Download citation
Download citation
link to html
The title complexes [M(sac)2(mpy)2] [sac is saccharinate (C7H4NO3S) and mpy is 2-pyridyl­methanol (C6H7NO)], with M = ZnII and CdII, are isostructural and consist of neutral mol­ecules. The ZnII or CdII cations are octahedrally coordinated by the two neutral mpy and two anionic sac ligands. The mpy ligand acts as a bidentate donor through the amine N and hydroxyl O atoms. The sac ligands exhibit an ambidentate coordination behaviour; one is N-coordinated and the other is O-coordinated within the same coordination octahedron. The crystal packing is determined by C-H...O-type hydrogen bonding, as well as by weak py-py and sac-sac aromatic [pi]-[pi]-stacking interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102010491/tr1032sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102010491/tr1032Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102010491/tr1032IIsup3.hkl
Contains datablock II

CCDC references: 193396; 193397

Comment top

Saccharin and its deprotonated form, saccharinate (sac), are versatile polyfunctional ligands in coordination chemistry. Sac may bond to metals through four sites, viz. the negatively charged imino N atom, one carbonyl and two sulfonyl O atoms. The sac ligand can behave as a mono- or bidentate ligand and, in some cases, can as a bridging ligand between two metals. In this work, we report the crystal structures of new bis(saccharinato)zinc(II) and cadmium(II) complexes with 2-pyridylmethanol (mpy), namely [Zn(sac)2(mpy)2], (I), and [Cd(sac)2(mpy)2], (II), containing ambidentate N– and O-coordinated sac ligands within a coordination polyhedron.

The molecular structures of [Zn(sac)2(mpy)2] and [Cd(sac)2(mpy)2] are given in Figs. 1 and 2, respectively. The crystal structures are isomorphous and consist of individual neutral molecules of [M(sac)2(mpy)2]. The ZnII and CdII are six-coordinated by two mpy and two sac ligands, forming an MN3O3 core. The mpy ligand behaves as a bidentate donor through the amine N and methanol O atoms, forming a five-membered chelate ring. The N atoms of the two mpy ligands are in trans positions, while the hydroxyl O atoms occupy the cis positions of the octahedron. The sac anion usually interacts with transition metal ions through its deprotonated N atom. The coordination of sac to the transition metal ions through donor groups other than the amine N atom is unusual and there are only a few examples of O-coordination of sac reported previously, i.e. in metal–sac complexes with pyridine (Cotton et al., 1986; Quinzani et al., 1999), dipyridylamine (Deng et al., 2001) and triphenylphosphine (Falvello et al., 2001). Recently, O-coordinated sac complexes of trivalent lanthanides and yttrium have been reported by Piro et al. (2002). Therefore, the most interesting feature of complexes (I) and (II) is the coordination of the sac ligands, which occur in two distinct manners. Both sac ligands are monodentate, one being N-coordinated and the other O-coordinated.

The Zn—Nsac bond distance in (I) is significantly longer than the distance of 1.977 (2) Å found in [Zn(sac)2(py)2] (py is pyridine; Quinzani et al., 1997), but also markedly shorter the distances of 2.157 (5) and 2.2423 (9) Å reported for [Zn(sac)2(bipy)2]·H2O (bipy is 2,2'-bipyridine; Johns et al., 2001) and [Zn(sac)2(mea)2] (mea is monoethanolamine; Yilmaz et al., 2001), respectively. The Cd—Nsac bond distance in (II) is much shorter than that observed in [Cd(sac)2(HydEt-en)2] (Yilmaz et al., 2002), where HydEt-en is N-(2-hydroxyethyl)-ethylenediamine, while it is longer than those found in [Cd(sac)2(bipy)2] (Johns et al., 2001) and [Cd2(sac)4(im)2] (im is imidazole; Jianmin et al., 1997). It seems that the differences in the M—Nsac bond distances in these structures are a consequence of the steric effects of the co-ligands, such as bipy, mea, HydEt-en and im. Large distortions in the coordination polyhedra from ideal octahedral geometry are clearly evident from the N—M—N, N—M—O and O—M—O bond angles. The bite angles of the mpy ligand in the ZnII and CdII complexes are significantly smaller than the ideal cis angles of a regular octahedron (90°), and as a result, these complexes may be regarded as having a distorted octahedral structure.

The sac ligands in the two complexes are essentially planar, with an r.m.s. deviation of ca 0.03 Å. The py rings of the mpy ligands are also planar, with an r.m.s. deviation of ca 0.01 Å, but the hydroxyl O and methylene C atoms deviate slightly from the py planes by ca 0.38 (2) and 0.02 (1) Å. The mpy ligands in (I) and (II) are roughly perpendicular to each other, with dihedral angles of 80.07 (5) and 87.46°, respectively, while the dihedral angle between the best planes of the sac ligands is 22.60° in (I) and 19.19 (5)° in (II). As the two structures are isomorphous, only the packing of only one of the structures, (I), is given (Fig. 3). The hydroxyl H atoms of the mpy ligands form strong intramolecular hydrogen bonds with the carbonyl O and the negatively charged N atoms of neighbouring sac ligands. The methylene and phenyl H atoms are involved in weak intermolecular C—H···O interactions with the sulfonyl and carbonyl O atoms. Furthermore, there are weak ππ interactions between the mpy-ring centroids (Cg) [Cg···Cgi: 3.443 (1) Å in (I) and 3.460 (1) Å in (II); symmetry code: (i) 1 - x, 1 - y, 1 - z] and the sac rings [Cg···Cgii: 3.801 (1) Å in (I) and 3.979 (1) Å in (II); symmetry code: (ii) -x, -y, 1 - z]. The molecules are held together by weak hydrogen bonds and ππ interactions thereby forming a three-dimensional network.

Experimental top

The mpy ligand (0.218 g, 2.0 mmol) dissolved in methanol (15 ml) was added dropwise to solutions of tetraaquabis(saccharinato)zinc(II) and tetraaquabis(saccharinato)cadmium(II) dihydrate (1 mmol) dissolved in methanol–2-propanol mixtures (v:v, 1:1, 30 ml) with continuous stirring at room temperature. The resulting solutions were left to stand at room temperature and allowed to evaporate slowly over a period of afew days whereupon crystallization occurred. Crystals of both compounds suitable for X-ray diffraction analysis were collected by suction filtration, washed with acetone and dried in air.

Refinement top

Hydroxyl H atoms were refined with restraints starting from their locations in a difference map [Uiso(H) = 1.2Ueq(O)]. The remaining H-atom positions were calculated [C—H = 0.95 (CH) and 0.99 Å (CH2), and Uiso(H) = 1.2Ueq(C)].

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR97 (Altomare et al.,1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), with the atom-numbering scheme and 50% displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular structure of (II) with the atom-numbering scheme and 50% displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A packing diagram for (I).
(I) Bis(2-pyridylmethanol)bis(saccharinato)zinc(II) top
Crystal data top
[Zn(C7H4NO3S)2(C6H7NO)2]Z = 2
Mr = 647.97F(000) = 664
Triclinic, P1Dx = 1.665 Mg m3
a = 8.9874 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1630 (2) ÅCell parameters from 11819 reflections
c = 13.1879 (3) Åθ = 2.9–27.5°
α = 99.1532 (8)°µ = 1.17 mm1
β = 95.0138 (9)°T = 120 K
γ = 95.729 (2)°Needle, colourless
V = 1292.52 (5) Å30.25 × 0.10 × 0.05 mm
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
5684 independent reflections
Radiation source: Enraf–Nonius FR591 rotating anode4863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scans to fill Ewald sphereh = 1011
Absorption correction: multi-scan
(Blessing, 1995)
k = 1414
Tmin = 0.869, Tmax = 0.943l = 1717
16550 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.081H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.9518P]
where P = (Fo2 + 2Fc2)/3
5684 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Zn(C7H4NO3S)2(C6H7NO)2]γ = 95.729 (2)°
Mr = 647.97V = 1292.52 (5) Å3
Triclinic, P1Z = 2
a = 8.9874 (2) ÅMo Kα radiation
b = 11.1630 (2) ŵ = 1.17 mm1
c = 13.1879 (3) ÅT = 120 K
α = 99.1532 (8)°0.25 × 0.10 × 0.05 mm
β = 95.0138 (9)°
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
5684 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4863 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.943Rint = 0.042
16550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
5684 reflectionsΔρmin = 0.53 e Å3
376 parameters
Special details top

Experimental. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.38648 (2)0.29128 (2)0.223516 (17)0.01324 (8)
O10.52823 (16)0.35896 (13)0.11421 (11)0.0169 (3)
H1O0.477 (2)0.4124 (17)0.0969 (18)0.020*
O20.57861 (16)0.19005 (13)0.26526 (11)0.0169 (3)
H2O0.537 (3)0.1311 (16)0.2869 (18)0.020*
N10.33447 (19)0.15621 (15)0.08872 (13)0.0133 (3)
N20.52242 (18)0.41856 (15)0.33549 (13)0.0139 (3)
C10.2202 (2)0.06560 (18)0.07478 (16)0.0157 (4)
H10.15840.05950.12900.019*
C20.1891 (2)0.01850 (19)0.01478 (16)0.0175 (4)
H20.10890.08240.02160.021*
C30.2771 (2)0.0082 (2)0.09490 (17)0.0198 (5)
H30.25770.06470.15780.024*
C40.3932 (2)0.0851 (2)0.08186 (17)0.0203 (5)
H40.45440.09430.13590.024*
C50.4196 (2)0.16557 (18)0.01131 (16)0.0153 (4)
C60.5469 (2)0.26750 (18)0.02996 (16)0.0174 (4)
H6A0.64280.23360.04410.021*
H6B0.55270.30470.03310.021*
C70.4957 (2)0.53560 (18)0.36046 (16)0.0162 (4)
H70.40780.56060.32850.019*
C80.5902 (2)0.62052 (19)0.43032 (16)0.0169 (4)
H80.56780.70240.44630.020*
C90.7185 (2)0.58450 (19)0.47681 (16)0.0177 (4)
H90.78490.64090.52610.021*
C100.7484 (2)0.46528 (19)0.45035 (16)0.0171 (4)
H100.83700.43900.48010.021*
C110.6475 (2)0.38429 (18)0.37973 (15)0.0139 (4)
C120.6761 (2)0.25316 (19)0.35234 (16)0.0181 (4)
H12A0.78180.25020.33720.022*
H12B0.66150.21150.41220.022*
S10.34019 (6)0.11760 (5)0.33629 (4)0.01998 (13)
N30.3809 (2)0.02314 (15)0.31906 (14)0.0175 (4)
O30.25978 (16)0.19410 (12)0.31380 (11)0.0163 (3)
O40.4161 (2)0.13807 (15)0.43137 (13)0.0317 (4)
O50.35998 (19)0.20078 (14)0.24490 (13)0.0305 (4)
C130.2614 (2)0.08481 (18)0.32599 (15)0.0151 (4)
C140.1231 (2)0.01129 (19)0.34554 (16)0.0177 (4)
C150.0176 (3)0.0489 (2)0.35650 (18)0.0255 (5)
H150.03490.13100.35400.031*
C160.1325 (3)0.0373 (2)0.3712 (2)0.0317 (6)
H160.23020.01400.37910.038*
C170.1066 (3)0.1569 (2)0.37455 (19)0.0317 (6)
H170.18740.21440.38390.038*
C180.0349 (3)0.1949 (2)0.36452 (18)0.0281 (5)
H180.05290.27680.36730.034*
C190.1479 (3)0.10767 (19)0.35033 (16)0.0197 (4)
S20.04298 (5)0.37705 (4)0.22439 (4)0.01333 (11)
N40.21309 (18)0.39888 (15)0.19066 (13)0.0134 (3)
O60.34309 (16)0.52299 (13)0.09695 (11)0.0192 (3)
O70.03371 (16)0.26245 (13)0.17043 (11)0.0199 (3)
O80.04240 (16)0.39778 (14)0.33447 (11)0.0190 (3)
C200.2284 (2)0.49276 (18)0.13616 (15)0.0145 (4)
C210.0901 (2)0.55604 (18)0.12855 (15)0.0148 (4)
C220.0676 (2)0.65791 (19)0.08383 (17)0.0194 (4)
H220.14570.69770.05280.023*
C230.0722 (3)0.7000 (2)0.08575 (17)0.0221 (5)
H230.09030.76950.05530.027*
C240.1868 (2)0.6424 (2)0.13157 (18)0.0226 (5)
H240.28140.67340.13210.027*
C250.1647 (2)0.54010 (19)0.17650 (17)0.0188 (4)
H250.24220.49980.20760.023*
C260.0245 (2)0.50023 (18)0.17353 (15)0.0149 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01296 (13)0.01078 (13)0.01609 (13)0.00128 (9)0.00212 (9)0.00237 (9)
O10.0161 (8)0.0135 (7)0.0222 (8)0.0021 (6)0.0038 (6)0.0052 (6)
O20.0164 (8)0.0132 (7)0.0212 (8)0.0023 (6)0.0028 (6)0.0021 (6)
N10.0141 (9)0.0119 (8)0.0146 (9)0.0035 (6)0.0024 (6)0.0028 (7)
N20.0127 (9)0.0129 (8)0.0172 (9)0.0025 (6)0.0033 (6)0.0041 (7)
C10.0168 (11)0.0130 (10)0.0182 (11)0.0028 (8)0.0036 (8)0.0041 (8)
C20.0166 (11)0.0131 (10)0.0218 (11)0.0018 (8)0.0012 (8)0.0017 (8)
C30.0222 (12)0.0178 (11)0.0190 (11)0.0077 (9)0.0011 (8)0.0007 (9)
C40.0244 (12)0.0206 (11)0.0187 (11)0.0102 (9)0.0071 (9)0.0047 (9)
C50.0164 (11)0.0141 (10)0.0180 (11)0.0061 (8)0.0040 (8)0.0069 (8)
C60.0195 (11)0.0142 (10)0.0209 (11)0.0040 (8)0.0087 (8)0.0052 (8)
C70.0160 (11)0.0138 (10)0.0199 (11)0.0039 (8)0.0032 (8)0.0035 (8)
C80.0173 (11)0.0123 (10)0.0219 (11)0.0022 (8)0.0050 (8)0.0036 (8)
C90.0184 (11)0.0170 (11)0.0169 (11)0.0006 (8)0.0026 (8)0.0018 (8)
C100.0150 (11)0.0194 (11)0.0180 (11)0.0034 (8)0.0010 (8)0.0060 (8)
C110.0137 (10)0.0136 (10)0.0163 (10)0.0028 (8)0.0056 (8)0.0052 (8)
C120.0169 (11)0.0149 (10)0.0227 (11)0.0044 (8)0.0005 (8)0.0029 (8)
S10.0242 (3)0.0115 (2)0.0258 (3)0.0049 (2)0.0049 (2)0.0046 (2)
N30.0188 (10)0.0113 (8)0.0236 (10)0.0031 (7)0.0033 (7)0.0051 (7)
O30.0197 (8)0.0118 (7)0.0198 (8)0.0044 (6)0.0061 (6)0.0060 (6)
O40.0383 (11)0.0242 (9)0.0362 (10)0.0109 (7)0.0017 (8)0.0143 (8)
O50.0361 (10)0.0167 (8)0.0386 (10)0.0042 (7)0.0141 (8)0.0024 (7)
C130.0194 (11)0.0146 (10)0.0119 (10)0.0034 (8)0.0021 (8)0.0027 (8)
C140.0208 (11)0.0176 (11)0.0157 (11)0.0030 (8)0.0024 (8)0.0055 (8)
C150.0253 (13)0.0240 (12)0.0312 (13)0.0060 (9)0.0091 (9)0.0116 (10)
C160.0230 (13)0.0346 (14)0.0409 (15)0.0020 (10)0.0104 (10)0.0142 (12)
C170.0304 (14)0.0299 (14)0.0358 (15)0.0056 (11)0.0089 (11)0.0110 (11)
C180.0375 (15)0.0175 (11)0.0297 (13)0.0022 (10)0.0087 (10)0.0064 (10)
C190.0261 (12)0.0162 (11)0.0182 (11)0.0034 (9)0.0055 (8)0.0053 (8)
S20.0121 (3)0.0125 (2)0.0160 (3)0.00139 (18)0.00106 (18)0.00418 (19)
N40.0111 (9)0.0131 (8)0.0169 (9)0.0017 (6)0.0025 (6)0.0050 (7)
O60.0178 (8)0.0153 (7)0.0272 (8)0.0026 (6)0.0083 (6)0.0080 (6)
O70.0182 (8)0.0130 (7)0.0271 (8)0.0032 (6)0.0001 (6)0.0037 (6)
O80.0190 (8)0.0240 (8)0.0165 (8)0.0067 (6)0.0033 (6)0.0072 (6)
C200.0169 (11)0.0095 (9)0.0164 (10)0.0013 (8)0.0004 (8)0.0014 (8)
C210.0163 (11)0.0127 (10)0.0150 (10)0.0015 (8)0.0003 (8)0.0020 (8)
C220.0195 (11)0.0171 (11)0.0225 (11)0.0014 (8)0.0025 (8)0.0064 (9)
C230.0232 (12)0.0185 (11)0.0269 (12)0.0054 (9)0.0014 (9)0.0111 (9)
C240.0167 (11)0.0234 (12)0.0285 (12)0.0068 (9)0.0023 (9)0.0061 (9)
C250.0143 (11)0.0185 (11)0.0235 (11)0.0009 (8)0.0011 (8)0.0040 (9)
C260.0160 (11)0.0120 (10)0.0155 (10)0.0007 (8)0.0018 (8)0.0007 (8)
Geometric parameters (Å, º) top
Zn1—O32.0717 (14)C12—H12B0.9900
Zn1—N22.0887 (17)S1—O51.4356 (17)
Zn1—N42.1167 (16)S1—O41.4363 (17)
Zn1—N12.1244 (17)S1—N31.6330 (18)
Zn1—O12.1788 (14)S1—C191.767 (2)
Zn1—O22.2323 (14)N3—C131.334 (3)
O1—C61.418 (2)O3—C131.257 (2)
O1—H1O0.834 (10)C13—C141.485 (3)
O2—C121.423 (2)C14—C191.378 (3)
O2—H2O0.828 (10)C14—C151.384 (3)
N1—C51.339 (3)C15—C161.388 (3)
N1—C11.346 (3)C15—H150.9500
N2—C111.339 (3)C16—C171.385 (4)
N2—C71.346 (3)C16—H160.9500
C1—C21.375 (3)C17—C181.390 (4)
C1—H10.9500C17—H170.9500
C2—C31.386 (3)C18—C191.382 (3)
C2—H20.9500C18—H180.9500
C3—C41.378 (3)S2—O81.4338 (15)
C3—H30.9500S2—O71.4376 (15)
C4—C51.389 (3)S2—N41.6351 (17)
C4—H40.9500S2—C261.760 (2)
C5—C61.506 (3)N4—C201.364 (3)
C6—H6A0.9900O6—C201.234 (2)
C6—H6B0.9900C20—C211.493 (3)
C7—C81.376 (3)C21—C261.378 (3)
C7—H70.9500C21—C221.386 (3)
C8—C91.384 (3)C22—C231.386 (3)
C8—H80.9500C22—H220.9500
C9—C101.380 (3)C23—C241.393 (3)
C9—H90.9500C23—H230.9500
C10—C111.389 (3)C24—C251.390 (3)
C10—H100.9500C24—H240.9500
C11—C121.504 (3)C25—C261.380 (3)
C12—H12A0.9900C25—H250.9500
O3—Zn1—N2101.67 (6)O2—C12—H12A109.2
O3—Zn1—N493.40 (6)C11—C12—H12A109.2
N2—Zn1—N499.10 (6)O2—C12—H12B109.2
O3—Zn1—N194.17 (6)C11—C12—H12B109.2
N2—Zn1—N1156.92 (6)H12A—C12—H12B107.9
N4—Zn1—N196.58 (6)O5—S1—O4116.39 (10)
O3—Zn1—O1168.97 (5)O5—S1—N3110.06 (10)
N2—Zn1—O185.38 (6)O4—S1—N3111.01 (10)
N4—Zn1—O193.84 (6)O5—S1—C19111.56 (10)
N1—Zn1—O176.74 (6)O4—S1—C19109.72 (10)
O3—Zn1—O288.05 (5)N3—S1—C1996.29 (9)
N2—Zn1—O276.74 (6)C13—N3—S1111.22 (14)
N4—Zn1—O2175.80 (6)C13—O3—Zn1128.87 (13)
N1—Zn1—O287.24 (6)O3—C13—N3124.82 (19)
O1—Zn1—O285.32 (5)O3—C13—C14121.05 (18)
C6—O1—Zn1112.97 (11)N3—C13—C14114.09 (18)
C6—O1—H1O112.9 (17)C19—C14—C15120.8 (2)
Zn1—O1—H1O99.2 (17)C19—C14—C13111.43 (18)
C12—O2—Zn1113.28 (11)C15—C14—C13127.79 (19)
C12—O2—H2O103.7 (17)C14—C15—C16117.8 (2)
Zn1—O2—H2O102.5 (18)C14—C15—H15121.1
C5—N1—C1118.36 (18)C16—C15—H15121.1
C5—N1—Zn1116.78 (14)C17—C16—C15120.8 (2)
C1—N1—Zn1124.82 (13)C17—C16—H16119.6
C11—N2—C7118.32 (18)C15—C16—H16119.6
C11—N2—Zn1118.38 (13)C16—C17—C18121.6 (2)
C7—N2—Zn1123.16 (13)C16—C17—H17119.2
N1—C1—C2122.72 (19)C18—C17—H17119.2
N1—C1—H1118.6C19—C18—C17116.7 (2)
C2—C1—H1118.6C19—C18—H18121.6
C1—C2—C3118.7 (2)C17—C18—H18121.6
C1—C2—H2120.6C14—C19—C18122.3 (2)
C3—C2—H2120.6C14—C19—S1106.89 (16)
C4—C3—C2119.0 (2)C18—C19—S1130.82 (18)
C4—C3—H3120.5O8—S2—O7115.93 (9)
C2—C3—H3120.5O8—S2—N4111.69 (9)
C3—C4—C5119.2 (2)O7—S2—N4110.72 (9)
C3—C4—H4120.4O8—S2—C26109.78 (9)
C5—C4—H4120.4O7—S2—C26110.98 (9)
N1—C5—C4122.02 (19)N4—S2—C2695.97 (9)
N1—C5—C6116.86 (18)C20—N4—S2111.71 (14)
C4—C5—C6121.12 (18)C20—N4—Zn1124.11 (13)
O1—C6—C5111.91 (16)S2—N4—Zn1124.16 (9)
O1—C6—H6A109.2O6—C20—N4124.35 (18)
C5—C6—H6A109.2O6—C20—C21123.05 (18)
O1—C6—H6B109.2N4—C20—C21112.59 (17)
C5—C6—H6B109.2C26—C21—C22119.98 (19)
H6A—C6—H6B107.9C26—C21—C20111.52 (17)
N2—C7—C8122.79 (19)C22—C21—C20128.50 (19)
N2—C7—H7118.6C21—C22—C23117.98 (19)
C8—C7—H7118.6C21—C22—H22121.0
C7—C8—C9118.77 (19)C23—C22—H22121.0
C7—C8—H8120.6C22—C23—C24121.2 (2)
C9—C8—H8120.6C22—C23—H23119.4
C8—C9—C10118.92 (19)C24—C23—H23119.4
C8—C9—H9120.5C25—C24—C23121.0 (2)
C10—C9—H9120.5C25—C24—H24119.5
C9—C10—C11119.19 (19)C23—C24—H24119.5
C9—C10—H10120.4C26—C25—C24116.5 (2)
C11—C10—H10120.4C26—C25—H25121.7
N2—C11—C10122.00 (18)C24—C25—H25121.7
N2—C11—C12118.09 (18)C21—C26—C25123.27 (19)
C10—C11—C12119.90 (18)C21—C26—S2108.05 (15)
O2—C12—C11111.98 (16)C25—C26—S2128.67 (16)
O3—Zn1—O1—C617.2 (4)Zn1—O3—C13—N329.1 (3)
N2—Zn1—O1—C6147.42 (13)Zn1—O3—C13—C14148.21 (15)
N4—Zn1—O1—C6113.74 (13)S1—N3—C13—O3178.41 (16)
N1—Zn1—O1—C617.88 (13)S1—N3—C13—C140.9 (2)
O2—Zn1—O1—C670.38 (13)O3—C13—C14—C19176.36 (19)
O3—Zn1—O2—C1293.63 (13)N3—C13—C14—C191.2 (3)
N2—Zn1—O2—C128.84 (13)O3—C13—C14—C152.4 (3)
N1—Zn1—O2—C12172.09 (14)N3—C13—C14—C15180.0 (2)
O1—Zn1—O2—C1295.18 (13)C19—C14—C15—C160.7 (3)
O3—Zn1—N1—C5165.52 (14)C13—C14—C15—C16178.0 (2)
N2—Zn1—N1—C532.0 (2)C14—C15—C16—C170.1 (4)
N4—Zn1—N1—C5100.57 (14)C15—C16—C17—C180.7 (4)
O1—Zn1—N1—C58.16 (13)C16—C17—C18—C190.4 (4)
O2—Zn1—N1—C577.68 (14)C15—C14—C19—C181.0 (3)
O3—Zn1—N1—C116.83 (16)C13—C14—C19—C18177.9 (2)
N2—Zn1—N1—C1150.32 (16)C15—C14—C19—S1178.56 (18)
N4—Zn1—N1—C177.09 (16)C13—C14—C19—S12.6 (2)
O1—Zn1—N1—C1169.50 (17)C17—C18—C19—C140.4 (3)
O2—Zn1—N1—C1104.66 (16)C17—C18—C19—S1179.04 (19)
O3—Zn1—N2—C1183.07 (15)O5—S1—C19—C14117.26 (16)
N4—Zn1—N2—C11178.49 (14)O4—S1—C19—C14112.24 (16)
N1—Zn1—N2—C1149.3 (2)N3—S1—C19—C142.77 (16)
O1—Zn1—N2—C1188.35 (14)O5—S1—C19—C1863.2 (2)
O2—Zn1—N2—C112.08 (14)O4—S1—C19—C1867.3 (2)
O3—Zn1—N2—C7101.43 (16)N3—S1—C19—C18177.7 (2)
N4—Zn1—N2—C76.02 (17)O8—S2—N4—C20117.13 (15)
N1—Zn1—N2—C7126.19 (18)O7—S2—N4—C20112.05 (14)
O1—Zn1—N2—C787.14 (16)C26—S2—N4—C203.06 (15)
O2—Zn1—N2—C7173.41 (17)O8—S2—N4—Zn164.62 (13)
C5—N1—C1—C21.1 (3)O7—S2—N4—Zn166.20 (13)
Zn1—N1—C1—C2178.73 (15)C26—S2—N4—Zn1178.69 (11)
N1—C1—C2—C31.4 (3)O3—Zn1—N4—C20175.52 (15)
C1—C2—C3—C40.5 (3)N2—Zn1—N4—C2073.13 (16)
C2—C3—C4—C50.5 (3)N1—Zn1—N4—C2089.88 (16)
C1—N1—C5—C40.0 (3)O1—Zn1—N4—C2012.80 (16)
Zn1—N1—C5—C4177.83 (15)O3—Zn1—N4—S26.44 (11)
C1—N1—C5—C6179.63 (17)N2—Zn1—N4—S2108.84 (11)
Zn1—N1—C5—C62.6 (2)N1—Zn1—N4—S288.16 (11)
C3—C4—C5—N10.8 (3)O1—Zn1—N4—S2165.23 (11)
C3—C4—C5—C6178.80 (19)S2—N4—C20—O6175.72 (16)
Zn1—O1—C6—C524.1 (2)Zn1—N4—C20—O62.5 (3)
N1—C5—C6—O118.0 (2)S2—N4—C20—C214.2 (2)
C4—C5—C6—O1162.34 (18)Zn1—N4—C20—C21177.55 (12)
C11—N2—C7—C80.9 (3)O6—C20—C21—C26176.44 (19)
Zn1—N2—C7—C8176.42 (15)N4—C20—C21—C263.5 (2)
N2—C7—C8—C90.2 (3)O6—C20—C21—C223.5 (3)
C7—C8—C9—C101.0 (3)N4—C20—C21—C22176.6 (2)
C8—C9—C10—C111.4 (3)C26—C21—C22—C230.3 (3)
C7—N2—C11—C100.5 (3)C20—C21—C22—C23179.6 (2)
Zn1—N2—C11—C10176.18 (15)C21—C22—C23—C240.3 (3)
C7—N2—C11—C12179.42 (18)C22—C23—C24—C250.3 (3)
Zn1—N2—C11—C124.9 (2)C23—C24—C25—C260.3 (3)
C9—C10—C11—N20.7 (3)C22—C21—C26—C250.4 (3)
C9—C10—C11—C12178.22 (19)C20—C21—C26—C25179.58 (19)
Zn1—O2—C12—C1113.4 (2)C22—C21—C26—S2178.87 (16)
N2—C11—C12—O212.4 (3)C20—C21—C26—S21.2 (2)
C10—C11—C12—O2168.60 (18)C24—C25—C26—C210.4 (3)
O5—S1—N3—C13117.84 (16)C24—C25—C26—S2178.69 (17)
O4—S1—N3—C13111.83 (16)O8—S2—C26—C21116.62 (15)
C19—S1—N3—C132.13 (16)O7—S2—C26—C21113.92 (15)
N2—Zn1—O3—C13112.53 (17)N4—S2—C26—C210.99 (16)
N4—Zn1—O3—C13147.45 (17)O8—S2—C26—C2562.6 (2)
N1—Zn1—O3—C1350.59 (17)O7—S2—C26—C2566.9 (2)
O1—Zn1—O3—C1316.5 (4)N4—S2—C26—C25178.2 (2)
O2—Zn1—O3—C1336.49 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O60.83 (1)1.81 (1)2.617 (2)162 (2)
O2—H2O···N30.83 (1)1.88 (1)2.667 (2)159 (2)
C6—H6B···O6i0.992.363.213 (2)144
C8—H8···O4ii0.952.373.247 (3)153
C12—H12B···O4iii0.992.473.441 (3)168
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z+1.
(II) Bis(2-pyridylmethanol)bis(saccharinato)cadmium(II) top
Crystal data top
[Cd(C7H4NO3S)2(C6H7NO)2]Z = 2
Mr = 695.00F(000) = 700
Triclinic, P1Dx = 1.747 Mg m3
a = 8.7516 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4547 (1) ÅCell parameters from 24147 reflections
c = 13.5442 (2) Åθ = 2.9–27.5°
α = 99.8079 (6)°µ = 1.04 mm1
β = 96.5191 (5)°T = 120 K
γ = 95.1327 (5)°Block, colourless
V = 1321.03 (3) Å30.35 × 0.25 × 0.20 mm
Data collection top
Enraf Nonius KappaCCD area-detector
diffractometer
5886 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode5437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scans to fill Ewald sphereh = 1111
Absorption correction: multi-scan
(Blessing, 1995)
k = 1414
Tmin = 0.738, Tmax = 0.812l = 1617
18640 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.066H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0261P)2 + 1.0424P]
where P = (Fo2 + 2Fc2)/3
5886 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 0.40 e Å3
2 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Cd(C7H4NO3S)2(C6H7NO)2]γ = 95.1327 (5)°
Mr = 695.00V = 1321.03 (3) Å3
Triclinic, P1Z = 2
a = 8.7516 (1) ÅMo Kα radiation
b = 11.4547 (1) ŵ = 1.04 mm1
c = 13.5442 (2) ÅT = 120 K
α = 99.8079 (6)°0.35 × 0.25 × 0.20 mm
β = 96.5191 (5)°
Data collection top
Enraf Nonius KappaCCD area-detector
diffractometer
5886 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5437 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.812Rint = 0.049
18640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0272 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
5886 reflectionsΔρmin = 0.85 e Å3
376 parameters
Special details top

Experimental. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.383860 (15)0.289946 (12)0.224030 (10)0.01435 (6)
O10.52788 (17)0.35684 (13)0.10290 (11)0.0185 (3)
H1O0.474 (2)0.4068 (18)0.0829 (19)0.022*
O20.59897 (16)0.19382 (13)0.28767 (11)0.0183 (3)
H2O0.554 (3)0.1342 (16)0.3058 (19)0.022*
N10.34002 (18)0.14766 (14)0.07946 (12)0.0138 (3)
N20.53985 (18)0.42437 (14)0.34415 (12)0.0146 (3)
C10.2287 (2)0.05520 (17)0.06548 (15)0.0161 (4)
H10.16930.04660.11880.019*
C20.1972 (2)0.02729 (18)0.02279 (16)0.0178 (4)
H20.11780.09160.03040.021*
C30.2844 (2)0.01428 (19)0.10073 (16)0.0205 (4)
H30.26610.07020.16240.025*
C40.3979 (2)0.08090 (18)0.08736 (16)0.0183 (4)
H40.45830.09150.13980.022*
C50.4227 (2)0.16113 (17)0.00404 (15)0.0141 (4)
C60.5484 (2)0.26559 (18)0.02194 (16)0.0179 (4)
H6A0.65020.23640.03670.021*
H6B0.54920.29950.04060.021*
C70.5122 (2)0.53910 (18)0.36433 (16)0.0167 (4)
H70.42610.56330.32680.020*
C80.6033 (2)0.62260 (18)0.43697 (16)0.0176 (4)
H80.57950.70260.45040.021*
C90.7312 (2)0.58764 (18)0.49053 (15)0.0177 (4)
H90.79660.64330.54130.021*
C100.7614 (2)0.47049 (18)0.46842 (15)0.0174 (4)
H100.84920.44490.50310.021*
C110.6626 (2)0.39011 (17)0.39519 (15)0.0144 (4)
C120.6916 (2)0.26099 (18)0.37513 (16)0.0191 (4)
H12A0.80200.25640.36710.023*
H12B0.67060.22500.43440.023*
S10.35988 (6)0.11532 (4)0.33596 (4)0.02063 (12)
N30.3866 (2)0.02229 (15)0.31852 (13)0.0181 (4)
O30.24371 (17)0.18041 (13)0.31316 (11)0.0200 (3)
O40.4498 (2)0.13017 (15)0.42793 (14)0.0327 (4)
O50.3788 (2)0.19639 (14)0.24603 (14)0.0325 (4)
C130.2576 (2)0.07537 (18)0.32498 (15)0.0159 (4)
C140.1230 (2)0.00286 (19)0.34535 (16)0.0197 (4)
C150.0249 (3)0.0262 (2)0.35524 (19)0.0290 (5)
H150.05190.10360.34990.035*
C160.1327 (3)0.0615 (3)0.3732 (2)0.0392 (6)
H160.23490.04390.38160.047*
C170.0926 (3)0.1747 (3)0.3789 (2)0.0411 (7)
H170.16890.23390.38980.049*
C180.0566 (3)0.2037 (2)0.36918 (18)0.0314 (5)
H180.08430.28110.37380.038*
C190.1622 (3)0.11500 (19)0.35246 (16)0.0209 (4)
S20.01977 (5)0.38779 (4)0.21705 (4)0.01421 (10)
N40.19338 (19)0.40329 (15)0.18416 (13)0.0160 (3)
O60.33053 (17)0.52036 (13)0.09539 (12)0.0234 (3)
O70.06543 (17)0.27863 (13)0.16268 (12)0.0233 (3)
O80.02562 (17)0.40667 (14)0.32496 (11)0.0211 (3)
C200.2130 (2)0.49513 (18)0.13289 (15)0.0172 (4)
C210.0747 (2)0.56276 (18)0.12757 (15)0.0161 (4)
C220.0566 (3)0.66502 (19)0.08748 (17)0.0215 (4)
H220.13670.70050.05670.026*
C230.0824 (3)0.7140 (2)0.09372 (18)0.0254 (5)
H230.09760.78410.06690.030*
C240.2000 (3)0.6619 (2)0.13873 (19)0.0264 (5)
H240.29360.69760.14260.032*
C250.1830 (2)0.55904 (19)0.17800 (17)0.0214 (4)
H250.26310.52260.20810.026*
C260.0439 (2)0.51231 (17)0.17117 (15)0.0155 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01617 (8)0.01129 (8)0.01493 (9)0.00037 (5)0.00189 (6)0.00160 (6)
O10.0198 (7)0.0134 (7)0.0227 (8)0.0003 (5)0.0044 (6)0.0045 (6)
O20.0196 (7)0.0118 (7)0.0224 (8)0.0004 (6)0.0042 (6)0.0006 (6)
N10.0132 (8)0.0128 (8)0.0154 (8)0.0021 (6)0.0015 (6)0.0027 (6)
N20.0140 (8)0.0135 (8)0.0158 (8)0.0001 (6)0.0029 (6)0.0017 (7)
C10.0159 (9)0.0139 (9)0.0187 (10)0.0008 (7)0.0034 (8)0.0030 (8)
C20.0155 (10)0.0134 (9)0.0227 (10)0.0012 (7)0.0010 (8)0.0007 (8)
C30.0241 (11)0.0186 (10)0.0174 (10)0.0079 (8)0.0006 (8)0.0015 (8)
C40.0197 (10)0.0204 (10)0.0167 (10)0.0078 (8)0.0045 (8)0.0047 (8)
C50.0117 (9)0.0141 (9)0.0180 (10)0.0045 (7)0.0023 (7)0.0052 (8)
C60.0166 (10)0.0168 (10)0.0215 (10)0.0015 (8)0.0063 (8)0.0047 (8)
C70.0162 (9)0.0144 (9)0.0203 (10)0.0031 (7)0.0044 (8)0.0035 (8)
C80.0205 (10)0.0116 (9)0.0207 (10)0.0005 (7)0.0073 (8)0.0010 (8)
C90.0187 (10)0.0167 (10)0.0164 (10)0.0024 (8)0.0027 (8)0.0010 (8)
C100.0178 (10)0.0182 (10)0.0160 (10)0.0005 (8)0.0006 (8)0.0043 (8)
C110.0139 (9)0.0151 (9)0.0153 (9)0.0005 (7)0.0062 (7)0.0035 (8)
C120.0191 (10)0.0140 (10)0.0240 (11)0.0031 (8)0.0004 (8)0.0037 (8)
S10.0264 (3)0.0119 (2)0.0240 (3)0.00258 (19)0.0034 (2)0.0043 (2)
N30.0203 (9)0.0126 (8)0.0222 (9)0.0012 (7)0.0037 (7)0.0053 (7)
O30.0254 (8)0.0144 (7)0.0237 (8)0.0041 (6)0.0090 (6)0.0082 (6)
O40.0386 (10)0.0239 (9)0.0363 (10)0.0085 (7)0.0059 (8)0.0120 (8)
O50.0425 (10)0.0187 (8)0.0363 (9)0.0034 (7)0.0147 (8)0.0016 (7)
C130.0215 (10)0.0150 (10)0.0115 (9)0.0026 (8)0.0020 (7)0.0027 (8)
C140.0222 (10)0.0207 (10)0.0176 (10)0.0005 (8)0.0056 (8)0.0069 (8)
C150.0236 (11)0.0325 (13)0.0331 (13)0.0017 (10)0.0083 (10)0.0102 (11)
C160.0244 (13)0.0492 (17)0.0455 (16)0.0037 (11)0.0134 (11)0.0115 (13)
C170.0367 (15)0.0456 (16)0.0390 (15)0.0198 (12)0.0113 (12)0.0105 (13)
C180.0433 (14)0.0230 (12)0.0263 (12)0.0110 (10)0.0048 (10)0.0071 (10)
C190.0266 (11)0.0199 (10)0.0160 (10)0.0027 (8)0.0046 (8)0.0045 (8)
S20.0140 (2)0.0131 (2)0.0152 (2)0.00044 (17)0.00057 (18)0.00373 (18)
N40.0152 (8)0.0143 (8)0.0200 (9)0.0024 (6)0.0048 (7)0.0057 (7)
O60.0247 (8)0.0174 (7)0.0325 (9)0.0039 (6)0.0152 (7)0.0084 (7)
O70.0233 (8)0.0146 (7)0.0294 (8)0.0051 (6)0.0015 (6)0.0034 (6)
O80.0216 (7)0.0282 (8)0.0152 (7)0.0052 (6)0.0041 (6)0.0069 (6)
C200.0228 (10)0.0119 (9)0.0168 (10)0.0013 (8)0.0043 (8)0.0020 (8)
C210.0191 (10)0.0138 (9)0.0145 (9)0.0004 (7)0.0000 (8)0.0018 (8)
C220.0252 (11)0.0181 (10)0.0223 (11)0.0013 (8)0.0030 (9)0.0072 (9)
C230.0256 (11)0.0215 (11)0.0311 (12)0.0044 (9)0.0018 (9)0.0133 (10)
C240.0171 (10)0.0259 (12)0.0362 (13)0.0050 (9)0.0035 (9)0.0091 (10)
C250.0154 (10)0.0212 (11)0.0261 (11)0.0015 (8)0.0014 (8)0.0052 (9)
C260.0176 (10)0.0124 (9)0.0149 (9)0.0008 (7)0.0039 (7)0.0032 (8)
Geometric parameters (Å, º) top
Cd1—O32.2612 (14)C12—H12B0.9900
Cd1—N22.2688 (16)S1—O51.4357 (17)
Cd1—N42.2755 (17)S1—O41.4400 (17)
Cd1—N12.2952 (16)S1—N31.6336 (17)
Cd1—O12.3648 (14)S1—C191.770 (2)
Cd1—O22.4136 (15)N3—C131.334 (3)
O1—C61.420 (2)O3—C131.255 (2)
O1—H1O0.833 (10)C13—C141.495 (3)
O2—C121.418 (2)C14—C191.375 (3)
O2—H2O0.843 (10)C14—C151.380 (3)
N1—C51.339 (3)C15—C161.388 (3)
N1—C11.346 (2)C15—H150.9500
N2—C111.336 (3)C16—C171.385 (4)
N2—C71.345 (3)C16—H160.9500
C1—C21.375 (3)C17—C181.391 (4)
C1—H10.9500C17—H170.9500
C2—C31.391 (3)C18—C191.377 (3)
C2—H20.9500C18—H180.9500
C3—C41.381 (3)S2—O71.4340 (15)
C3—H30.9500S2—O81.4349 (15)
C4—C51.393 (3)S2—N41.6343 (17)
C4—H40.9500S2—C261.760 (2)
C5—C61.519 (3)N4—C201.365 (3)
C6—H6A0.9900O6—C201.231 (2)
C6—H6B0.9900C20—C211.496 (3)
C7—C81.372 (3)C21—C261.381 (3)
C7—H70.9500C21—C221.386 (3)
C8—C91.391 (3)C22—C231.390 (3)
C8—H80.9500C22—H220.9500
C9—C101.380 (3)C23—C241.394 (3)
C9—H90.9500C23—H230.9500
C10—C111.390 (3)C24—C251.386 (3)
C10—H100.9500C24—H240.9500
C11—C121.507 (3)C25—C261.379 (3)
C12—H12A0.9900C25—H250.9500
O3—Cd1—N2104.10 (6)O2—C12—H12A109.0
O3—Cd1—N495.69 (6)C11—C12—H12A109.0
N2—Cd1—N4100.16 (6)O2—C12—H12B109.0
O3—Cd1—N194.13 (6)C11—C12—H12B109.0
N2—Cd1—N1152.70 (6)H12A—C12—H12B107.8
N4—Cd1—N198.02 (6)O5—S1—O4116.24 (11)
O3—Cd1—O1165.28 (5)O5—S1—N3110.33 (10)
N2—Cd1—O187.82 (5)O4—S1—N3110.90 (10)
N4—Cd1—O190.56 (6)O5—S1—C19111.05 (10)
N1—Cd1—O171.76 (5)O4—S1—C19110.21 (11)
O3—Cd1—O284.99 (5)N3—S1—C1996.35 (10)
N2—Cd1—O271.37 (5)C13—N3—S1111.22 (14)
N4—Cd1—O2171.35 (5)C13—O3—Cd1127.37 (13)
N1—Cd1—O290.52 (5)O3—C13—N3125.08 (19)
O1—Cd1—O290.83 (5)O3—C13—C14120.79 (18)
C6—O1—Cd1114.12 (11)N3—C13—C14114.11 (18)
C6—O1—H1O111.5 (18)C19—C14—C15121.3 (2)
Cd1—O1—H1O101.9 (18)C19—C14—C13111.18 (18)
C12—O2—Cd1114.62 (11)C15—C14—C13127.5 (2)
C12—O2—H2O106.5 (18)C14—C15—C16117.7 (2)
Cd1—O2—H2O102.4 (17)C14—C15—H15121.2
C5—N1—C1118.86 (17)C16—C15—H15121.2
C5—N1—Cd1118.50 (13)C17—C16—C15120.6 (2)
C1—N1—Cd1122.53 (13)C17—C16—H16119.7
C11—N2—C7119.03 (17)C15—C16—H16119.7
C11—N2—Cd1119.85 (13)C16—C17—C18121.6 (2)
C7—N2—Cd1121.12 (13)C16—C17—H17119.2
N1—C1—C2122.78 (19)C18—C17—H17119.2
N1—C1—H1118.6C19—C18—C17116.8 (2)
C2—C1—H1118.6C19—C18—H18121.6
C1—C2—C3118.41 (19)C17—C18—H18121.6
C1—C2—H2120.8C14—C19—C18122.0 (2)
C3—C2—H2120.8C14—C19—S1107.12 (15)
C4—C3—C2119.18 (19)C18—C19—S1130.9 (2)
C4—C3—H3120.4O7—S2—O8115.89 (9)
C2—C3—H3120.4O7—S2—N4110.70 (9)
C3—C4—C5119.14 (19)O8—S2—N4111.05 (9)
C3—C4—H4120.4O7—S2—C26111.63 (9)
C5—C4—H4120.4O8—S2—C26109.91 (9)
N1—C5—C4121.61 (18)N4—S2—C2695.90 (9)
N1—C5—C6117.86 (17)C20—N4—S2112.15 (14)
C4—C5—C6120.51 (18)C20—N4—Cd1123.66 (13)
O1—C6—C5112.82 (16)S2—N4—Cd1124.16 (9)
O1—C6—H6A109.0O6—C20—N4124.38 (19)
C5—C6—H6A109.0O6—C20—C21123.48 (19)
O1—C6—H6B109.0N4—C20—C21112.15 (17)
C5—C6—H6B109.0C26—C21—C22120.01 (19)
H6A—C6—H6B107.8C26—C21—C20111.67 (18)
N2—C7—C8122.71 (19)C22—C21—C20128.31 (19)
N2—C7—H7118.6C21—C22—C23117.9 (2)
C8—C7—H7118.6C21—C22—H22121.1
C7—C8—C9118.61 (19)C23—C22—H22121.1
C7—C8—H8120.7C22—C23—C24121.1 (2)
C9—C8—H8120.7C22—C23—H23119.5
C10—C9—C8118.68 (19)C24—C23—H23119.5
C10—C9—H9120.7C25—C24—C23121.2 (2)
C8—C9—H9120.7C25—C24—H24119.4
C9—C10—C11119.66 (19)C23—C24—H24119.4
C9—C10—H10120.2C26—C25—C24116.6 (2)
C11—C10—H10120.2C26—C25—H25121.7
N2—C11—C10121.28 (18)C24—C25—H25121.7
N2—C11—C12119.30 (17)C25—C26—C21123.19 (19)
C10—C11—C12119.39 (18)C25—C26—S2128.80 (16)
O2—C12—C11113.12 (17)C21—C26—S2107.97 (15)
O3—Cd1—O1—C60.4 (3)Cd1—O3—C13—N324.8 (3)
N2—Cd1—O1—C6144.15 (13)Cd1—O3—C13—C14153.41 (14)
N4—Cd1—O1—C6115.71 (13)S1—N3—C13—O3178.79 (17)
N1—Cd1—O1—C617.45 (12)S1—N3—C13—C140.4 (2)
O2—Cd1—O1—C672.83 (13)O3—C13—C14—C19178.01 (19)
O3—Cd1—O2—C1296.36 (13)N3—C13—C14—C190.4 (3)
N2—Cd1—O2—C1210.36 (13)O3—C13—C14—C151.1 (3)
N1—Cd1—O2—C12169.54 (13)N3—C13—C14—C15179.5 (2)
O1—Cd1—O2—C1297.78 (13)C19—C14—C15—C160.3 (4)
O3—Cd1—N1—C5168.86 (14)C13—C14—C15—C16179.4 (2)
N2—Cd1—N1—C536.6 (2)C14—C15—C16—C171.2 (4)
N4—Cd1—N1—C594.79 (14)C15—C16—C17—C181.4 (4)
O1—Cd1—N1—C56.86 (13)C16—C17—C18—C190.7 (4)
O2—Cd1—N1—C583.84 (14)C15—C14—C19—C180.3 (3)
O3—Cd1—N1—C115.02 (15)C13—C14—C19—C18178.8 (2)
N2—Cd1—N1—C1147.27 (15)C15—C14—C19—S1179.86 (19)
N4—Cd1—N1—C181.33 (15)C13—C14—C19—S11.0 (2)
O1—Cd1—N1—C1169.26 (16)C17—C18—C19—C140.2 (4)
O2—Cd1—N1—C1100.04 (15)C17—C18—C19—S1179.92 (19)
O3—Cd1—N2—C1175.63 (15)O5—S1—C19—C14115.77 (16)
N4—Cd1—N2—C11174.19 (14)O4—S1—C19—C14113.95 (16)
N1—Cd1—N2—C1154.8 (2)N3—S1—C19—C141.10 (17)
O1—Cd1—N2—C1195.64 (14)O5—S1—C19—C1864.0 (2)
O2—Cd1—N2—C114.03 (13)O4—S1—C19—C1866.3 (2)
O3—Cd1—N2—C7105.21 (15)N3—S1—C19—C18178.7 (2)
N4—Cd1—N2—C76.66 (16)O7—S2—N4—C20112.26 (15)
N1—Cd1—N2—C7124.35 (16)O8—S2—N4—C20117.54 (15)
O1—Cd1—N2—C783.52 (15)C26—S2—N4—C203.54 (16)
O2—Cd1—N2—C7175.13 (16)O7—S2—N4—Cd169.91 (13)
C5—N1—C1—C20.8 (3)O8—S2—N4—Cd160.29 (13)
Cd1—N1—C1—C2176.95 (15)C26—S2—N4—Cd1174.29 (11)
N1—C1—C2—C30.0 (3)O3—Cd1—N4—C20176.09 (16)
C1—C2—C3—C40.6 (3)N2—Cd1—N4—C2070.63 (16)
C2—C3—C4—C50.3 (3)N1—Cd1—N4—C2088.92 (16)
C1—N1—C5—C41.1 (3)O1—Cd1—N4—C2017.26 (16)
Cd1—N1—C5—C4177.38 (14)O3—Cd1—N4—S21.50 (12)
C1—N1—C5—C6179.55 (17)N2—Cd1—N4—S2106.96 (11)
Cd1—N1—C5—C64.2 (2)N1—Cd1—N4—S293.50 (11)
C3—C4—C5—N10.5 (3)O1—Cd1—N4—S2165.15 (11)
C3—C4—C5—C6178.94 (18)S2—N4—C20—O6175.79 (17)
Cd1—O1—C6—C525.0 (2)Cd1—N4—C20—O66.4 (3)
N1—C5—C6—O119.9 (3)S2—N4—C20—C214.4 (2)
C4—C5—C6—O1161.67 (18)Cd1—N4—C20—C21173.41 (12)
C11—N2—C7—C81.4 (3)O6—C20—C21—C26177.0 (2)
Cd1—N2—C7—C8179.46 (15)N4—C20—C21—C263.3 (2)
N2—C7—C8—C91.3 (3)O6—C20—C21—C224.2 (3)
C7—C8—C9—C100.0 (3)N4—C20—C21—C22175.6 (2)
C8—C9—C10—C111.2 (3)C26—C21—C22—C230.5 (3)
C7—N2—C11—C100.1 (3)C20—C21—C22—C23178.3 (2)
Cd1—N2—C11—C10179.27 (14)C21—C22—C23—C240.1 (3)
C7—N2—C11—C12178.22 (18)C22—C23—C24—C250.6 (4)
Cd1—N2—C11—C122.6 (2)C23—C24—C25—C260.7 (3)
C9—C10—C11—N21.2 (3)C24—C25—C26—C210.3 (3)
C9—C10—C11—C12176.92 (18)C24—C25—C26—S2177.19 (17)
Cd1—O2—C12—C1114.8 (2)C22—C21—C26—C250.4 (3)
N2—C11—C12—O212.0 (3)C20—C21—C26—C25178.60 (19)
C10—C11—C12—O2169.85 (17)C22—C21—C26—S2178.27 (16)
O5—S1—N3—C13116.15 (16)C20—C21—C26—S20.7 (2)
O4—S1—N3—C13113.60 (16)O7—S2—C26—C2568.7 (2)
C19—S1—N3—C130.89 (16)O8—S2—C26—C2561.3 (2)
N2—Cd1—O3—C13106.71 (17)N4—S2—C26—C25176.2 (2)
N4—Cd1—O3—C13151.30 (17)O7—S2—C26—C21113.49 (15)
N1—Cd1—O3—C1352.80 (17)O8—S2—C26—C21116.48 (15)
O1—Cd1—O3—C1336.6 (3)N4—S2—C26—C211.55 (15)
O2—Cd1—O3—C1337.36 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O60.83 (1)1.89 (1)2.666 (2)155 (3)
O2—H2O···N30.84 (1)1.90 (1)2.700 (2)157 (2)
C6—H6B···O6i0.992.503.302 (2)138
C8—H8···O4ii0.952.363.256 (3)158
C12—H12B···O4iii0.992.593.560 (3)167
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn(C7H4NO3S)2(C6H7NO)2][Cd(C7H4NO3S)2(C6H7NO)2]
Mr647.97695.00
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)120120
a, b, c (Å)8.9874 (2), 11.1630 (2), 13.1879 (3)8.7516 (1), 11.4547 (1), 13.5442 (2)
α, β, γ (°)99.1532 (8), 95.0138 (9), 95.729 (2)99.8079 (6), 96.5191 (5), 95.1327 (5)
V3)1292.52 (5)1321.03 (3)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.171.04
Crystal size (mm)0.25 × 0.10 × 0.050.35 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius KappaCCD area-detector
diffractometer
Enraf Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Multi-scan
(Blessing, 1995)
Tmin, Tmax0.869, 0.9430.738, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
16550, 5684, 4863 18640, 5886, 5437
Rint0.0420.049
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.04 0.027, 0.066, 1.06
No. of reflections56845886
No. of parameters376376
No. of restraints22
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.530.40, 0.85

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), DENZO, SIR97 (Altomare et al.,1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Zn1—O32.0717 (14)Zn1—N12.1244 (17)
Zn1—N22.0887 (17)Zn1—O12.1788 (14)
Zn1—N42.1167 (16)Zn1—O22.2323 (14)
O3—Zn1—N2101.67 (6)N4—Zn1—O193.84 (6)
O3—Zn1—N493.40 (6)N1—Zn1—O176.74 (6)
N2—Zn1—N499.10 (6)O3—Zn1—O288.05 (5)
O3—Zn1—N194.17 (6)N2—Zn1—O276.74 (6)
N2—Zn1—N1156.92 (6)N4—Zn1—O2175.80 (6)
N4—Zn1—N196.58 (6)N1—Zn1—O287.24 (6)
O3—Zn1—O1168.97 (5)O1—Zn1—O285.32 (5)
N2—Zn1—O185.38 (6)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O60.834 (10)1.811 (12)2.617 (2)162 (2)
O2—H2O···N30.828 (10)1.876 (13)2.667 (2)159 (2)
C6—H6B···O6i0.992.363.213 (2)144
C8—H8···O4ii0.952.373.247 (3)153
C12—H12B···O4iii0.992.473.441 (3)168
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z+1.
Selected geometric parameters (Å, º) for (II) top
Cd1—O32.2612 (14)Cd1—N12.2952 (16)
Cd1—N22.2688 (16)Cd1—O12.3648 (14)
Cd1—N42.2755 (17)Cd1—O22.4136 (15)
O3—Cd1—N2104.10 (6)N4—Cd1—O190.56 (6)
O3—Cd1—N495.69 (6)N1—Cd1—O171.76 (5)
N2—Cd1—N4100.16 (6)O3—Cd1—O284.99 (5)
O3—Cd1—N194.13 (6)N2—Cd1—O271.37 (5)
N2—Cd1—N1152.70 (6)N4—Cd1—O2171.35 (5)
N4—Cd1—N198.02 (6)N1—Cd1—O290.52 (5)
O3—Cd1—O1165.28 (5)O1—Cd1—O290.83 (5)
N2—Cd1—O187.82 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O60.833 (10)1.889 (14)2.666 (2)155 (3)
O2—H2O···N30.843 (10)1.904 (13)2.700 (2)157 (2)
C6—H6B···O6i0.992.503.302 (2)138
C8—H8···O4ii0.952.363.256 (3)158
C12—H12B···O4iii0.992.593.560 (3)167
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds