Download citation
Download citation
link to html
The title compound, meso-5,7,7,12,14,14-hexa­methyl-4,11-di­aza-1,8-diazo­nia­cyclo­tetra­decane bis(3-carboxy-5-nitro­benz­oate), C16H38N42+·2C8H4NO6-, is a salt in which the cation is present as two configurational isomers, disordered across a common centre of inversion in P\overline 1, with occupancies of 0.847 (3) and 0.153 (3). The anions are linked into chains by a single O-H...O hydrogen bond [H...O 1.71 Å, O...O 2.5063 (15) Å and O-H...O 156°] and the cations link these anion chains into sheets by means of a range of N-H...O hydrogen bonds [H...O 1.81-2.53 Å, N...O 2.718 (5)-3.3554 (19) Å and N-H...O 146-171°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102010958/tr1034sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102010958/tr1034Isup2.hkl
Contains datablock I

CCDC reference: 193423

Comment top

We report here the structure of the 1:2 salt, (I), formed between the tetraaza macrocycle meso-5,5,7,12,12,14-hexa-C-methyl-1,4,8,11-tetraazacyclotetradecane (tet-a) and 5-nitroisophthalic acid. We have recently analysed the supramolecular structures of the salt-type adducts formed between tet-a and both monocarboxylic (Gregson et al., 2000) and dicarboxylic acids (Lough et al., 2000; Burchell et al., 2000). With the trigonally trisubstituted benzenecarboxylic acid 3,5-dinitrobenzoic acid, (II), tet-a forms a one-dimensional supramolecular structure, while with 5-hydroxyisophthalic acid, (III), the rather simple hydrogen-bonded array is two-dimensional (Burchell et al., 2000). With the analogous 5-nitroisophthalic acid, whose monoanion, (IV), is isoelectronic with (II), a more complex two-dimensional supramolecular structure is formed in (I). \sch

The constitution of (I) is that of a salt, [(tet-a)H2]2+·2[O2NC6H3(COOH)COO]- (Fig. 1). The cation lies across a centre of inversion, chosen for the sake of convenience as that at (1/2,1/2,1/2), while the monoanion lies in a general position. While, in general (Gregson et al., 2000; Lough et al., 2000: Burchell et al., 2000), [(tet-a)H2]2+ cations adopt the trans-III configuration (Barefield et al., 1986), in compound (I), the cation is disordered over two sets of sites, with occupancies 0.847 (3) and 0.153 (3), such that the major form (Fig. 1a) is the usual trans-III isomer, while the minor form (Fig. 1 b) is the rather uncommon trans-IV isomer. The major differences between these configurational isomers are found in the skeletal torsion angles (Table 1), and in the location of the axial N—H bonds (Figs. 1a and 1 b). In each isomer, there are two axial N—H bonds on each face of the macrocycle, but the two bonds on a common face are separated by a C3 spacer unit in the trans-III isomer and by a C2 spacer in the trans-IV isomer. Both isomers of the cation contain the usual pair of intramolecular N—H···N hydrogen bonds (Table 2) and in the major isomer, the C—N distances clearly reflect the site of protonation at N4. Similarly, in the almost planar anion, the C—O distances clearly reflect the presence of an H atom at O2 only.

The cations and anions in (I) are linked, by a number of hydrogen bonds of the O—H···O and N—H···O types (Table 2), into sheets whose formation is readily analysed by means of the substructure approach (Gregson et al., 2000). The two isomers of the cation display rather different hydrogen-bonding behaviour, despite sharing a common site (Fig. 2), consequent upon their different arrangements of the axial N—H bonds. The anions alone form a simple C(8) chain generated by translation along the [100] direction. Carboxyl atom O2 in the anion at (x,y,z) acts as a donor to the carboxylate atom O4 in the anion at (1 + x, y, z), in a hydrogen bond whose O···O distance is very short, but where the H atom is unambiguously located adjacent to one O atom, rather than being centred between the two O sites. Two antiparallel chains, related to one another by centres of inversion, run through each unit cell, and it is the pairwise linking of such chains by the cations which generates the sheet structure.

In the major isomer of the cation centred at (1/2,1/2,1/2), atoms N4 at (x,y,z) and N1 at (1 - x, 1 - y, 1 - z) act as hydrogen-bond donors to, respectively, O3 in the anion at (x,y,z) and O2 in the anion at (x - 1, y, z), both of which are components of the anion chain lying approximately along the line (x, 1.0, 0.1). The symmetry-related N4 atom at (1 - x, 1 - y, 1 - z) and N1 at (x,y,z) in the same cation similarly act as donors to O3 and O2 in the anions at (1 - x, 1 - y, 1 - z) and (2 - x, 1 - y, 1 - z), respectively, which are components of the chain lying approximately along the line (-x, 0, 0.9). In this way, a chain of edge-fused rings, or a molecular ladder, is formed along the line (x,1/2,1/2) (Fig. 3).

Adjacent ladders are linked into an (011) sheet by the minor isomer of the cation. In the minor isomer centred at (1/2, 1/2, 1/2), atoms N24 and N21 at (x,y,z) act as hydrogen-bond donors to, respectively, carboxylate atom O3 in the anion at (x,y,z), part of the (x,1/2,1/2) ladder, and nitro atom O6 in the anion at (2 - x, 2 - y, -z), which is a component of the ladder along (x,3/2,-1/2) (Fig. 4). The symmetry-related atoms N24 and N21 in the same cation are at (1 - x, 1 - y, 1 - z), and these act as hydrogen-bond donors to, respectively, O3 in the anion at (1 - x, 1 - y, 1 - z), which is another component of the (x, 1/2, 1/2) ladder, and atom O6 in the anion at (x - 1, y - 1, 1 + z), which lies in the ladder along (x,-1/2,3/2). Hence, the [100] ladders contain the major isomer of the cation and are linked into an (011) sheet by the minor isomer.

Experimental top

Stoichiometric quantities of the two components were individually dissolved in methanol. The solutions were mixed and the mixture was set aside to crystallize, yielding microcrystalline (I). Analysis, found: C 54.7, H 6.5, N 11.8%; C32H46N6O12 requires: C 54.4, H 6.6, N 11.9%. Despite many preparations, the crystallites proved to be too small for single-crystal X-ray diffractometry using conventional laboratory sources, but an excellent data set was obtained using synchrotron radiation, collected at the Daresbury synchrotron radiation source, Station 9.8 (Cernik et al., 1997; Clegg et al., 1998).

Refinement top

Compound (I) is triclinic, and space group P1 was assumed and confirmed by the subsequent analysis. It was apparent from an early stage that the cation was disordered over two sets of sites; with the minor occupancy atoms refined isotropically, the site-occupancy factors refined to 0.847 (3) and 0.153 (3) for the major and minor sites, respectively. All the H atoms of the anion and the major isomer of the cation were located from difference maps; the locations of the 0.153 (3) occupancy H atoms bonded to N in the minor isomer of the cation were inferred from the non-bonded contact distances involving N21 and N24. All H atoms were treated as riding, with distances O—H 0.84 Å, N—H 0.92 Å and C—H 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH). In the final difference map, bonding electron density was clearly apparent in all of the C—C, C—N, C—O and N—O bonds of the anion; the largest densities were in bonds involving C11.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular components of (I), showing the atom-labelling scheme; (a) the major isomer of the cation, (b) the minor isomer of the cation and (c) the anion. Displacement ellipsoids are drawn at the 30% probability level; the minor cation isomer was refined isotropically [symmetry code: (i) 1 - x, 1 - y, 1 - z].
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the different configurations of the two isomers of the cation lying across a common centre of inversion. The bonds in the major isomer are shown as full lines and those in the minor isomer as dashed lines. For the sake of clarity, H atoms bonded to C atoms have been omitted. Displacement ellipsoids are drawn at the 10% probability level [symmetry code: (i) 1 - x, 1 - y, 1 - z].
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the linking of the anion chains by the major isomer of the cation to form a molecular ladder. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (1 - x, 1 - y, 1 - z) and (x - 1, y, z), respectively.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the linking of the molecular ladders by the minor isomer of the cation. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), hash (#) or dollar sign (add) are at the symmetry positions (1 - x, 1 - y, 1 - z), (2 - x, 2 - y, -z) and (x - 1, y - 1, 1 + z), respectively.
meso-5,7,7,12,14,14-hexamethyl-4,11-diaza-1,8-diazoniacyclotetradecane bis(3-carboxy-5-nitrobenzoate) top
Crystal data top
C16H38N42+·2C8H4NO6Z = 1
Mr = 706.46F(000) = 376
Triclinic, P1Dx = 1.367 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.6867 Å
a = 8.5183 (6) ÅCell parameters from 5312 reflections
b = 10.2278 (8) Åθ = 2.4–29.3°
c = 11.3272 (9) ŵ = 0.11 mm1
α = 66.635 (1)°T = 150 K
β = 71.387 (1)°Block, colourless
γ = 82.976 (1)°0.09 × 0.06 × 0.03 mm
V = 858.54 (11) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4702 independent reflections
Radiation source: Daresbury SRS station 9.84097 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.027
ω rotation with narrow frames scansθmax = 29.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.991, Tmax = 0.997k = 1413
8877 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0776P)2 + 0.2773P]
where P = (Fo2 + 2Fc2)/3
4702 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.64 e Å3
9 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H38N42+·2C8H4NO6γ = 82.976 (1)°
Mr = 706.46V = 858.54 (11) Å3
Triclinic, P1Z = 1
a = 8.5183 (6) ÅSynchrotron radiation, λ = 0.6867 Å
b = 10.2278 (8) ŵ = 0.11 mm1
c = 11.3272 (9) ÅT = 150 K
α = 66.635 (1)°0.09 × 0.06 × 0.03 mm
β = 71.387 (1)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4702 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4097 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.997Rint = 0.027
8877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0629 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.13Δρmax = 0.64 e Å3
4702 reflectionsΔρmin = 0.27 e Å3
262 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.49566 (14)1.15193 (14)0.06528 (15)0.0536 (4)
O21.43084 (14)0.92631 (13)0.19819 (14)0.0480 (3)
H21.52550.92530.20660.072*
O30.88430 (14)0.74429 (12)0.36103 (14)0.0471 (3)
O40.68298 (13)0.86088 (15)0.27784 (13)0.0498 (4)
O50.82203 (17)1.34823 (17)0.07586 (17)0.0701 (5)
O61.06128 (18)1.44045 (16)0.13114 (18)0.0726 (5)
N110.96118 (17)1.34182 (16)0.06684 (15)0.0457 (4)
C111.22518 (16)1.06822 (15)0.11204 (14)0.0285 (3)
C121.11236 (16)0.95671 (15)0.19031 (14)0.0280 (3)
H121.14740.86930.24700.034*
C130.94868 (15)0.97090 (15)0.18704 (13)0.0270 (3)
C140.89797 (16)1.09789 (16)0.10156 (14)0.0295 (3)
H140.78771.10920.09640.035*
C151.01319 (17)1.20707 (16)0.02434 (14)0.0324 (3)
C161.17551 (18)1.19641 (17)0.02789 (15)0.0339 (3)
H161.25051.27420.02550.041*
C171.39859 (16)1.05513 (16)0.12086 (14)0.0310 (3)
C180.82911 (17)0.84889 (16)0.28138 (15)0.0317 (3)
N10.63983 (16)0.33334 (14)0.49439 (14)0.0272 (3)0.847 (3)
H10.57800.27350.57780.033*0.847 (3)
C20.7882 (2)0.3796 (2)0.5081 (2)0.0323 (4)0.847 (3)
H2A0.84690.45480.42210.039*0.847 (3)
H2B0.86440.29810.52850.039*0.847 (3)
C30.7408 (3)0.4364 (3)0.6193 (3)0.0343 (5)0.847 (3)
H3A0.67010.36620.70320.041*0.847 (3)
H3B0.84150.45320.63710.041*0.847 (3)
N40.6482 (6)0.5736 (3)0.5761 (4)0.0274 (5)0.847 (3)
H4A0.56030.55740.55300.033*0.847 (3)
H4B0.71730.63860.50030.033*0.847 (3)
C50.5825 (7)0.6389 (6)0.6830 (6)0.0351 (5)0.847 (3)
C510.7283 (6)0.6911 (5)0.7042 (6)0.0502 (11)0.847 (3)
H51A0.79670.60970.74000.075*0.847 (3)
H51B0.68640.73850.76830.075*0.847 (3)
H51C0.79530.75840.61800.075*0.847 (3)
C520.4772 (10)0.5286 (8)0.8141 (7)0.0572 (10)0.847 (3)
H52A0.39840.48420.79410.086*0.847 (3)
H52B0.41640.57570.87560.086*0.847 (3)
H52C0.54940.45530.85640.086*0.847 (3)
C60.4813 (7)0.7698 (6)0.6221 (7)0.0363 (7)0.847 (3)
H6A0.45140.82390.68170.044*0.847 (3)
H6B0.55390.83190.53420.044*0.847 (3)
C70.3217 (2)0.7412 (2)0.6003 (2)0.0319 (4)0.847 (3)
H70.24830.67780.68880.038*0.847 (3)
C710.2295 (7)0.8821 (5)0.5497 (7)0.0509 (7)0.847 (3)
H71A0.22350.93650.60540.076*0.847 (3)
H71B0.11720.86140.55580.076*0.847 (3)
H71C0.28920.93790.45580.076*0.847 (3)
N210.7072 (9)0.3868 (8)0.4004 (8)0.0267 (12)*0.153 (3)
H210.76040.41270.30980.032*0.153 (3)
C220.8227 (13)0.4009 (14)0.4656 (10)0.0267 (12)*0.153 (3)
H22A0.89900.48140.40200.032*0.153 (3)
H22B0.89000.31320.48580.032*0.153 (3)
C230.7419 (19)0.4253 (16)0.5923 (13)0.0267 (12)*0.153 (3)
H23A0.66260.34600.65230.032*0.153 (3)
H23B0.82870.41620.63590.032*0.153 (3)
N240.653 (4)0.558 (2)0.590 (3)0.0267 (12)*0.153 (3)
H24A0.56110.54950.56730.032*0.153 (3)
H24B0.71860.62520.51370.032*0.153 (3)
C250.588 (3)0.637 (3)0.680 (3)0.0267 (12)*0.153 (3)
C2510.743 (3)0.676 (3)0.698 (2)0.0267 (12)*0.153 (3)
H25A0.81280.73910.61030.040*0.153 (3)
H25B0.80460.58920.73290.040*0.153 (3)
H25C0.71170.72450.76080.040*0.153 (3)
C2520.488 (4)0.531 (3)0.816 (3)0.0267 (12)*0.153 (3)
H25D0.39160.49800.80530.040*0.153 (3)
H25E0.44970.57830.88030.040*0.153 (3)
H25F0.55730.44980.84890.040*0.153 (3)
C260.474 (3)0.757 (4)0.626 (3)0.0267 (12)*0.153 (3)
H26A0.54620.84220.56910.032*0.153 (3)
H26B0.40180.77690.70510.032*0.153 (3)
C270.3601 (13)0.7565 (11)0.5463 (12)0.0267 (12)*0.153 (3)
H270.42770.78030.45020.032*0.153 (3)
C2710.237 (3)0.8766 (19)0.554 (2)0.0267 (12)*0.153 (3)
H27A0.15990.88150.50400.040*0.153 (3)
H27B0.29760.96720.51360.040*0.153 (3)
H27C0.17590.85850.64800.040*0.153 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0252 (5)0.0473 (7)0.0685 (9)0.0083 (5)0.0163 (5)0.0023 (6)
O20.0282 (5)0.0441 (6)0.0650 (8)0.0030 (5)0.0277 (5)0.0023 (6)
O30.0287 (5)0.0345 (6)0.0630 (8)0.0038 (4)0.0223 (5)0.0047 (5)
O40.0235 (5)0.0593 (8)0.0489 (7)0.0071 (5)0.0185 (5)0.0055 (6)
O50.0368 (7)0.0593 (9)0.0804 (11)0.0013 (6)0.0315 (7)0.0193 (8)
O60.0457 (8)0.0516 (8)0.0812 (11)0.0108 (6)0.0244 (7)0.0222 (8)
N110.0311 (6)0.0428 (8)0.0434 (8)0.0015 (6)0.0137 (6)0.0051 (6)
C110.0203 (6)0.0361 (7)0.0282 (6)0.0010 (5)0.0089 (5)0.0104 (5)
C120.0214 (6)0.0314 (6)0.0306 (6)0.0026 (5)0.0111 (5)0.0093 (5)
C130.0205 (6)0.0314 (6)0.0281 (6)0.0007 (5)0.0090 (5)0.0089 (5)
C140.0211 (6)0.0367 (7)0.0276 (6)0.0033 (5)0.0091 (5)0.0086 (5)
C150.0261 (6)0.0350 (7)0.0286 (6)0.0032 (5)0.0098 (5)0.0040 (5)
C160.0252 (6)0.0375 (7)0.0318 (7)0.0023 (5)0.0084 (5)0.0052 (6)
C170.0209 (6)0.0400 (7)0.0308 (6)0.0005 (5)0.0087 (5)0.0115 (6)
C180.0224 (6)0.0341 (7)0.0356 (7)0.0009 (5)0.0118 (5)0.0074 (6)
N10.0255 (6)0.0219 (6)0.0349 (7)0.0007 (5)0.0110 (5)0.0096 (5)
C20.0241 (9)0.0317 (10)0.0456 (11)0.0062 (7)0.0181 (8)0.0149 (9)
C30.0389 (9)0.0276 (8)0.0455 (13)0.0089 (7)0.0257 (10)0.0153 (8)
N40.0271 (7)0.0177 (9)0.0388 (14)0.0008 (7)0.0183 (8)0.0053 (9)
C50.0366 (10)0.0338 (9)0.0406 (10)0.0009 (7)0.0190 (8)0.0143 (7)
C510.0526 (19)0.0480 (19)0.0763 (19)0.0109 (13)0.0411 (16)0.0362 (13)
C520.046 (2)0.0639 (16)0.0441 (12)0.0048 (13)0.0167 (11)0.0016 (11)
C60.0405 (12)0.0286 (17)0.0493 (12)0.0029 (11)0.0210 (10)0.0191 (13)
C70.0319 (9)0.0299 (8)0.0369 (9)0.0049 (7)0.0131 (7)0.0148 (8)
C710.0546 (14)0.0400 (12)0.0732 (16)0.0215 (9)0.0341 (13)0.0312 (11)
Geometric parameters (Å, º) top
O1—C171.1974 (18)C52—H52C0.9800
O2—H20.8400C6—H6A0.9900
O2—C171.3147 (18)C6—H6B0.9900
O3—C181.2497 (18)C6—C71.538 (4)
O4—C181.2477 (17)C7—H71.0000
O5—N111.2136 (19)C7—N1i1.484 (2)
O6—N111.227 (2)C7—C711.542 (4)
N11—C151.4752 (19)C71—H71A0.9800
C11—C121.3902 (19)C71—H71B0.9800
C11—C161.392 (2)C71—H71C0.9800
C11—C171.4984 (18)N21—H210.9200
C12—H120.9500N21—C221.455 (9)
C12—C131.3948 (17)C22—H22A0.9900
C13—C141.3940 (18)C22—H22B0.9900
C13—C181.5149 (19)C22—C231.485 (9)
C14—H140.9500C23—H23A0.9900
C14—C151.386 (2)C23—H23B0.9900
C15—C161.3858 (19)C23—N241.467 (10)
C16—H160.9500N24—H24A0.9200
N1—H10.9200N24—H24B0.9200
N1—C21.475 (2)N24—C251.473 (10)
C2—H2A0.9900C25—C2511.521 (10)
C2—H2B0.9900C25—C2521.526 (10)
C2—C31.511 (3)C25—C261.524 (10)
C3—H3A0.9900C251—H25A0.9800
C3—H3B0.9900C251—H25B0.9800
C3—N41.505 (2)C251—H25C0.9800
N4—H4A0.9200C252—H25D0.9800
N4—H4B0.9200C252—H25E0.9800
N4—C51.530 (3)C252—H25F0.9800
C5—C511.530 (3)C26—H26A0.9900
C5—C521.533 (4)C26—H26B0.9900
C5—C61.542 (3)C26—C271.524 (10)
C51—H51A0.9800C27—H271.0000
C51—H51B0.9800C27—C2711.523 (10)
C51—H51C0.9800C271—H27A0.9800
C52—H52A0.9800C271—H27B0.9800
C52—H52B0.9800C271—H27C0.9800
H2—O2—C17109.5H6A—C6—C7108.0
O5—N11—O6123.48 (14)H6B—C6—C7108.0
O5—N11—C15117.99 (14)C6—C7—H7108.2
O6—N11—C15118.52 (13)C6—C7—C71110.0 (4)
C12—C11—C16119.89 (12)H7—C7—C71108.2
C12—C11—C17121.02 (12)H21—N21—C22108.8
C16—C11—C17119.04 (13)N21—C22—H22A108.8
C11—C12—H12119.4N21—C22—H22B108.8
C11—C12—C13121.17 (12)N21—C22—C23114.0 (10)
H12—C12—C13119.4H22A—C22—H22B107.6
C12—C13—C14119.54 (12)H22A—C22—C23108.8
C12—C13—C18118.57 (12)H22B—C22—C23108.8
C14—C13—C18121.85 (11)C22—C23—H23A107.1
C13—C14—H14121.0C22—C23—H23B107.1
C13—C14—C15118.04 (12)C22—C23—N24120.7 (15)
H14—C14—C15121.0H23A—C23—H23B106.8
N11—C15—C14118.55 (12)H23A—C23—N24107.1
N11—C15—C16118.01 (13)H23B—C23—N24107.1
C14—C15—C16123.43 (13)C23—N24—H24A102.5
C11—C16—C15117.91 (13)C23—N24—H24B102.5
C11—C16—H16121.0C23—N24—C25138 (2)
C15—C16—H16121.0H24A—N24—H24B104.9
O1—C17—O2123.99 (13)H24A—N24—C25102.5
O1—C17—C11123.62 (14)H24B—N24—C25102.5
O2—C17—C11112.38 (12)N24—C25—C251103 (2)
O3—C18—O4124.64 (14)N24—C25—C252107 (2)
O3—C18—C13116.65 (12)N24—C25—C26112 (2)
O4—C18—C13118.67 (13)C251—C25—C252108 (2)
H1—N1—C2108.8C251—C25—C26118 (2)
N1—C2—H2A109.5C252—C25—C26109 (2)
N1—C2—H2B109.5C25—C251—H25A109.5
N1—C2—C3110.67 (17)C25—C251—H25B109.5
H2A—C2—H2B108.1C25—C251—H25C109.5
H2A—C2—C3109.5H25A—C251—H25B109.5
H2B—C2—C3109.5H25A—C251—H25C109.5
C2—C3—H3A110.0H25B—C251—H25C109.5
C2—C3—H3B110.0C25—C252—H25D109.5
C2—C3—N4108.6 (2)C25—C252—H25E109.5
H3A—C3—H3B108.3C25—C252—H25F109.5
H3A—C3—N4110.0H25D—C252—H25E109.5
H3B—C3—N4110.0H25D—C252—H25F109.5
C3—N4—H4A108.7H25E—C252—H25F109.5
C3—N4—H4B108.7C25—C26—H26A105.9
C3—N4—C5114.4 (3)C25—C26—H26B105.9
H4A—N4—H4B107.6C25—C26—C27126 (2)
H4A—N4—C5108.7H26A—C26—H26B106.2
H4B—N4—C5108.7H26A—C26—C27105.9
N4—C5—C51109.3 (4)H26B—C26—C27105.9
N4—C5—C52109.7 (5)C26—C27—H27108.4
N4—C5—C6105.5 (4)C26—C27—C271105.4 (17)
C51—C5—C52111.6 (5)H27—C27—C271108.4
C51—C5—C6108.1 (4)C27—C271—H27A109.5
C52—C5—C6112.4 (5)C27—C271—H27B109.5
C5—C6—H6A108.0C27—C271—H27C109.5
C5—C6—H6B108.0H27A—C271—H27B109.5
C5—C6—C7117.0 (4)H27A—C271—H27C109.5
H6A—C6—H6B107.3H27B—C271—H27C109.5
C7i—N1—C2—C3172.3 (2)C27i—N21—C22—C2384 (2)
N1—C2—C3—N468.2 (3)N21—C22—C23—N2467 (2)
C2—C3—N4—C5176.3 (4)C22—C23—N24—C25164 (3)
C3—N4—C5—C6175.5 (4)C23—N24—C25—C26168 (4)
N4—C5—C6—C766.8 (6)N24—C25—C26—C2733 (4)
C5—C6—C7—N1i60.9 (6)C25—C26—C27—N21i37 (3)
C6—C7—N1i—C2i173.2 (3)C26—C27—N21i—C22i178 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4ii0.841.712.5063 (15)156
N4—H4A···N1i0.922.022.764 (4)137
N1—H1···O4i0.922.483.3025 (18)149
N1—H1···O2iii0.922.533.3554 (19)149
N4—H4B···O30.921.812.718 (5)169
N24—H24A···N21i0.922.253.03 (3)141
N21—H21···O6iv0.922.203.009 (8)146
N24—H24B···O30.921.912.82 (3)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H38N42+·2C8H4NO6
Mr706.46
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.5183 (6), 10.2278 (8), 11.3272 (9)
α, β, γ (°)66.635 (1), 71.387 (1), 82.976 (1)
V3)858.54 (11)
Z1
Radiation typeSynchrotron, λ = 0.6867 Å
µ (mm1)0.11
Crystal size (mm)0.09 × 0.06 × 0.03
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.991, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
8877, 4702, 4097
Rint0.027
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.165, 1.13
No. of reflections4702
No. of parameters262
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2000), SAINT, SHELXTL (Sheldrick, 1998), SHELXTL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
O1—C171.1974 (18)N1—C21.475 (2)
O2—C171.3147 (18)C3—N41.505 (2)
O3—C181.2497 (18)N4—C51.530 (3)
O4—C181.2477 (17)C7—N1i1.484 (2)
C7i—N1—C2—C3172.3 (2)C27i—N21—C22—C2384 (2)
N1—C2—C3—N468.2 (3)N21—C22—C23—N2467 (2)
C2—C3—N4—C5176.3 (4)C22—C23—N24—C25164 (3)
C3—N4—C5—C6175.5 (4)C23—N24—C25—C26168 (4)
N4—C5—C6—C766.8 (6)N24—C25—C26—C2733 (4)
C5—C6—C7—N1i60.9 (6)C25—C26—C27—N21i37 (3)
C6—C7—N1i—C2i173.2 (3)C26—C27—N21i—C22i178 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4ii0.841.712.5063 (15)156
N4—H4A···N1i0.922.022.764 (4)137
N1—H1···O4i0.922.483.3025 (18)149
N1—H1···O2iii0.922.533.3554 (19)149
N4—H4B···O30.921.812.718 (5)169
N24—H24A···N21i0.922.253.03 (3)141
N21—H21···O6iv0.922.203.009 (8)146
N24—H24B···O30.921.912.82 (3)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+2, y+2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds