Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Co(C6H15N3)(C7H15N2S)]S2O6·H2O, the Co-C bond distance is 1.9930 (13) Å, which is shorter than for related compounds with the linear 1,6-di­amino-3-thia­hexan-4-ide anion in place of the macrocyclic 1-thia-4,7-diazacyclo­decan-8-ide anion. The coordinated carbanion produces an elongation of 0.102 (7) Å of the Co-N bond to the 1,4,7-tri­aza­cyclo­nonane N atom in the trans position. This relatively small trans influence is presumably a result of the tri­amine ligand forming strong bonds to the CoIII atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102022825/tr1048sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102022825/tr1048Isup2.hkl
Contains datablock I

CCDC reference: 205296

Comment top

An unusual route for the preparation of alkylcobalt(III) compounds is the coordination of the carbanion formed by the reversible deprotonation of an S-bonded methylene group in thioethercobalt(III) compounds (Scheme 1). This method has proved feasible in a number of cases where aminoethyl aminopropyl sulfide (aeaps, 3-thiahexane-1,6-diamine) occupies one face of the octahedron in six-coordinate cobalt(III) compounds (Bjerrum et al., 1988; Kofod, Larsen, Larsen et al., 1992; Kofod, Larsen, Petersen & Springborg, 1992; Kofod et al., 1994). The opposite face of the octahedron was blocked by the neutral amine ligands 1,4,7-triazacyclononane (tacn) or 1,1,1-tris(aminomethyl)ethane (tame), or by a second aeaps ligand. Subsequently, the cyclic thioether 1,4-diaza-7-thiacyclodecane (dathicd) was shown to react in a similar manner to aeaps (Song et al., 1996). This route for the formation of alkylcobalt(III) compounds is not restricted to coordination compounds with solely saturated amine ligands, but also applies to Schiff base ligands (Chakraborty et al., 1994). \sch

A small number of X-ray crystal structures of cobalt(III) complexes with the C-bonded form of aeaps, i.e. the 1,6-diamino-3-thiahexan-4-ide anion, C-aeaps, have been reported. The X-ray crystal structures of [Co(tame)(C-aeaps)]S2O6 and [Co(tacn)(C-aeaps)](ClO4)2 both suffered from severe disorder of the cation (Kofod, Larsen, Larsen et al., 1992; Kofod et al., 1994). In both cases, the disorder was explained by the two chelate rings of C-aeaps being partly interchanged·The X-ray crystal structure of [Co(aeaps)(C-aeaps)]S2O6 was performed on a twin crystal containing both enantiomeric forms of the complex cation (Bjerrum et al., 1988). In this paper, we report the crystal structure of [Co(tacn)(C-dathicd)]S2O6, (I) (C-dathicd is the 1,4-diaza-7-thiacyclodecan-8-ide anion).

The cyclic thioether dathicd is closely related to the linear thioether aeaps, in that dathicd can be seen as aeaps with the two primary amine groups being linked by a two-carbon chain. This linkage introduces a rigidity to the coordinated ligand, which is not present in the analogous compounds with aeaps. This rigidity may be the reason for the better quality of the single crystals.

The [Co(tacn)(C-dathicd)]2+ cation of (I) is shown in Fig. 1. In the crystal of (I), the cation packs with layers of S2O62− anions and H2O molecules in between. There are hydrogen bonds from all possible donors. Atoms N22, N11 and N13 are hydrogen-bonded to one end of the S2O62− anion, the other end being hydrogen-bonded to atom N21 and to the water molecule, which is in turn hydrogen-bonded to atom N12.

The average Co—N distance of the tacn amine groups cis to the coordinated carbanion (atoms N11 and N12) is 1.977 (7) Å. The Co—N distance for atom N13, which is trans to the alkyl group, is 2.079 (1) Å. Hence, the trans influence induced by the alkyl group is 0.102 (7) Å. This is somewhat shorter than but comparable to the trans influence we observed in [Co(NH3)5(CH3)]2+ (0.13 Å; Kofod et al., 1997). The smaller trans influence in (I) may be a result of the tacn ligand forming strong bonds to the CoIII, but it could also reflect a difference between a secondary amine and an ammine ligand. The Co—C bond distance in (I) is slightly longer than in [Co(NH3)5(CH3)]2+, by 0.013 (2) Å, and this might also result in a smaller trans influence.

Table 3 compares the metal-ligand bond distances in CoIII compounds with C-aeaps or C-dathicd. Although the quality of some of the structures prevents an accurate comparison, it is evident that the Co—C bond distance in (I) is shorter than in the compounds with C-aeaps. On the other hand, the Co—N distances in the complexes with the C-dathicd ligand are no different from those in the complexes with C-aeaps, which in turn display quite some variation. It can also be seen that the trans influence tends to become larger on going from a secondary to a primary amine.

Experimental top

[Co(tacn)(C-dathicd)](ClO4)2 was prepared by the addition of aqueous NaOH (Quantity?) to a solution of [Co(tacn)(S-dathicd)]Cl3·5H2O In which solvent? (Quantities?), followed by precipitation with sodium perchlorate, as described previously by Song et al. (1996). The sparingly soluble title dithionate salt, (I), was obtained by precipitation of what? with aqueous sodium dithionate. Single crystals of (I) were grown by slow cooling of a saturated solution in warm water.

Refinement top

The H atoms appeared clearly in the Δρ map calculated after the Uaniso parameters had been introduced for all non-H atoms. The positions of all H atoms were refined. Uiso(H) was constrained to 1.2Ueq(C) for H atoms on C atoms, and to 1.5Ueq(N, O) for H atoms on N or O atoms. The refined C—H distances are in the range 0.93 (2)–1.00 (2) Å, the N—H distances are in the range 0.83 (2)–0.90 (2) Å and the O—H distances are in the range 0.75 (3)–0.82 (3) Å. The maximum and minimum difference densities were found to be 0.65 and −0.51 e Å−3, respectively, both in close vicinity of the Co atom.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: DREADD (Blessing, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

Figures top
[Figure 1]
[Figure 2]
Fig. 1. A view of the cation of (I) including the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(1-thia-4,7-diazacyclodecyl-κ3N4,N7,C10)(1,4,7-triazacyclononane- κ3N1,N4,N7)cobalt(III) dithionate hydrate top
Crystal data top
[Co(C6H15N3)(C7H15N2S)]S2O6·H2OZ = 2
Mr = 525.54F(000) = 552
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.837 (2) ÅCell parameters from 25 reflections
b = 9.135 (2) Åθ = 15.9–21.4°
c = 15.649 (3) ŵ = 1.23 mm1
α = 89.65 (2)°T = 122 K
β = 76.04 (2)°Rod, red
γ = 66.99 (2)°0.22 × 0.12 × 0.08 mm
V = 995.8 (4) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
7372 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 35.0°, θmin = 1.4°
ω/2θ scansh = 1212
Absorption correction: integration
(Coppens, 1970)
k = 1414
Tmin = 0.816, Tmax = 0.904l = 025
12912 measured reflections5 standard reflections every 166.7 min
8747 independent reflections intensity decay: 3.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0286P)2 + 0.502P]
where P = (Fo2 + 2Fc2)/3
8747 reflections(Δ/σ)max = 0.001
358 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Co(C6H15N3)(C7H15N2S)]S2O6·H2Oγ = 66.99 (2)°
Mr = 525.54V = 995.8 (4) Å3
Triclinic, P1Z = 2
a = 7.837 (2) ÅMo Kα radiation
b = 9.135 (2) ŵ = 1.23 mm1
c = 15.649 (3) ÅT = 122 K
α = 89.65 (2)°0.22 × 0.12 × 0.08 mm
β = 76.04 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
7372 reflections with I > 2σ(I)
Absorption correction: integration
(Coppens, 1970)
Rint = 0.027
Tmin = 0.816, Tmax = 0.9045 standard reflections every 166.7 min
12912 measured reflections intensity decay: 3.3%
8747 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.66 e Å3
8747 reflectionsΔρmin = 0.51 e Å3
358 parameters
Special details top

Experimental. (Coppens, 1970)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.02824 (2)0.32651 (2)0.242059 (11)0.00683 (4)
N120.03313 (16)0.40556 (13)0.36726 (7)0.01056 (18)
H120.014 (3)0.330 (2)0.3980 (14)0.016*
C270.05690 (18)0.14963 (15)0.27342 (8)0.0097 (2)
H270.128 (3)0.176 (2)0.3322 (13)0.012*
N220.10587 (15)0.25574 (13)0.11274 (7)0.00914 (17)
H220.131 (3)0.333 (2)0.0872 (13)0.014*
N110.23341 (16)0.48668 (13)0.24658 (8)0.01131 (19)
H110.285 (3)0.454 (2)0.2094 (14)0.017*
N130.10608 (17)0.51874 (14)0.21715 (8)0.01139 (19)
H130.214 (3)0.497 (2)0.1830 (14)0.017*
S10.22609 (5)0.13561 (4)0.21806 (2)0.01297 (6)
C120.2403 (2)0.51656 (17)0.40187 (9)0.0144 (2)
H12A0.253 (3)0.628 (2)0.4065 (13)0.017*
H12B0.291 (3)0.486 (2)0.4579 (14)0.017*
C150.0967 (2)0.48531 (16)0.37506 (9)0.0138 (2)
H15A0.226 (3)0.400 (2)0.3698 (13)0.017*
H15B0.053 (3)0.548 (2)0.4295 (14)0.017*
C220.29566 (18)0.11724 (16)0.08842 (9)0.0114 (2)
H22A0.365 (3)0.117 (2)0.0270 (13)0.014*
H22B0.279 (3)0.019 (2)0.0911 (13)0.014*
C250.03107 (19)0.23164 (16)0.06829 (8)0.0109 (2)
H25A0.033 (3)0.202 (2)0.0060 (13)0.013*
H25B0.130 (3)0.325 (2)0.0739 (13)0.013*
C110.35324 (19)0.50114 (17)0.33893 (9)0.0143 (2)
H11A0.382 (3)0.409 (3)0.3425 (13)0.017*
H11B0.475 (3)0.596 (2)0.3482 (14)0.017*
C130.2346 (2)0.64606 (16)0.22203 (10)0.0141 (2)
H13A0.281 (3)0.717 (2)0.2744 (14)0.017*
H13B0.322 (3)0.693 (2)0.1857 (14)0.017*
C140.0350 (2)0.62874 (16)0.17261 (9)0.0143 (2)
H14A0.030 (3)0.735 (2)0.1693 (14)0.017*
H14B0.005 (3)0.586 (2)0.1124 (14)0.017*
N210.28881 (16)0.17096 (13)0.24274 (8)0.01060 (18)
H210.347 (3)0.206 (2)0.2716 (13)0.016*
C260.0939 (2)0.10036 (17)0.10315 (9)0.0127 (2)
H26A0.013 (3)0.001 (2)0.0909 (13)0.015*
H26B0.183 (3)0.093 (2)0.0717 (13)0.015*
C230.2751 (2)0.03044 (16)0.28864 (9)0.0135 (2)
H23A0.245 (3)0.062 (2)0.3518 (13)0.016*
H23B0.397 (3)0.056 (2)0.2719 (13)0.016*
C240.1188 (2)0.00767 (16)0.26608 (9)0.0128 (2)
H24A0.163 (3)0.068 (2)0.2062 (14)0.015*
H24B0.085 (3)0.078 (2)0.3100 (13)0.015*
C210.41027 (18)0.13130 (16)0.14993 (9)0.0121 (2)
H21A0.450 (3)0.215 (2)0.1351 (13)0.015*
H21B0.526 (3)0.030 (2)0.1431 (13)0.015*
C160.1001 (2)0.59590 (16)0.30222 (10)0.0139 (2)
H16A0.011 (3)0.692 (2)0.3164 (13)0.017*
H16B0.216 (3)0.620 (2)0.2932 (13)0.017*
S20.41901 (5)0.06142 (4)0.46381 (2)0.01131 (6)
S30.50546 (5)0.58303 (4)0.04624 (2)0.01084 (6)
O10.24469 (15)0.06625 (13)0.41176 (7)0.01699 (19)
O20.38524 (16)0.14718 (13)0.53215 (8)0.0181 (2)
O30.53934 (16)0.16539 (13)0.41216 (7)0.0182 (2)
O40.69292 (15)0.58814 (13)0.01147 (7)0.01649 (19)
O50.49037 (15)0.50972 (13)0.12947 (7)0.01533 (19)
O60.34434 (17)0.73161 (13)0.04632 (8)0.0201 (2)
O70.04974 (18)0.19943 (15)0.49732 (8)0.0202 (2)
H7A0.130 (4)0.173 (3)0.4856 (16)0.030*
H7B0.034 (4)0.143 (3)0.4745 (16)0.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.00656 (7)0.00609 (7)0.00751 (7)0.00213 (5)0.00192 (5)0.00005 (5)
N120.0117 (5)0.0094 (4)0.0106 (4)0.0040 (4)0.0033 (4)0.0001 (3)
C270.0113 (5)0.0097 (5)0.0096 (5)0.0057 (4)0.0030 (4)0.0008 (4)
N220.0085 (4)0.0083 (4)0.0098 (4)0.0029 (3)0.0015 (3)0.0005 (3)
N110.0096 (4)0.0107 (5)0.0123 (5)0.0021 (4)0.0037 (4)0.0008 (4)
N130.0118 (5)0.0101 (4)0.0118 (5)0.0047 (4)0.0016 (4)0.0003 (4)
S10.01221 (13)0.01796 (15)0.01152 (13)0.00915 (12)0.00271 (11)0.00018 (11)
C120.0124 (5)0.0153 (6)0.0118 (5)0.0030 (5)0.0007 (4)0.0022 (4)
C150.0167 (6)0.0118 (5)0.0152 (6)0.0065 (5)0.0071 (5)0.0005 (4)
C220.0087 (5)0.0099 (5)0.0126 (5)0.0016 (4)0.0009 (4)0.0018 (4)
C250.0124 (5)0.0110 (5)0.0090 (5)0.0038 (4)0.0037 (4)0.0009 (4)
C110.0100 (5)0.0159 (6)0.0134 (5)0.0028 (4)0.0007 (4)0.0023 (4)
C130.0143 (6)0.0098 (5)0.0158 (6)0.0012 (4)0.0061 (5)0.0011 (4)
C140.0180 (6)0.0096 (5)0.0142 (6)0.0044 (5)0.0044 (5)0.0034 (4)
N210.0098 (4)0.0102 (4)0.0121 (5)0.0036 (4)0.0040 (4)0.0006 (4)
C260.0127 (5)0.0159 (6)0.0110 (5)0.0071 (5)0.0033 (4)0.0010 (4)
C230.0139 (6)0.0109 (5)0.0160 (6)0.0034 (4)0.0067 (5)0.0042 (4)
C240.0159 (6)0.0098 (5)0.0135 (5)0.0057 (4)0.0045 (4)0.0023 (4)
C210.0077 (5)0.0117 (5)0.0155 (6)0.0030 (4)0.0016 (4)0.0008 (4)
C160.0160 (6)0.0106 (5)0.0169 (6)0.0069 (5)0.0046 (5)0.0013 (4)
S20.00917 (12)0.01120 (13)0.01260 (13)0.00366 (10)0.00184 (10)0.00178 (10)
S30.01060 (13)0.01036 (13)0.01167 (13)0.00382 (10)0.00374 (10)0.00152 (10)
O10.0120 (4)0.0174 (5)0.0164 (5)0.0033 (4)0.0012 (4)0.0003 (4)
O20.0175 (5)0.0191 (5)0.0203 (5)0.0098 (4)0.0052 (4)0.0017 (4)
O30.0173 (5)0.0180 (5)0.0193 (5)0.0056 (4)0.0074 (4)0.0083 (4)
O40.0157 (5)0.0199 (5)0.0179 (5)0.0115 (4)0.0042 (4)0.0051 (4)
O50.0150 (4)0.0220 (5)0.0111 (4)0.0091 (4)0.0044 (3)0.0041 (4)
O60.0202 (5)0.0110 (4)0.0252 (5)0.0005 (4)0.0105 (4)0.0016 (4)
O70.0220 (5)0.0228 (5)0.0239 (6)0.0141 (5)0.0119 (5)0.0109 (4)
Geometric parameters (Å, º) top
Co—N121.9705 (12)C25—H25B0.89 (2)
Co—N211.9827 (13)C11—H11A0.95 (2)
Co—N111.9840 (13)C11—H11B0.98 (2)
Co—C271.9930 (13)C13—C141.514 (2)
Co—N221.9995 (12)C13—H13A0.95 (2)
Co—N132.0790 (12)C13—H13B0.96 (2)
N12—C151.4907 (18)C14—H14A0.98 (2)
N12—C121.5009 (19)C14—H14B0.96 (2)
N12—H120.83 (2)N21—C211.4889 (18)
C27—C241.5338 (19)N21—C231.4950 (18)
C27—S11.7926 (13)N21—H210.85 (2)
C27—H270.930 (19)C26—H26A0.96 (2)
N22—C221.4898 (17)C26—H26B0.97 (2)
N22—C251.4936 (17)C23—C241.513 (2)
N22—H220.87 (2)C23—H23A0.98 (2)
N11—C111.4962 (19)C23—H23B0.95 (2)
N11—C131.5006 (18)C24—H24A1.00 (2)
N11—H110.90 (2)C24—H24B1.00 (2)
N13—C141.4875 (18)C21—H21A0.94 (2)
N13—C161.4922 (18)C21—H21B0.99 (2)
N13—H130.83 (2)C16—H16A0.94 (2)
S1—C261.8050 (15)C16—H16B0.99 (2)
C12—C111.514 (2)S2—O31.4501 (12)
C12—H12A0.98 (2)S2—O11.4557 (12)
C12—H12B0.96 (2)S2—O21.4615 (12)
C15—C161.521 (2)S2—S2i2.1349 (8)
C15—H15A0.99 (2)S3—O61.4477 (12)
C15—H15B0.94 (2)S3—O41.4575 (12)
C22—C211.5029 (19)S3—O51.4614 (11)
C22—H22A0.99 (2)S3—S3ii2.1427 (8)
C22—H22B0.95 (2)O7—H7A0.75 (3)
C25—C261.5172 (19)O7—H7B0.82 (3)
C25—H25A0.97 (2)
N12—Co—N2192.89 (5)H25A—C25—H25B108.1 (17)
N12—Co—N1184.60 (5)N11—C11—C12107.79 (11)
N21—Co—N11177.43 (5)N11—C11—H11A105.4 (12)
N12—Co—C2792.31 (5)C12—C11—H11A115.2 (13)
N21—Co—C2786.30 (5)N11—C11—H11B109.7 (12)
N11—Co—C2794.32 (5)C12—C11—H11B110.6 (12)
N12—Co—N22175.10 (5)H11A—C11—H11B107.9 (17)
N21—Co—N2285.55 (5)N11—C13—C14110.44 (11)
N11—Co—N2296.91 (5)N11—C13—H13A108.6 (12)
C27—Co—N2292.22 (5)C14—C13—H13A111.0 (12)
N12—Co—N1384.31 (5)N11—C13—H13B110.7 (12)
N21—Co—N1395.26 (5)C14—C13—H13B109.3 (12)
N11—Co—N1383.98 (5)H13A—C13—H13B106.7 (17)
C27—Co—N13176.34 (5)N13—C14—C13108.83 (11)
N22—Co—N1391.20 (5)N13—C14—H14A112.9 (12)
C15—N12—C12111.45 (11)C13—C14—H14A109.7 (12)
C15—N12—Co107.88 (9)N13—C14—H14B109.2 (12)
C12—N12—Co112.03 (9)C13—C14—H14B110.6 (12)
C15—N12—H12109.1 (14)H14A—C14—H14B105.6 (17)
C12—N12—H12106.6 (14)C21—N21—C23114.71 (11)
Co—N12—H12109.7 (14)C21—N21—Co108.26 (8)
C24—C27—S1113.80 (9)C23—N21—Co109.59 (8)
C24—C27—Co109.69 (9)C21—N21—H21105.7 (14)
S1—C27—Co115.32 (7)C23—N21—H21104.1 (14)
C24—C27—H27109.0 (12)Co—N21—H21114.5 (14)
S1—C27—H27102.8 (12)C25—C26—S1115.22 (10)
Co—C27—H27105.5 (12)C25—C26—H26A110.6 (12)
C22—N22—C25110.95 (10)S1—C26—H26A111.4 (12)
C22—N22—Co110.67 (8)C25—C26—H26B108.4 (12)
C25—N22—Co121.12 (8)S1—C26—H26B104.1 (12)
C22—N22—H22103.1 (13)H26A—C26—H26B106.5 (17)
C25—N22—H22104.7 (13)N21—C23—C24109.44 (11)
Co—N22—H22104.3 (13)N21—C23—H23A105.9 (12)
C11—N11—C13110.68 (11)C24—C23—H23A111.6 (12)
C11—N11—Co106.85 (9)N21—C23—H23B108.4 (12)
C13—N11—Co112.44 (9)C24—C23—H23B113.0 (12)
C11—N11—H11108.4 (13)H23A—C23—H23B108.3 (17)
C13—N11—H11107.5 (13)C23—C24—C27108.20 (11)
Co—N11—H11110.9 (13)C23—C24—H24A111.9 (12)
C14—N13—C16112.04 (11)C27—C24—H24A112.0 (12)
C14—N13—Co105.64 (8)C23—C24—H24B108.1 (12)
C16—N13—Co109.57 (8)C27—C24—H24B109.4 (12)
C14—N13—H13106.5 (14)H24A—C24—H24B107.2 (16)
C16—N13—H13107.9 (14)N21—C21—C22110.02 (11)
Co—N13—H13115.3 (14)N21—C21—H21A107.9 (12)
C27—S1—C26102.53 (6)C22—C21—H21A109.3 (12)
N12—C12—C11109.61 (11)N21—C21—H21B111.7 (11)
N12—C12—H12A110.1 (12)C22—C21—H21B109.4 (12)
C11—C12—H12A108.5 (12)H21A—C21—H21B108.4 (16)
N12—C12—H12B108.8 (12)N13—C16—C15110.45 (11)
C11—C12—H12B107.7 (12)N13—C16—H16A107.4 (12)
H12A—C12—H12B112.1 (17)C15—C16—H16A110.8 (12)
N12—C15—C16109.32 (11)N13—C16—H16B108.4 (12)
N12—C15—H15A107.2 (12)C15—C16—H16B109.9 (12)
C16—C15—H15A111.4 (12)H16A—C16—H16B109.8 (17)
N12—C15—H15B111.4 (13)O3—S2—O1114.65 (7)
C16—C15—H15B107.4 (12)O3—S2—O2113.73 (7)
H15A—C15—H15B110.1 (17)O1—S2—O2113.16 (7)
N22—C22—C21108.03 (11)O3—S2—S2i105.74 (5)
N22—C22—H22A110.7 (11)O1—S2—S2i103.93 (5)
C21—C22—H22A109.3 (11)O2—S2—S2i104.21 (5)
N22—C22—H22B110.3 (12)O6—S3—O4114.48 (7)
C21—C22—H22B112.2 (12)O6—S3—O5114.46 (7)
H22A—C22—H22B106.3 (16)O4—S3—O5112.66 (7)
N22—C25—C26113.50 (11)O6—S3—S3ii105.34 (6)
N22—C25—H25A107.8 (12)O4—S3—S3ii104.44 (6)
C26—C25—H25A107.8 (12)O5—S3—S3ii104.01 (5)
N22—C25—H25B107.7 (13)H7A—O7—H7B107 (2)
C26—C25—H25B111.7 (13)
N21—Co—N12—C1565.43 (9)C24—C27—S1—C2666.83 (11)
N11—Co—N12—C15114.03 (9)Co—C27—S1—C2661.21 (8)
C27—Co—N12—C15151.84 (9)C15—N12—C12—C11136.14 (12)
N13—Co—N12—C1529.57 (9)Co—N12—C12—C1115.15 (14)
N21—Co—N12—C12171.54 (9)C12—N12—C15—C1676.86 (14)
N11—Co—N12—C129.00 (9)Co—N12—C15—C1646.53 (12)
C27—Co—N12—C1285.13 (10)C25—N22—C22—C21167.53 (10)
N13—Co—N12—C1293.46 (9)Co—N22—C22—C2130.15 (12)
N12—Co—C27—C24101.74 (9)C22—N22—C25—C2669.26 (14)
N21—Co—C27—C249.00 (9)Co—N22—C25—C2663.00 (13)
N11—Co—C27—C24173.50 (9)C13—N11—C11—C1275.95 (14)
N22—Co—C27—C2476.39 (9)Co—N11—C11—C1246.77 (12)
N12—Co—C27—S1128.20 (7)N12—C12—C11—N1140.30 (15)
N21—Co—C27—S1139.05 (8)C11—N11—C13—C14137.76 (12)
N11—Co—C27—S143.45 (8)Co—N11—C13—C1418.35 (13)
N22—Co—C27—S153.66 (7)C16—N13—C14—C1373.97 (14)
N21—Co—N22—C227.19 (8)Co—N13—C14—C1345.29 (12)
N11—Co—N22—C22173.55 (8)N11—C13—C14—N1342.70 (15)
C27—Co—N22—C2278.92 (9)N12—Co—N21—C21157.70 (8)
N13—Co—N22—C22102.37 (9)C27—Co—N21—C21110.17 (9)
N21—Co—N22—C25139.57 (10)N22—Co—N21—C2117.65 (8)
N11—Co—N22—C2541.17 (10)N13—Co—N21—C2173.15 (9)
C27—Co—N22—C2553.46 (10)N12—Co—N21—C2376.52 (9)
N13—Co—N22—C25125.25 (10)C27—Co—N21—C2315.62 (9)
N12—Co—N11—C1131.12 (9)N22—Co—N21—C23108.13 (9)
C27—Co—N11—C1160.80 (9)N13—Co—N21—C23161.07 (9)
N22—Co—N11—C11153.56 (9)N22—C25—C26—S163.18 (13)
N13—Co—N11—C11115.95 (9)C27—S1—C26—C2560.98 (11)
N12—Co—N11—C1390.49 (9)C21—N21—C23—C2484.58 (14)
C27—Co—N11—C13177.59 (9)Co—N21—C23—C2437.42 (13)
N22—Co—N11—C1384.82 (9)N21—C23—C24—C2744.79 (14)
N13—Co—N11—C135.66 (9)S1—C27—C24—C23162.25 (9)
N12—Co—N13—C14113.51 (9)Co—C27—C24—C2331.38 (13)
N21—Co—N13—C14154.10 (9)C23—N21—C21—C2283.28 (13)
N11—Co—N13—C1428.36 (9)Co—N21—C21—C2239.44 (12)
N22—Co—N13—C1468.46 (9)N22—C22—C21—N2145.70 (14)
N12—Co—N13—C167.36 (9)C14—N13—C16—C15133.23 (12)
N21—Co—N13—C1685.02 (9)Co—N13—C16—C1516.32 (13)
N11—Co—N13—C1692.51 (9)N12—C15—C16—N1341.00 (15)
N22—Co—N13—C16170.67 (9)
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O7iii0.83 (2)2.05 (2)2.8396 (18)160 (2)
N22—H22···O4ii0.87 (2)2.13 (2)2.9230 (16)150.4 (18)
N11—H11···O5iv0.90 (2)2.30 (2)3.1052 (17)150.0 (17)
N13—H13···O50.83 (2)2.17 (2)2.9620 (18)157.8 (19)
N21—H21···O3v0.85 (2)2.54 (2)3.2424 (17)140.4 (17)
O7—H7A···O2iii0.75 (3)2.05 (3)2.7835 (18)166 (3)
O7—H7B···O10.82 (3)2.01 (3)2.8059 (18)163 (2)
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y, z+1; (iv) x1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C6H15N3)(C7H15N2S)]S2O6·H2O
Mr525.54
Crystal system, space groupTriclinic, P1
Temperature (K)122
a, b, c (Å)7.837 (2), 9.135 (2), 15.649 (3)
α, β, γ (°)89.65 (2), 76.04 (2), 66.99 (2)
V3)995.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.22 × 0.12 × 0.08
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionIntegration
(Coppens, 1970)
Tmin, Tmax0.816, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
12912, 8747, 7372
Rint0.027
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.07
No. of reflections8747
No. of parameters358
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.51

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, DREADD (Blessing, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Co—N121.9705 (12)N11—C131.5006 (18)
Co—N211.9827 (13)N13—C141.4875 (18)
Co—N111.9840 (13)N13—C161.4922 (18)
Co—C271.9930 (13)S1—C261.8050 (15)
Co—N221.9995 (12)C12—C111.514 (2)
Co—N132.0790 (12)C15—C161.521 (2)
N12—C151.4907 (18)C22—C211.5029 (19)
N12—C121.5009 (19)C25—C261.5172 (19)
C27—C241.5338 (19)C13—C141.514 (2)
C27—S11.7926 (13)N21—C211.4889 (18)
N22—C221.4898 (17)N21—C231.4950 (18)
N22—C251.4936 (17)C23—C241.513 (2)
N11—C111.4962 (19)
N12—Co—N2192.89 (5)C25—N22—Co121.12 (8)
N12—Co—N1184.60 (5)C11—N11—C13110.68 (11)
N21—Co—N11177.43 (5)C11—N11—Co106.85 (9)
N12—Co—C2792.31 (5)C13—N11—Co112.44 (9)
N21—Co—C2786.30 (5)C14—N13—C16112.04 (11)
N11—Co—C2794.32 (5)C14—N13—Co105.64 (8)
N12—Co—N22175.10 (5)C16—N13—Co109.57 (8)
N21—Co—N2285.55 (5)C27—S1—C26102.53 (6)
N11—Co—N2296.91 (5)N12—C12—C11109.61 (11)
C27—Co—N2292.22 (5)N12—C15—C16109.32 (11)
N12—Co—N1384.31 (5)N22—C22—C21108.03 (11)
N21—Co—N1395.26 (5)N22—C25—C26113.50 (11)
N11—Co—N1383.98 (5)N11—C11—C12107.79 (11)
C27—Co—N13176.34 (5)N11—C13—C14110.44 (11)
N22—Co—N1391.20 (5)N13—C14—C13108.83 (11)
C15—N12—C12111.45 (11)C21—N21—C23114.71 (11)
C15—N12—Co107.88 (9)C21—N21—Co108.26 (8)
C12—N12—Co112.03 (9)C23—N21—Co109.59 (8)
C24—C27—S1113.80 (9)C25—C26—S1115.22 (10)
C24—C27—Co109.69 (9)N21—C23—C24109.44 (11)
S1—C27—Co115.32 (7)C23—C24—C27108.20 (11)
C22—N22—C25110.95 (10)N21—C21—C22110.02 (11)
C22—N22—Co110.67 (8)N13—C16—C15110.45 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O7i0.83 (2)2.05 (2)2.8396 (18)160 (2)
N22—H22···O4ii0.87 (2)2.13 (2)2.9230 (16)150.4 (18)
N11—H11···O5iii0.90 (2)2.30 (2)3.1052 (17)150.0 (17)
N13—H13···O50.83 (2)2.17 (2)2.9620 (18)157.8 (19)
N21—H21···O3iv0.85 (2)2.54 (2)3.2424 (17)140.4 (17)
O7—H7A···O2i0.75 (3)2.05 (3)2.7835 (18)166 (3)
O7—H7B···O10.82 (3)2.01 (3)2.8059 (18)163 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y, z.
Comparison of metal-ligand bond distances (Å) in compounds with C-dathicd or C-aeaps. The numbering of the compounds with C-aeaps corresponds to the numbering of (I). top
Bond(I)a(II)b(III)c(IV)d
Co-N111.9840 (13)1.966 (9)1.992 (12)1.977 (3)
Co-N121.9705 (12)1.951 (9)1.954 (12)
Co-N132.0790 (12)2.047 (10)2.084 (5)2.110 (3)
Co-N211.9827 (13)1.992 (11)2.029 (13)1.976 (3)
Co-N221.9995 (12)1.992 (11)1.959 (12)2.011 (3)
Co-C271.9930 (13)2.05 (2)2.049 (7)2.026 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds