving bonds with the side S atoms, viz. S1—C16, S3—C4, S9—C8 and S11—C12) adopt an anti conformation; these S atoms are endodentate. The conformations about the four S—C bonds involving two bridging methylene groups (C2—S1, C2—S3, C10—S11 and C10—S9) are all gauche. This arrangement generates a rectangular projection of the 16-macrocyclic ring of an approximate D2 symmetry (with S6, S14, C2 and C10 at the corners). The approximate D2 symmetry is valid for the complete molecule as well. The average length? of the 'square' edge is 5.570 (15) Å and the diagonals are 8.240 (12) Å (C2—C10) and 7.514 (11) Å (S6—S14). The opposite endodentate S atoms are separated by 6.449 (10) (S1—S9) and 6.257 (13) Å (S3—S11). Thus, the cavity of (I) might be suitable for complexation of Ag+ or Cu+.

The presence of the adamantane cages at positions 2 and 10 greatly affects the conformation of the [16]ane-S6 macrocycle. In order to evaluate its structural characteristics and to analyze its conformation and complexation properties, an inspection of the Cambridge Structural Database (CSD; Version 5.23 of April 2002; Allen, 2002) was performed. It revealed four structures of 1,3,6,9,11,14-hexathiacyclohexadecane derivatives and two structures of their metal complexes with Cu+ and Ag+. The structure of 7,10,13,20,23,26-hexathiadispiro[5.7.5.7]hexacosane (CSD refcode WEKXIT; Xianming et al., 1994) is the only spiro-derivative of 1,3,6,9,11,14-hexathiacyclohexadecane reported so far. The overall conformation of this compound shows remarkable similarity with (I). It also possesses two exodentate S atoms at the 'square' corners, and the gauche–anti arrangements are similar to (I). The C—C endocyclic linkages show even larger discrepancies from the values expected for Csp3—Csp3 bond lengths than those in (I). In contrast to these two spiro-derivatives, the structure of the unsubstituted 1,3,6,9,11,14-hexathiacyclohexadecane (CSD refcode KAVYIP) (De Groot & Loeb, 1989) has two crystallographically independent half molecules in the asymmetric unit, located around crystallographic inversion centres. Thus, their molecular symmetry is Ci in contrast to (I) and WEKXIT, where C1 symmetry was observed. The conformational features of trans-2,10-diphenyl-1,3,6,9,11,14-hexathiacyclohexadecane (CSD refcode WEKWUE; Xianming et al., 1994) are similar to the features of the unsubstituted KAVYIP but differ from the spiro derivatives WEKXIT and (I). The interatomic distances between the opposite endocyclic S atoms for the set of six 1,3,6,9,11,14-hexathiacyclohexadecane derivatives from the CSD and (I) are given in Table 1. (Refcode KAVYIP has two independent halves in the assymetric unit and hence two entries in Table 1.) The refcodes KAVYOV (De Groot & Loeb, 1989) and SOLHIK (De Groot & Loeb, 1991) correspond to the Cu+ and Ag+ complexes of KAVYIP, respectively. Four out of six S atoms are involved in the metal complexation in these structures, with a reduction of S···S distances compared with the ligand.

Complexation of a ligand with a metal ion causes 1H NMR shifts (Ishikawa et al., 1999). In order to prove the complexation of (I) with Ag+, an NMR titration experiment was performed. Ligand (I) was dissolved in CDCl3 and a solution of AgBF4 in CD3CN was added in molar amounts of 10%, 25%, 50%, 75%, 100%, 150% and 200%, respectively. As depicted in Fig. 2, the NMR chemical shifts gradually changed until 100% of the molar amount of AgBF4 was added, indicating the formation of the 1:1 complex. However, attempts to isolate and crystallize the complex were unsuccesful. In the 1H NMR spectra of complex Ag+[(I)], downfield shifts were observed for all H atoms except for the anti H3 atom (Fig. 2).

Experimental top

Compound (I) was prepared according to the procedure reported by Mlinarić-Majerski et al. (2002). Suitable single crystals of (I) were obtained by slow evaporation from a mixture of dichloromethane and water in a 1:1 molar ratio.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. 1H NMR chemical shifts during the titration of (I) with AgBF4. The chemical shifts of atoms H2 and H4 were only partially observable because of overlap with the CD3CN signal. H atoms are labelled according to the chemical diagram.
2,10-Bis-spiro(2-adamantiliden)-1,3,6,9,11,14-hexathiacyclohexadecane top
Crystal data top
C28H44S6F(000) = 2464
Mr = 572.99Dx = 1.302 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 15.154 (4) Åθ = 5.6–10.2°
b = 10.499 (3) ŵ = 0.49 mm1
c = 36.743 (8) ÅT = 293 K
V = 5846 (3) Å3Prism, colourless
Z = 80.36 × 0.25 × 0.18 mm
Data collection top
Enraf Nonius CAD4
diffractometer
1913 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 26.3°, θmin = 2.2°
non–profiled ω/2θ scansh = 180
Absorption correction: ψ scan
(North et al., 1968)
k = 130
Tmin = 0.765, Tmax = 0.915l = 045
5907 measured reflections3 standard reflections every 120 min
5907 independent reflections intensity decay: 3%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.063 w = 1/[σ2(Fo2) + (0.0826P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.204(Δ/σ)max = 0.001
S = 0.92Δρmax = 0.39 e Å3
5907 reflectionsΔρmin = 0.44 e Å3
307 parameters
Crystal data top
C28H44S6V = 5846 (3) Å3
Mr = 572.99Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.154 (4) ŵ = 0.49 mm1
b = 10.499 (3) ÅT = 293 K
c = 36.743 (8) Å0.36 × 0.25 × 0.18 mm
Data collection top
Enraf Nonius CAD4
diffractometer
1913 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.765, Tmax = 0.9153 standard reflections every 120 min
5907 measured reflections intensity decay: 3%
5907 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 0.92Δρmax = 0.39 e Å3
5907 reflectionsΔρmin = 0.44 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31965 (13)0.38786 (16)0.03968 (5)0.0531 (5)
S30.43655 (11)0.15845 (15)0.04541 (5)0.0470 (5)
S60.62503 (11)0.3163 (2)0.12416 (5)0.0623 (5)
S90.43528 (12)0.48220 (15)0.20082 (5)0.0481 (5)
S110.32232 (13)0.25192 (17)0.21217 (6)0.0594 (5)
S140.12906 (13)0.3036 (3)0.12567 (6)0.1140 (11)
C20.3780 (4)0.2633 (5)0.01374 (16)0.0372 (15)
C40.5115 (5)0.2665 (6)0.0676 (2)0.058 (2)
H4A0.48020.34390.07400.069*
H4B0.55850.28900.05090.069*
C50.5507 (5)0.2096 (7)0.10122 (18)0.061 (2)
H5A0.50350.18610.11780.073*
H5B0.58230.13250.09470.073*
C70.5501 (4)0.4251 (6)0.14628 (17)0.0546 (19)
H7A0.50270.44640.12960.065*
H7B0.58130.50310.15210.065*
C80.5114 (4)0.3703 (6)0.18051 (18)0.0537 (19)
H8A0.48080.29160.17490.064*
H8B0.55830.35100.19760.064*
C100.3796 (4)0.3828 (5)0.23524 (16)0.0365 (15)
C120.2462 (5)0.3343 (8)0.1822 (2)0.075 (2)
H12A0.27720.39970.16870.090*
H12B0.20010.37490.19640.090*
C130.2067 (5)0.2392 (8)0.1566 (2)0.087 (3)
H13A0.25390.19940.14290.104*
H13B0.17800.17310.17080.104*
C150.1999 (5)0.3836 (8)0.09413 (19)0.083 (3)
H15A0.24390.43120.10760.099*
H15B0.16520.44400.08020.099*
C160.2461 (5)0.2943 (8)0.0681 (2)0.071 (2)
H16A0.27960.23120.08160.086*
H16B0.20310.25030.05310.086*
C170.4396 (4)0.3352 (5)0.01240 (16)0.0390 (15)
H170.47960.38990.00160.047*
C180.4937 (4)0.2398 (6)0.03509 (19)0.0517 (19)
H18A0.52870.18660.01910.062*
H18B0.53350.28550.05110.062*
C190.4316 (5)0.1565 (6)0.05764 (17)0.0499 (17)
H190.46620.09540.07190.060*
C200.3772 (4)0.2407 (7)0.08343 (19)0.057 (2)
H20A0.33840.18830.09810.068*
H20B0.41620.28710.09960.068*
C210.3228 (5)0.3345 (6)0.06058 (17)0.0538 (18)
H210.28770.38870.07680.065*
C220.2622 (4)0.2631 (6)0.0354 (2)0.056 (2)
H22A0.22700.32310.02150.068*
H22B0.22250.21010.04950.068*
C230.3160 (4)0.1799 (6)0.00935 (16)0.0413 (15)
H230.27600.13260.00670.050*
C240.3700 (4)0.0856 (6)0.03250 (17)0.0478 (17)
H24A0.33030.03290.04670.057*
H24B0.40400.03030.01660.057*
C250.3866 (4)0.4163 (6)0.03924 (17)0.0485 (17)
H25A0.42660.45880.05590.058*
H25B0.35420.48120.02600.058*
C260.4432 (4)0.3233 (6)0.26240 (16)0.0434 (16)
H260.48390.26630.24960.052*
C270.4959 (4)0.4285 (7)0.28194 (18)0.0567 (19)
H27A0.52880.47780.26420.068*
H27B0.53770.39020.29870.068*
C280.4341 (5)0.5153 (7)0.30265 (19)0.062 (2)
H280.46830.58220.31470.075*
C290.3832 (5)0.4410 (7)0.33084 (19)0.066 (2)
H29A0.42370.40220.34800.080*
H29B0.34440.49780.34420.080*
C300.3285 (5)0.3373 (7)0.31188 (19)0.0557 (19)
H300.29520.28870.33000.067*
C310.2654 (4)0.3969 (7)0.28460 (19)0.0561 (19)
H31A0.23160.33060.27260.067*
H31B0.22450.45270.29720.067*
C320.3172 (4)0.4729 (5)0.25630 (18)0.0436 (16)
H320.27600.51320.23930.052*
C330.3706 (5)0.5753 (6)0.2759 (2)0.0607 (19)
H33A0.33100.63230.28870.073*
H33B0.40340.62500.25820.073*
C340.3914 (5)0.2475 (6)0.2910 (2)0.057 (2)
H34A0.35750.18090.27910.069*
H34B0.43200.20750.30790.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0652 (12)0.0451 (10)0.0491 (10)0.0137 (9)0.0053 (10)0.0006 (9)
S30.0440 (9)0.0398 (9)0.0572 (11)0.0002 (8)0.0094 (9)0.0127 (8)
S60.0393 (9)0.0970 (14)0.0506 (10)0.0012 (12)0.0022 (10)0.0119 (11)
S90.0499 (10)0.0394 (9)0.0549 (10)0.0006 (9)0.0090 (9)0.0120 (8)
S110.0614 (13)0.0489 (11)0.0679 (12)0.0168 (10)0.0037 (11)0.0005 (9)
S140.0434 (11)0.245 (3)0.0538 (12)0.0162 (19)0.0043 (12)0.0184 (18)
C20.036 (4)0.035 (3)0.040 (4)0.000 (3)0.007 (3)0.001 (3)
C40.051 (5)0.056 (5)0.066 (5)0.015 (4)0.009 (4)0.012 (4)
C50.073 (5)0.060 (4)0.049 (4)0.001 (4)0.015 (4)0.013 (4)
C70.053 (4)0.060 (4)0.051 (4)0.020 (4)0.008 (4)0.000 (4)
C80.044 (4)0.060 (4)0.057 (4)0.001 (4)0.009 (4)0.021 (4)
C100.031 (3)0.037 (3)0.041 (4)0.006 (3)0.002 (3)0.002 (3)
C120.052 (5)0.089 (6)0.084 (5)0.012 (4)0.011 (4)0.014 (5)
C130.080 (6)0.121 (8)0.059 (5)0.052 (6)0.002 (5)0.003 (5)
C150.078 (6)0.122 (7)0.048 (4)0.056 (5)0.004 (4)0.001 (5)
C160.069 (5)0.086 (6)0.060 (5)0.008 (5)0.015 (4)0.004 (5)
C170.039 (3)0.033 (3)0.045 (4)0.005 (3)0.006 (3)0.001 (3)
C180.043 (4)0.050 (4)0.063 (5)0.003 (3)0.007 (4)0.010 (4)
C190.053 (4)0.046 (4)0.051 (4)0.008 (4)0.001 (4)0.011 (4)
C200.049 (4)0.069 (5)0.052 (4)0.004 (4)0.010 (4)0.013 (4)
C210.054 (4)0.060 (5)0.047 (4)0.004 (4)0.002 (4)0.006 (4)
C220.036 (4)0.056 (5)0.077 (5)0.000 (3)0.015 (4)0.000 (4)
C230.030 (3)0.049 (4)0.045 (4)0.004 (3)0.005 (3)0.002 (3)
C240.058 (4)0.034 (4)0.052 (4)0.002 (3)0.002 (4)0.009 (3)
C250.063 (5)0.036 (4)0.046 (4)0.007 (3)0.001 (4)0.013 (3)
C260.040 (3)0.037 (4)0.053 (4)0.017 (3)0.008 (3)0.006 (3)
C270.043 (4)0.070 (5)0.056 (4)0.007 (4)0.006 (4)0.010 (4)
C280.057 (5)0.066 (5)0.065 (5)0.015 (4)0.004 (5)0.002 (4)
C290.082 (6)0.065 (5)0.052 (4)0.001 (5)0.002 (4)0.006 (4)
C300.056 (4)0.056 (5)0.055 (4)0.000 (4)0.013 (4)0.013 (4)
C310.040 (4)0.056 (5)0.072 (5)0.006 (4)0.011 (4)0.001 (4)
C320.032 (3)0.032 (3)0.067 (5)0.005 (3)0.008 (3)0.012 (3)
C330.063 (5)0.042 (4)0.078 (5)0.004 (4)0.009 (4)0.003 (4)
C340.067 (5)0.045 (4)0.060 (5)0.009 (4)0.010 (4)0.020 (3)
Geometric parameters (Å, º) top
S1—C161.816 (8)C19—C241.509 (8)
S1—C21.844 (6)C19—C201.535 (9)
S3—C41.801 (6)C19—H190.9800
S3—C21.831 (6)C20—C211.535 (9)
S6—C51.798 (7)C20—H20A0.9700
S6—C71.805 (7)C20—H20B0.9700
S9—C81.808 (7)C21—C221.504 (9)
S9—C101.844 (6)C21—C251.513 (9)
S11—C121.813 (8)C21—H210.9800
S11—C101.833 (6)C22—C231.531 (8)
S14—C131.771 (8)C22—H22A0.9700
S14—C151.789 (8)C22—H22B0.9700
C2—C171.538 (8)C23—C241.540 (8)
C2—C231.540 (8)C23—H230.9800
C4—C51.495 (9)C24—H24A0.9700
C4—H4A0.9700C24—H24B0.9700
C4—H4B0.9700C25—H25A0.9700
C5—H5A0.9700C25—H25B0.9700
C5—H5B0.9700C26—C341.534 (8)
C7—C81.502 (8)C26—C271.541 (8)
C7—H7A0.9700C26—H260.9800
C7—H7B0.9700C27—C281.512 (9)
C8—H8A0.9700C27—H27A0.9700
C8—H8B0.9700C27—H27B0.9700
C10—C261.521 (8)C28—C291.509 (9)
C10—C321.546 (8)C28—C331.513 (9)
C12—C131.498 (9)C28—H280.9800
C12—H12A0.9700C29—C301.535 (9)
C12—H12B0.9700C29—H29A0.9700
C13—H13A0.9700C29—H29B0.9700
C13—H13B0.9700C30—C311.520 (9)
C15—C161.511 (10)C30—C341.545 (9)
C15—H15A0.9700C30—H300.9800
C15—H15B0.9700C31—C321.527 (8)
C16—H16A0.9700C31—H31A0.9700
C16—H16B0.9700C31—H31B0.9700
C17—C251.531 (8)C32—C331.527 (8)
C17—C181.539 (8)C32—H320.9800
C17—H170.9800C33—H33A0.9700
C18—C191.528 (8)C33—H33B0.9700
C18—H18A0.9700C34—H34A0.9700
C18—H18B0.9700C34—H34B0.9700
C16—S1—C2102.0 (3)C21—C20—H20B110.0
C4—S3—C2102.4 (3)C19—C20—H20B110.0
C5—S6—C7102.2 (3)H20A—C20—H20B108.3
C8—S9—C10101.9 (3)C22—C21—C25110.7 (6)
C12—S11—C10102.9 (3)C22—C21—C20110.2 (6)
C13—S14—C15101.4 (3)C25—C21—C20107.7 (6)
C17—C2—C23107.8 (5)C22—C21—H21109.4
C17—C2—S3113.4 (4)C25—C21—H21109.4
C23—C2—S3107.7 (4)C20—C21—H21109.4
C17—C2—S1105.4 (4)C21—C22—C23110.1 (5)
C23—C2—S1113.3 (4)C21—C22—H22A109.6
S3—C2—S1109.3 (3)C23—C22—H22A109.6
C5—C4—S3111.9 (5)C21—C22—H22B109.6
C5—C4—H4A109.2C23—C22—H22B109.6
S3—C4—H4A109.2H22A—C22—H22B108.2
C5—C4—H4B109.2C22—C23—C2110.1 (5)
S3—C4—H4B109.2C22—C23—C24107.8 (5)
H4A—C4—H4B107.9C2—C23—C24110.2 (5)
C4—C5—S6112.8 (5)C22—C23—H23109.6
C4—C5—H5A109.0C2—C23—H23109.6
S6—C5—H5A109.0C24—C23—H23109.6
C4—C5—H5B109.0C19—C24—C23110.5 (5)
S6—C5—H5B109.0C19—C24—H24A109.6
H5A—C5—H5B107.8C23—C24—H24A109.6
C8—C7—S6112.3 (5)C19—C24—H24B109.6
C8—C7—H7A109.1C23—C24—H24B109.6
S6—C7—H7A109.1H24A—C24—H24B108.1
C8—C7—H7B109.1C21—C25—C17110.7 (5)
S6—C7—H7B109.1C21—C25—H25A109.5
H7A—C7—H7B107.9C17—C25—H25A109.5
C7—C8—S9110.2 (5)C21—C25—H25B109.5
C7—C8—H8A109.6C17—C25—H25B109.5
S9—C8—H8A109.6H25A—C25—H25B108.1
C7—C8—H8B109.6C10—C26—C34109.7 (5)
S9—C8—H8B109.6C10—C26—C27109.8 (5)
H8A—C8—H8B108.1C34—C26—C27108.6 (5)
C26—C10—C32108.1 (5)C10—C26—H26109.6
C26—C10—S11107.2 (4)C34—C26—H26109.6
C32—C10—S11113.6 (4)C27—C26—H26109.6
C26—C10—S9113.1 (4)C28—C27—C26110.2 (5)
C32—C10—S9106.1 (4)C28—C27—H27A109.6
S11—C10—S9108.9 (3)C26—C27—H27A109.6
C13—C12—S11108.5 (6)C28—C27—H27B109.6
C13—C12—H12A110.0C26—C27—H27B109.6
S11—C12—H12A110.0H27A—C27—H27B108.1
C13—C12—H12B110.0C29—C28—C27110.6 (6)
S11—C12—H12B110.0C29—C28—C33109.7 (6)
H12A—C12—H12B108.4C27—C28—C33108.5 (6)
C12—C13—S14114.5 (6)C29—C28—H28109.3
C12—C13—H13A108.6C27—C28—H28109.3
S14—C13—H13A108.6C33—C28—H28109.3
C12—C13—H13B108.6C28—C29—C30109.3 (6)
S14—C13—H13B108.6C28—C29—H29A109.8
H13A—C13—H13B107.6C30—C29—H29A109.8
C16—C15—S14113.4 (6)C28—C29—H29B109.8
C16—C15—H15A108.9C30—C29—H29B109.8
S14—C15—H15A108.9H29A—C29—H29B108.3
C16—C15—H15B108.9C31—C30—C29110.3 (6)
S14—C15—H15B108.9C31—C30—C34108.1 (6)
H15A—C15—H15B107.7C29—C30—C34109.0 (6)
C15—C16—S1108.2 (6)C31—C30—H30109.8
C15—C16—H16A110.1C29—C30—H30109.8
S1—C16—H16A110.1C34—C30—H30109.8
C15—C16—H16B110.1C30—C31—C32109.9 (5)
S1—C16—H16B110.1C30—C31—H31A109.7
H16A—C16—H16B108.4C32—C31—H31A109.7
C25—C17—C2110.9 (5)C30—C31—H31B109.7
C25—C17—C18107.0 (5)C32—C31—H31B109.7
C2—C17—C18110.0 (5)H31A—C31—H31B108.2
C25—C17—H17109.6C33—C32—C31108.7 (6)
C2—C17—H17109.6C33—C32—C10110.0 (5)
C18—C17—H17109.6C31—C32—C10109.6 (5)
C19—C18—C17109.7 (5)C33—C32—H32109.5
C19—C18—H18A109.7C31—C32—H32109.5
C17—C18—H18A109.7C10—C32—H32109.5
C19—C18—H18B109.7C28—C33—C32110.5 (6)
C17—C18—H18B109.7C28—C33—H33A109.6
H18A—C18—H18B108.2C32—C33—H33A109.6
C24—C19—C18109.3 (5)C28—C33—H33B109.6
C24—C19—C20109.3 (6)C32—C33—H33B109.6
C18—C19—C20109.6 (5)H33A—C33—H33B108.1
C24—C19—H19109.5C26—C34—C30109.8 (5)
C18—C19—H19109.5C26—C34—H34A109.7
C20—C19—H19109.5C30—C34—H34A109.7
C21—C20—C19108.6 (6)C26—C34—H34B109.7
C21—C20—H20A110.0C30—C34—H34B109.7
C19—C20—H20A110.0H34A—C34—H34B108.2
C4—S3—C2—C1756.5 (5)S1—C2—C23—C2256.6 (6)
C4—S3—C2—C23175.7 (4)C17—C2—C23—C2459.1 (6)
C4—S3—C2—S160.8 (4)S3—C2—C23—C2463.6 (5)
C16—S1—C2—C17177.8 (4)S1—C2—C23—C24175.4 (4)
C16—S1—C2—C2360.1 (5)C18—C19—C24—C2359.0 (7)
C16—S1—C2—S360.0 (4)C20—C19—C24—C2360.9 (7)
C2—S3—C4—C5165.6 (5)C22—C23—C24—C1960.4 (7)
S3—C4—C5—S6179.4 (4)C2—C23—C24—C1959.9 (7)
C7—S6—C5—C476.3 (6)C22—C21—C25—C1756.8 (7)
C5—S6—C7—C879.1 (5)C20—C21—C25—C1763.8 (7)
S6—C7—C8—S9178.8 (3)C2—C17—C25—C2157.5 (7)
C10—S9—C8—C7168.0 (5)C18—C17—C25—C2162.5 (7)
C12—S11—C10—C26177.8 (4)C32—C10—C26—C3460.3 (6)
C12—S11—C10—C3258.4 (5)S11—C10—C26—C3462.5 (5)
C12—S11—C10—S959.5 (4)S9—C10—C26—C34177.4 (4)
C8—S9—C10—C2657.6 (5)C32—C10—C26—C2759.1 (6)
C8—S9—C10—C32176.0 (4)S11—C10—C26—C27178.2 (4)
C8—S9—C10—S1161.4 (4)S9—C10—C26—C2758.1 (6)
C10—S11—C12—C13169.6 (5)C10—C26—C27—C2861.1 (7)
S11—C12—C13—S14179.2 (4)C34—C26—C27—C2858.9 (7)
C15—S14—C13—C1275.2 (7)C26—C27—C28—C2960.2 (7)
C13—S14—C15—C1676.0 (7)C26—C27—C28—C3360.2 (7)
S14—C15—C16—S1176.9 (4)C27—C28—C29—C3060.4 (8)
C2—S1—C16—C15174.2 (5)C33—C28—C29—C3059.3 (8)
C23—C2—C17—C2558.3 (6)C28—C29—C30—C3158.8 (8)
S3—C2—C17—C25177.4 (4)C28—C29—C30—C3459.8 (7)
S1—C2—C17—C2563.0 (5)C29—C30—C31—C3258.8 (7)
C23—C2—C17—C1859.9 (6)C34—C30—C31—C3260.3 (7)
S3—C2—C17—C1859.2 (6)C30—C31—C32—C3358.7 (7)
S1—C2—C17—C18178.8 (4)C30—C31—C32—C1061.6 (7)
C25—C17—C18—C1959.8 (6)C26—C10—C32—C3358.9 (6)
C2—C17—C18—C1960.8 (7)S11—C10—C32—C33177.7 (4)
C17—C18—C19—C2459.5 (6)S9—C10—C32—C3362.8 (6)
C17—C18—C19—C2060.3 (7)C26—C10—C32—C3160.5 (6)
C24—C19—C20—C2159.3 (7)S11—C10—C32—C3158.3 (6)
C18—C19—C20—C2160.5 (7)S9—C10—C32—C31177.8 (4)
C19—C20—C21—C2259.6 (7)C29—C28—C33—C3260.8 (7)
C19—C20—C21—C2561.3 (7)C27—C28—C33—C3260.1 (8)
C25—C21—C22—C2358.3 (7)C31—C32—C33—C2859.9 (7)
C20—C21—C22—C2360.8 (7)C10—C32—C33—C2860.1 (7)
C21—C22—C23—C260.5 (7)C10—C26—C34—C3061.0 (7)
C21—C22—C23—C2459.8 (7)C27—C26—C34—C3059.1 (7)
C17—C2—C23—C2259.6 (6)C31—C30—C34—C2659.9 (7)
S3—C2—C23—C22177.6 (4)C29—C30—C34—C2660.0 (7)

Experimental details

Crystal data
Chemical formulaC28H44S6
Mr572.99
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)15.154 (4), 10.499 (3), 36.743 (8)
V3)5846 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.36 × 0.25 × 0.18
Data collection
DiffractometerEnraf Nonius CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.765, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
5907, 5907, 1913
Rint0.014
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.204, 0.92
No. of reflections5907
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.44

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, HELENA (Spek, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

The interatomic distances of the opposite endocyclic sulfur atoms in the set of 1,3,6,9,11,14-hexathiacyclohexadecane derivatives from the CSD and in (I). top
RefcodeS6-S14S1-S9S3-S11
(I)7.516.456.26
KAVYIP8.074.478.85
KAVYIP6.754.858.20
KAVYOV3.993.866.56
SOLHIK4.264.396.69
WEKWUE7.208.717.09
WEKXIT7.176.726.76
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds