Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, [Sn(C6H5)2(C5H4S5)] and [Sn(C5H4S5)2], respectively, are of interest because they can be regarded as intermediate in nature between chelates and heterocyclic compounds containing the C3S5 fragment. In contrast with the essentially normal bond lengths and angles within the mol­ecules, the molecular conformations are somewhat unexpected, as are the intermolecular contacts found in the case of the latter compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102007898/tr1026sup1.cif
Contains datablocks global, IV, V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007898/tr1026IVsup2.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007898/tr1026Vsup3.hkl
Contains datablock V

CCDC references: 188604; 188605

Comment top

A search of the Cambridge Structural Database (CSD, Version 5.22; Allen & Kennard, 1993) readily demonstrates that the dianion C3S52-, often designated dmit, resulting from deprotonation of the parent 1,3-dithiole-2-thione-4,5-dithiol, (I), is well known as a bidentate ligand which bonds through the exocyclic thiol S to form, usually anionic, chelate complexes with transition metals and main group elements. In the particular case of Sn, used as an example, other ligating species may be present along with dmit, yielding either charged, [R2SnX(dmit)]- (R is Me, Et, Ph, etc. and X is a halide), or neutral species, e.g. [R2Sn(dmit)] (CCDC reference Nos. 154944–154947; Allan et al., 2001 and references therein). The dmit moiety is also found as a fragment in heterocyclic compounds such as the benzyl derivatives, (II) (X and Y are MeO and NO2; Chohan et al., 1999), and 5H,10H-dithiolo[2,3 - b-2,5-benzodithiocine-2-thione, (III) (Chohan et al., 2000). \sch

The interest in 6,6-diphenyl-6,7-dihydro-5H-1,3,4,8-tetrathia-6-stannaazulene-2-thione, (IV) (Fig. 1), and 6,6'-spirobi[6,7-dihydro-5H-1,3,4,8-tetrathia-6-stannaazulene]-2,2'-dithione, (V) (Fig. 2), is primarily in their chemical and structural situation, which falls somewhere between the true chelates such as the [Sn(dmit)3]2- dianion (de Assis et al., 1999) and heterocyclic compounds such as (III).

The bond distances and angles involving Sn in (IV) and (V) are given in Tables 1 and 2, respectively. In (IV), the Sn atom is in a comparatively regular tetrahedral environment unperturbed by intermolecular interactions. In (V), however, with the inclusion of the intermolecular Sn1···S5i contact of 3.7788 (9) Å, the Sn atom is five-coordinate in a highly distorted trigonal-bipyramidal environment, with atoms S5i and C6 axial and C1, C2 and C7 equatorial [symmetry code: (i) -x, 1 - y, 2 - z]. This contact is only ca 0.27 Å less than the sum of the van der Waals radii for Sn and S [4.05 Å (Huheey et al., 1993) or 4.06 Å (PLATON; Spek, 1990)], has comparatively little effect on the C—Sn—C angles [105.46 (18)–114.51 (16)°, still closely grouped around the ideal tetrahedral value] and, although given some credibility by the C6—Sn1—S5i trans axial angle of 174.96 (13)°, close to the ideal for a trigonal-bipyramidal arrangement, is perceived as an extremely weak interaction. If, however, it is regarded as significant, it represents, to our knowledge, the first case of a tetraorganotin compound with a coordination number greater than four as a consequence of an intermolecular interaction with a soft, S, donor. In contrast, while some five- (e.g. Tzschach & Jurkschat, 1986; Das, Mun, Wei, Blunden & Mak, 1987; Jousseaume et al., 1988; Jastrzebski et al., 1991; Doidge-Harrison et al., 1993; Willem et al., 1994; Kayser et al., 1994) and even six-coordinate (Das, Mun, Wei & Mak, 1987) tetraorganotin compounds have been reported, invariably these are intramolecular and involve, almost exclusively, O or N donor groups suitably sited in fairly rigid molecules. It seems that the α-dmit groups in (V) effectively reduce the electron density at the Sn centre, at the same time enhancing the thione S10···S10ii intermolecular interaction noted below.

The remaining bond lengths and angles in (IV) and (V) (Table 3) show few unusual features. In particular, the geometry of the dmit (C3S5) fragment within these compounds is much the same as it is in related chelate and heterocyclic compounds, such as those noted above. One feature, however, is the similarity between the Sn1—C1—S1—C3 and Sn1—C2—S2—C4 torsion angles in (IV) and the corresponding angles of one stannazulene of (V) but not the other, i.e. with (Vb) but not with (Va). Please define (Va) and (Vb).

There is also a degree of interest in the conformation of the molecules. In both compounds, the stannaazulene rings are boat-shaped relative to the basal fragment comprising atoms C1, C2, S1 and S2 [or the equivalent in the second stannaazulene ring of (V)], and thus are perceived as U-shaped when seen side on. This is exactly the same as the situation in the α and β forms of (III), whose molecular conformations were investigated and confirmed as optimum by molecular mechanics calculations (Chohan et al., 2000). For (IV), this results in the overlap of the C12—C17 phenyl ring with the dithiole ring of the dmit fragment, such that the angle between the least-squares planes is 22.8 (4)°, and for (V) it renders the molecule U-shaped overall.

There are no significant intermolecular interactions in the structure of (IV). The situation in (V) is very different. Here, both thione (S5 and S10) and thiol (S1, S2 and S7) S atoms participate in intermolecular Sn···S or S···S interactions with interatomic distances less than the corresponding sums of the van der Waals radii. The Sn1···S5i contacts alluded to above interconnect the molecules to form centrosymmetric dimers, and then S10···S10ii contacts of 3.328 (2) Å interconnect the dimers to form zigzag chains parallel to [101] (Fig. 3) [symmetry code: (ii) 1 - x, 1 - y, 1 - z]. This last (S10···S10ii) is, to our knowledge, the shortest, and presumably strongest, interaction of this specific type so far identified. Additional weaker S···S contacts, such as S2···S7iii [3.4724 (12) Å] and S5···S1iv [3.4122 (13) Å], interconnect the chains and complete the three-dimensional connectivity of the structure [symmetry codes: (iii) x - 1/2, 1/2 - y, z - 1/2; (iv) -x - 1/2, y + 1/2, 3/2 - z].

Experimental top

Ph2Sn(CH2I)2 and Sn(CH2I)4 (Burnett et al., 1998), and [NEt4]2[Zn(dmit)2], where dmit is the (C3S5)2- anion (Doidge-Harrison et al., 1996), were prepared by published procedures. The title compounds were obtained from reactions of [NEt4]2[Zn(dmit)2] (0.286 g, 0.4 mmol) with either Ph2Sn(CH2I)2 (0.445 g, 0.8 mmol), for (IV), or Sn(CH2I)4 (0.274 g, 0.4 mmol), for (V), in refluxing Me2CO (20 ml). After refluxing for 1 h, the reaction mixtures were cooled and rotary evaporated. The products were isolated from the residues after several recrystallizations from ethanol as dark-red-brown crystalline solids.

Analysis for (IV): m.p. 393–398 K (decomposition); 1H NMR (250 MHz, CDCl3, δ, p.p.m): 2.89 [s, 4H, J(119,117Sn-1H) = 33 Hz, CH2], 7.40–7.46 (m, 10H, aryl); 13C NMR (63 MHz, CDCl3, δ, p.p.m.): 15.3 [J(119,117Sn-13C) = 345 and 329 Hz, CH2], 128.8, 129.2, 130.0, 136.1, 142.9 (aryl and CC); 119Sn NMR (93 MHz, CDCl3, δ, p.p.m): -94.8.

Analysis for (V): decomposed on heating above 373 K; 1H NMR (250 MHz, CDCl3, δ, p.p.m.): 2.84; no Sn coupling detected; 119Sn NMR (93 MHz, C6D6, δ, p.p.m.): -30.

Refinement top

In the final stages of refinement, H atoms were placed in calculated positions, with C—H = 0.93 and 0.97 Å for phenyl and methylene H, respectively, and Uiso(H) = 1.2Ueq of the parent atom. Specifically, in (IV), one reflection, 001, showing particularly poor agreement, was omitted and comparatively large displacement parameters were associated with atom S2. Refinement with this atom split over two sites was attempted but proved unsuccessful, and it is therefore presumed that the libration is genuine and the bond lengths and angles associated with S2 correspondingly dubious. The maximum residual electron density for (IV) (1.12 e Å-3) was 0.84 Å from Sn1, while that for (V) (1.31 e Å-3) was 0.8 Å from Sn1.

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990) for (IV); SHELXS97 (Sheldrick, 1990) for (V). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecule of (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecule and labelling scheme for (V). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A portion of a zigzag chain of molecules of (V). Selected atoms are labelled in a generic manner and dashed lines represent intermolecular contacts.
(IV) 6,6-Diphenyl-6,7-dihydro-5H-1,3,4,8-tetrathia-6-stannaazulene-2-thione top
Crystal data top
[Sn(C17H14S5)]F(000) = 492
Mr = 497.27Dx = 1.727 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3614 reflections
a = 8.6706 (5) Åθ = 2.8–25.0°
b = 8.5319 (6) ŵ = 1.88 mm1
c = 13.3143 (9) ÅT = 303 K
β = 103.840 (1)°Block, dark red-brown
V = 956.35 (11) Å30.38 × 0.28 × 0.22 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3107 independent reflections
Radiation source: fine-focus sealed tube2767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.8°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.295, Tmax = 0.662k = 109
6046 measured reflectionsl = 1614
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0677P)2 + 1.2361P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3107 reflectionsΔρmax = 1.12 e Å3
208 parametersΔρmin = 0.58 e Å3
1 restraintAbsolute structure: Flack (1983), 1133 Friedel pairs
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.03 (5)
Crystal data top
[Sn(C17H14S5)]V = 956.35 (11) Å3
Mr = 497.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.6706 (5) ŵ = 1.88 mm1
b = 8.5319 (6) ÅT = 303 K
c = 13.3143 (9) Å0.38 × 0.28 × 0.22 mm
β = 103.840 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3107 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2767 reflections with I > 2σ(I)
Tmin = 0.295, Tmax = 0.662Rint = 0.038
6046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.118Δρmax = 1.12 e Å3
S = 1.04Δρmin = 0.58 e Å3
3107 reflectionsAbsolute structure: Flack (1983), 1133 Friedel pairs
208 parametersAbsolute structure parameter: 0.03 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 4.7193 (0.0266) x - 4.3872 (0.0305) y + 10.3024 (0.0339) z = 2.1985 (0.0186)

* 0.0068 (0.0060) C6 * -0.0105 (0.0067) C7 * 0.0112 (0.0068) C8 * -0.0082 (0.0069) C9 * 0.0044 (0.0073) C10 * -0.0037 (0.0066) C11 - 0.0928 (0.0130) Sn1

Rms deviation of fitted atoms = 0.0080

- 4.3705 (0.0076) x - 0.9025 (0.0091) y - 9.4759 (0.0098) z = 0.4052 (0.0039)

Angle to previous plane (with approximate e.s.d.) = 76.15 (0.17)

* -0.0319 (0.0027) S1 * 0.0198 (0.0031) S2 * 0.0145 (0.0061) C3 * 0.0082 (0.0080) C4 * 0.0243 (0.0024) S3 * -0.0348 (0.0031) S4 0.0022 (0.0094) C5 0.0001 (0.0054) S5 - 1.8282 (0.0097) C1 - 1.6295 (0.0094) C2 - 2.8978 (0.0027) Sn1

Rms deviation of fitted atoms = 0.0241

3.8576 (0.0308) x - 2.5853 (0.0305) y + 9.4780 (0.0350) z = 2.4756 (0.0185)

Angle to previous plane (with approximate e.s.d.) = 23.85 (0.32)

* 0.0018 (0.0060) C12 * -0.0059 (0.0063) C13 * 0.0065 (0.0065) C14 * -0.0031 (0.0074) C15 * -0.0010 (0.0078) C16 * 0.0017 (0.0068) C17 - 0.0165 (0.0128) Sn1

Rms deviation of fitted atoms = 0.0039

- 4.3242 (0.0260) x - 0.7557 (0.0237) y - 9.5582 (0.0299) z = 0.4065 (0.0159)

Angle to previous plane (with approximate e.s.d.) = 22.83 (0.41)

* -0.0066 (0.0052) C3 * 0.0108 (0.0054) C4 * -0.0016 (0.0038) S3 * -0.0097 (0.0042) S4 * 0.0071 (0.0040) C5

Rms deviation of fitted atoms = 0.0078

- 4.7193 (0.0266) x - 4.3872 (0.0305) y + 10.3024 (0.0339) z = 2.1985 (0.0186)

Angle to previous plane (with approximate e.s.d.) = 75.26 (0.23)

* 0.0068 (0.0060) C6 * -0.0105 (0.0067) C7 * 0.0112 (0.0068) C8 * -0.0082 (0.0069) C9 * 0.0044 (0.0073) C10 * -0.0037 (0.0066) C11 - 0.0928 (0.0130) Sn1

Rms deviation of fitted atoms = 0.0080

3.8576 (0.0308) x - 2.5853 (0.0305) y + 9.4780 (0.0350) z = 2.4756 (0.0185)

Angle to previous plane (with approximate e.s.d.) = 61.82 (0.27)

* 0.0018 (0.0060) C12 * -0.0059 (0.0063) C13 * 0.0065 (0.0065) C14 * -0.0031 (0.0074) C15 * -0.0010 (0.0078) C16 * 0.0017 (0.0068) C17 - 0.0165 (0.0128) Sn1

Rms deviation of fitted atoms = 0.0039

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.06357 (5)0.00042 (8)0.23369 (3)0.05324 (16)
S10.2597 (3)0.1837 (4)0.0979 (2)0.0771 (8)
S20.0959 (3)0.1169 (6)0.0118 (2)0.1123 (14)
S30.4590 (2)0.0667 (3)0.16001 (18)0.0617 (5)
S40.3150 (3)0.3218 (4)0.0755 (3)0.0828 (8)
S50.5710 (4)0.3915 (4)0.1833 (3)0.0990 (10)
C10.1013 (10)0.1920 (12)0.2152 (7)0.064 (2)
H1A0.04310.28910.21520.076*
H1B0.14840.19440.27430.076*
C20.0819 (10)0.0839 (13)0.0834 (6)0.065 (2)
H2A0.14110.18150.09370.078*
H2B0.14480.00870.05570.078*
C30.3105 (8)0.0180 (15)0.0972 (6)0.056 (2)
C40.2437 (10)0.1349 (14)0.0559 (8)0.066 (3)
C50.4549 (10)0.2657 (14)0.1415 (8)0.071 (3)
C60.2948 (9)0.0798 (10)0.3151 (6)0.0496 (16)
C70.3834 (9)0.0146 (17)0.3942 (6)0.059 (2)
H70.34100.10780.41200.071*
C80.5372 (10)0.0326 (14)0.4467 (7)0.070 (3)
H80.59490.02720.50120.084*
C90.6033 (10)0.1687 (13)0.4171 (7)0.066 (2)
H90.70650.19750.45000.079*
C100.5158 (11)0.2605 (12)0.3392 (8)0.071 (2)
H100.55900.35300.32090.085*
C110.3623 (11)0.2159 (12)0.2871 (7)0.063 (2)
H110.30500.27750.23340.075*
C120.0053 (9)0.1941 (11)0.3165 (6)0.0523 (18)
C130.0749 (11)0.3365 (12)0.3219 (7)0.067 (2)
H130.15800.34670.28940.080*
C140.0331 (12)0.4633 (12)0.3748 (7)0.075 (3)
H140.08890.55710.37920.089*
C150.0931 (13)0.4482 (15)0.4210 (8)0.082 (3)
H150.12320.53320.45560.098*
C160.1747 (12)0.3090 (15)0.4165 (8)0.076 (3)
H160.25890.30010.44830.092*
C170.1310 (11)0.1823 (13)0.3644 (7)0.064 (2)
H170.18620.08830.36140.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0448 (2)0.0626 (3)0.0554 (2)0.0046 (3)0.01793 (17)0.0011 (3)
S10.0611 (13)0.0792 (19)0.0864 (18)0.0058 (13)0.0083 (12)0.0222 (15)
S20.0563 (13)0.215 (4)0.0722 (14)0.0224 (19)0.0284 (12)0.055 (2)
S30.0446 (9)0.0702 (13)0.0750 (13)0.0011 (9)0.0235 (9)0.0030 (10)
S40.0555 (12)0.0813 (18)0.108 (2)0.0037 (12)0.0131 (12)0.0347 (16)
S50.0788 (17)0.093 (2)0.120 (2)0.0213 (16)0.0136 (16)0.0299 (19)
C10.059 (5)0.063 (6)0.071 (5)0.004 (4)0.021 (4)0.007 (5)
C20.051 (4)0.089 (7)0.062 (5)0.004 (4)0.026 (4)0.009 (5)
C30.043 (3)0.063 (6)0.063 (4)0.003 (4)0.016 (3)0.005 (5)
C40.045 (4)0.086 (7)0.071 (6)0.008 (4)0.022 (4)0.019 (5)
C50.045 (4)0.090 (7)0.072 (5)0.006 (4)0.000 (4)0.005 (5)
C60.047 (4)0.051 (4)0.053 (4)0.007 (3)0.016 (3)0.002 (3)
C70.057 (4)0.063 (6)0.061 (4)0.001 (5)0.021 (3)0.008 (5)
C80.058 (4)0.089 (10)0.063 (4)0.006 (5)0.013 (3)0.010 (5)
C90.046 (4)0.075 (6)0.074 (5)0.006 (4)0.007 (4)0.012 (5)
C100.068 (5)0.058 (6)0.087 (6)0.020 (4)0.017 (5)0.002 (5)
C110.060 (5)0.060 (5)0.065 (5)0.000 (4)0.009 (4)0.001 (4)
C120.047 (4)0.060 (5)0.050 (4)0.006 (3)0.010 (3)0.002 (4)
C130.060 (5)0.069 (6)0.072 (5)0.001 (4)0.016 (4)0.009 (5)
C140.076 (6)0.065 (8)0.074 (5)0.007 (4)0.002 (4)0.003 (4)
C150.078 (6)0.085 (9)0.079 (6)0.029 (5)0.012 (5)0.012 (5)
C160.073 (6)0.090 (8)0.074 (6)0.011 (6)0.032 (5)0.008 (5)
C170.065 (5)0.066 (6)0.067 (5)0.001 (4)0.030 (4)0.012 (5)
Geometric parameters (Å, º) top
Sn1—C122.149 (8)C7—C81.408 (12)
Sn1—C62.151 (7)C7—H70.9300
Sn1—C12.152 (10)C8—C91.393 (15)
Sn1—C22.165 (8)C8—H80.9300
S1—C31.776 (13)C9—C101.374 (14)
S1—C11.818 (9)C9—H90.9300
S2—C41.742 (9)C10—C111.398 (13)
S2—C21.768 (9)C10—H100.9300
S3—C51.716 (12)C11—H110.9300
S3—C31.744 (7)C12—C171.392 (11)
S4—C51.728 (10)C12—C131.393 (14)
S4—C41.751 (12)C13—C141.385 (14)
S5—C51.657 (11)C13—H130.9300
C1—H1A0.9700C14—C151.383 (15)
C1—H1B0.9700C14—H140.9300
C2—H2A0.9700C15—C161.376 (17)
C2—H2B0.9700C15—H150.9300
C3—C41.336 (15)C16—C171.385 (14)
C6—C111.391 (13)C16—H160.9300
C6—C71.400 (13)C17—H170.9300
C12—Sn1—C6109.0 (3)C6—C7—C8119.5 (10)
C12—Sn1—C1112.8 (3)C6—C7—H7120.3
C6—Sn1—C1109.2 (3)C8—C7—H7120.3
C12—Sn1—C2108.2 (4)C9—C8—C7120.2 (9)
C6—Sn1—C2107.8 (3)C9—C8—H8119.9
C1—Sn1—C2109.8 (4)C7—C8—H8119.9
C3—S1—C1100.2 (4)C10—C9—C8119.9 (8)
C4—S2—C2105.5 (4)C10—C9—H9120.1
C5—S3—C397.1 (5)C8—C9—H9120.1
C5—S4—C498.0 (5)C9—C10—C11120.5 (9)
S1—C1—Sn1114.4 (5)C9—C10—H10119.8
S1—C1—H1A108.7C11—C10—H10119.8
Sn1—C1—H1A108.7C6—C11—C10120.4 (9)
S1—C1—H1B108.7C6—C11—H11119.8
Sn1—C1—H1B108.7C10—C11—H11119.8
H1A—C1—H1B107.6C17—C12—C13118.4 (8)
S2—C2—Sn1118.1 (4)C17—C12—Sn1121.6 (7)
S2—C2—H2A107.8C13—C12—Sn1120.0 (6)
Sn1—C2—H2A107.8C14—C13—C12121.3 (9)
S2—C2—H2B107.8C14—C13—H13119.4
Sn1—C2—H2B107.8C12—C13—H13119.4
H2A—C2—H2B107.1C15—C14—C13118.9 (10)
C4—C3—S3117.5 (9)C15—C14—H14120.5
C4—C3—S1126.4 (7)C13—C14—H14120.5
S3—C3—S1116.1 (6)C16—C15—C14121.0 (10)
C3—C4—S2126.3 (9)C16—C15—H15119.5
C3—C4—S4114.5 (7)C14—C15—H15119.5
S2—C4—S4119.2 (6)C15—C16—C17119.7 (9)
S5—C5—S3123.9 (6)C15—C16—H16120.2
S5—C5—S4123.3 (7)C17—C16—H16120.2
S3—C5—S4112.8 (6)C16—C17—C12120.7 (10)
C11—C6—C7119.5 (8)C16—C17—H17119.6
C11—C6—Sn1122.1 (6)C12—C17—H17119.6
C7—C6—Sn1118.3 (6)
C3—S1—C1—Sn143.1 (5)C2—Sn1—C6—C1170.9 (8)
C12—Sn1—C1—S190.4 (5)C12—Sn1—C6—C712.5 (7)
C6—Sn1—C1—S1148.3 (4)C1—Sn1—C6—C7136.1 (7)
C2—Sn1—C1—S130.3 (6)C2—Sn1—C6—C7104.7 (7)
C4—S2—C2—Sn119.8 (8)C11—C6—C7—C82.3 (13)
C12—Sn1—C2—S276.0 (7)Sn1—C6—C7—C8178.0 (7)
C6—Sn1—C2—S2166.3 (6)C6—C7—C8—C92.7 (14)
C1—Sn1—C2—S247.4 (7)C7—C8—C9—C102.5 (15)
C5—S3—C3—C40.6 (8)C8—C9—C10—C111.9 (15)
C5—S3—C3—S1177.7 (5)C7—C6—C11—C101.7 (13)
C1—S1—C3—C487.4 (9)Sn1—C6—C11—C10177.2 (7)
C1—S1—C3—S390.8 (5)C9—C10—C11—C61.5 (15)
S3—C3—C4—S2179.1 (6)C6—Sn1—C12—C17112.9 (7)
S1—C3—C4—S22.7 (13)C1—Sn1—C12—C178.6 (8)
S3—C3—C4—S41.6 (10)C2—Sn1—C12—C17130.2 (7)
S1—C3—C4—S4176.5 (5)C6—Sn1—C12—C1368.1 (7)
C2—S2—C4—C376.5 (10)C1—Sn1—C12—C13170.5 (6)
C2—S2—C4—S4102.8 (7)C2—Sn1—C12—C1348.8 (7)
C5—S4—C4—C31.8 (8)C17—C12—C13—C141.0 (13)
C5—S4—C4—S2178.9 (6)Sn1—C12—C13—C14180.0 (7)
C3—S3—C5—S5180.0 (6)C12—C13—C14—C151.4 (14)
C3—S3—C5—S40.6 (6)C13—C14—C15—C161.1 (15)
C4—S4—C5—S5179.3 (6)C14—C15—C16—C170.4 (17)
C4—S4—C5—S31.3 (6)C15—C16—C17—C120.0 (16)
C12—Sn1—C6—C11171.9 (7)C13—C12—C17—C160.2 (14)
C1—Sn1—C6—C1148.3 (7)Sn1—C12—C17—C16179.3 (7)
(V) 6,6'-spirobi[6,7-dihydro-5H-1,3,4,8-tetrathia-6-stannaazulene]-2,2'-dithione top
Crystal data top
[Sn(C10H8S10)]F(000) = 1112
Mr = 567.45Dx = 2.029 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ynCell parameters from 7784 reflections
a = 11.3973 (4) Åθ = 2.3–30.6°
b = 14.2749 (5) ŵ = 2.49 mm1
c = 12.5609 (5) ÅT = 297 K
β = 114.625 (1)°Rod, dark red-brown
V = 1857.74 (12) Å30.60 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5312 independent reflections
Radiation source: fine-focus sealed tube4279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.347, Tmax = 0.780k = 1019
15205 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0498P)2 + 1.0773P]
where P = (Fo2 + 2Fc2)/3
5312 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Sn(C10H8S10)]V = 1857.74 (12) Å3
Mr = 567.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3973 (4) ŵ = 2.49 mm1
b = 14.2749 (5) ÅT = 297 K
c = 12.5609 (5) Å0.60 × 0.25 × 0.10 mm
β = 114.625 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5312 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4279 reflections with I > 2σ(I)
Tmin = 0.347, Tmax = 0.780Rint = 0.033
15205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.01Δρmax = 1.31 e Å3
5312 reflectionsΔρmin = 0.75 e Å3
190 parameters
Special details top

Experimental. Data are 99.5 or 98.5% complete out to 58 or 59° 2θ, respectively - see below.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 6.6265 (0.0032) x + 7.5668 (0.0039) y - 4.0049 (0.0037) z = 1.5539 (0.0036)

* -0.0310 (0.0009) S1 * 0.0218 (0.0009) S2 * 0.0154 (0.0024) C3 * 0.0021 (0.0023) C4 * 0.0245 (0.0009) S3 * -0.0328 (0.0009) S4 - 0.0516 (0.0030) C5 - 0.0949 (0.0016) S5 - 1.8366 (0.0034) C1 - 1.7566 (0.0034) C2 - 2.6539 (0.0011) Sn1

Rms deviation of fitted atoms = 0.0237

- 9.0152 (0.0024) x + 8.5434 (0.0038) y + 5.5902 (0.0042) z = 3.0027 (0.0029)

Angle to previous plane (with approximate e.s.d.) = 45.67 (0.03)

* 0.0122 (0.0010) S6 * -0.0144 (0.0010) S7 * -0.0065 (0.0025) C8 * 0.0104 (0.0026) C9 * -0.0128 (0.0010) S8 * 0.0111 (0.0010) S9 - 0.0237 (0.0036) C10 - 0.0541 (0.0020) S10 1.7688 (0.0039) C6 1.5990 (0.0040) C7 2.8846 (0.0010) Sn1

Rms deviation of fitted atoms = 0.0115

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.013577 (19)0.240768 (14)0.707097 (18)0.03320 (7)
S10.27731 (7)0.31717 (6)0.67784 (7)0.04065 (18)
S20.07947 (8)0.45489 (6)0.59749 (7)0.03866 (17)
S30.23058 (8)0.46297 (6)0.86210 (8)0.04340 (19)
S40.05854 (8)0.57353 (5)0.80067 (7)0.03910 (17)
S50.10852 (10)0.63033 (7)1.00619 (8)0.0552 (3)
S60.09415 (10)0.10155 (7)0.53597 (10)0.0576 (3)
S70.31270 (10)0.14326 (9)0.81993 (9)0.0620 (3)
S80.21824 (9)0.26740 (7)0.47814 (8)0.0461 (2)
S90.39717 (8)0.30331 (8)0.71610 (8)0.0499 (2)
S100.40256 (12)0.42571 (9)0.52606 (12)0.0708 (3)
C10.1435 (3)0.2390 (2)0.7596 (3)0.0361 (6)
H1A0.17660.17550.75160.043*
H1B0.11010.25550.84190.043*
C20.0605 (3)0.3806 (2)0.6695 (3)0.0406 (7)
H2A0.11770.41000.74230.049*
H2B0.10680.37570.62000.049*
C30.2033 (3)0.4227 (2)0.7432 (3)0.0344 (6)
C40.1237 (3)0.4752 (2)0.7140 (2)0.0315 (5)
C50.1304 (3)0.5588 (2)0.8963 (3)0.0358 (6)
C60.0393 (4)0.1559 (3)0.5519 (3)0.0564 (10)
H6A0.09830.10750.55320.068*
H6B0.08500.19490.48380.068*
C70.1706 (4)0.1682 (3)0.8413 (4)0.0596 (11)
H7A0.19650.20460.91270.072*
H7B0.13740.10910.85510.072*
C80.2107 (3)0.1910 (2)0.5839 (3)0.0400 (7)
C90.2940 (3)0.2081 (3)0.6952 (3)0.0421 (7)
C100.3428 (3)0.3370 (3)0.5707 (3)0.0450 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03190 (11)0.03361 (12)0.03809 (12)0.00304 (7)0.01855 (8)0.00084 (8)
S10.0299 (3)0.0400 (4)0.0529 (4)0.0073 (3)0.0181 (3)0.0106 (3)
S20.0458 (4)0.0389 (4)0.0377 (4)0.0054 (3)0.0238 (3)0.0039 (3)
S30.0494 (4)0.0418 (4)0.0528 (5)0.0009 (3)0.0350 (4)0.0049 (3)
S40.0416 (4)0.0295 (4)0.0484 (4)0.0024 (3)0.0210 (3)0.0040 (3)
S50.0644 (6)0.0510 (5)0.0393 (4)0.0180 (4)0.0110 (4)0.0110 (4)
S60.0639 (6)0.0452 (5)0.0853 (7)0.0149 (4)0.0524 (6)0.0262 (5)
S70.0496 (5)0.0808 (8)0.0632 (6)0.0296 (5)0.0310 (5)0.0358 (5)
S80.0481 (5)0.0556 (5)0.0404 (4)0.0050 (4)0.0242 (4)0.0002 (4)
S90.0361 (4)0.0607 (6)0.0497 (5)0.0038 (4)0.0147 (4)0.0001 (4)
S100.0627 (6)0.0558 (6)0.0968 (8)0.0083 (5)0.0362 (6)0.0207 (6)
C10.0332 (14)0.0351 (15)0.0438 (16)0.0064 (11)0.0200 (12)0.0050 (12)
C20.0374 (16)0.0373 (16)0.0555 (18)0.0036 (12)0.0274 (14)0.0007 (14)
C30.0320 (14)0.0322 (15)0.0414 (15)0.0018 (11)0.0177 (12)0.0044 (11)
C40.0313 (13)0.0301 (14)0.0355 (13)0.0029 (11)0.0163 (11)0.0014 (11)
C50.0368 (15)0.0311 (14)0.0357 (14)0.0102 (12)0.0115 (12)0.0010 (11)
C60.0428 (19)0.069 (3)0.063 (2)0.0108 (17)0.0275 (17)0.0276 (19)
C70.054 (2)0.079 (3)0.058 (2)0.025 (2)0.0359 (18)0.027 (2)
C80.0438 (17)0.0365 (16)0.0511 (17)0.0008 (13)0.0312 (15)0.0015 (13)
C90.0348 (15)0.0459 (18)0.0509 (18)0.0089 (13)0.0233 (14)0.0096 (14)
C100.0365 (16)0.0436 (19)0.0588 (19)0.0022 (13)0.0236 (15)0.0050 (15)
Geometric parameters (Å, º) top
Sn1—C72.146 (4)S7—C91.755 (3)
Sn1—C12.151 (3)S7—C71.784 (4)
Sn1—C62.157 (3)S7—S2v3.4724 (12)
Sn1—C22.168 (3)S8—C101.726 (4)
Sn1—S5i3.7788 (9)S8—C81.749 (3)
S1—C31.754 (3)S9—C101.735 (4)
S1—C11.822 (3)S9—C91.744 (4)
S1—S5ii3.4122 (13)S10—C101.643 (4)
S2—C41.759 (3)S10—S10vi3.328 (2)
S2—C21.813 (3)C1—H1A0.9700
S2—S7iii3.4724 (12)C1—H1B0.9700
S3—C51.717 (3)C2—H2A0.9700
S3—C31.744 (3)C2—H2B0.9700
S4—C51.726 (3)C3—C41.342 (4)
S4—C41.741 (3)C6—H6A0.9700
S5—C51.650 (3)C6—H6B0.9700
S5—S1iv3.4122 (13)C7—H7A0.9700
S5—Sn1i3.7788 (9)C7—H7B0.9700
S6—C81.758 (3)C8—C91.345 (5)
S6—C61.791 (4)
C7—Sn1—C1106.37 (13)S2—C2—H2A108.8
C7—Sn1—C6105.46 (18)Sn1—C2—H2A108.8
C1—Sn1—C6108.40 (13)S2—C2—H2B108.8
C7—Sn1—C2114.51 (16)Sn1—C2—H2B108.8
C1—Sn1—C2112.98 (12)H2A—C2—H2B107.7
C6—Sn1—C2108.73 (16)C4—C3—S3115.6 (2)
C7—Sn1—S5i70.88 (13)C4—C3—S1126.9 (2)
C1—Sn1—S5i70.01 (9)S3—C3—S1117.47 (17)
C6—Sn1—S5i174.96 (13)C3—C4—S4116.1 (2)
C2—Sn1—S5i76.17 (9)C3—C4—S2126.6 (2)
C3—S1—C197.83 (14)S4—C4—S2117.28 (17)
C3—S1—S5ii164.05 (11)S5—C5—S3123.7 (2)
C1—S1—S5ii84.04 (10)S5—C5—S4123.8 (2)
C4—S2—C2100.33 (14)S3—C5—S4112.45 (16)
C4—S2—S7iii142.92 (10)S6—C6—Sn1114.44 (19)
C2—S2—S7iii97.72 (12)S6—C6—H6A108.7
C5—S3—C398.02 (15)Sn1—C6—H6A108.7
C5—S4—C497.74 (14)S6—C6—H6B108.7
C5—S5—S1iv92.03 (11)Sn1—C6—H6B108.7
C5—S5—Sn1i169.07 (11)H6A—C6—H6B107.6
S1iv—S5—Sn1i98.16 (3)S7—C7—Sn1119.35 (19)
C8—S6—C6101.69 (17)S7—C7—H7A107.5
C9—S7—C7104.44 (16)Sn1—C7—H7A107.5
C9—S7—S2v165.91 (13)S7—C7—H7B107.5
C7—S7—S2v83.85 (12)Sn1—C7—H7B107.5
C10—S8—C897.74 (17)H7A—C7—H7B107.0
C10—S9—C997.75 (17)C9—C8—S8116.1 (3)
C10—S10—S10vi164.56 (14)C9—C8—S6126.4 (3)
S1—C1—Sn1115.34 (16)S8—C8—S6117.5 (2)
S1—C1—H1A108.4C8—C9—S9116.0 (3)
Sn1—C1—H1A108.4C8—C9—S7127.1 (3)
S1—C1—H1B108.4S9—C9—S7116.9 (2)
Sn1—C1—H1B108.4S10—C10—S8123.8 (2)
H1A—C1—H1B107.5S10—C10—S9123.8 (2)
S2—C2—Sn1113.67 (16)S8—C10—S9112.5 (2)
C3—S1—C1—Sn175.49 (17)C3—S3—C5—S42.39 (19)
S5ii—S1—C1—Sn188.56 (14)C4—S4—C5—S5179.7 (2)
C7—Sn1—C1—S1167.32 (19)C4—S4—C5—S31.93 (18)
C6—Sn1—C1—S179.7 (2)C8—S6—C6—Sn139.5 (3)
C2—Sn1—C1—S140.9 (2)C7—Sn1—C6—S637.0 (3)
S5i—Sn1—C1—S1105.37 (16)C1—Sn1—C6—S6150.6 (2)
C4—S2—C2—Sn171.67 (19)C2—Sn1—C6—S686.3 (3)
S7iii—S2—C2—Sn175.80 (15)C9—S7—C7—Sn110.6 (3)
C7—Sn1—C2—S2159.48 (17)S2v—S7—C7—Sn1179.1 (3)
C1—Sn1—C2—S237.5 (2)C1—Sn1—C7—S7172.6 (3)
C6—Sn1—C2—S282.88 (19)C6—Sn1—C7—S757.7 (3)
S5i—Sn1—C2—S298.36 (16)C2—Sn1—C7—S761.8 (3)
C5—S3—C3—C42.1 (3)S5i—Sn1—C7—S7126.0 (3)
C5—S3—C3—S1175.84 (18)C10—S8—C8—C91.0 (3)
C1—S1—C3—C483.6 (3)C10—S8—C8—S6179.76 (19)
S5ii—S1—C3—C412.1 (6)C6—S6—C8—C986.4 (3)
C1—S1—C3—S394.06 (19)C6—S6—C8—S892.2 (2)
S5ii—S1—C3—S3170.2 (2)S8—C8—C9—S90.5 (4)
S3—C3—C4—S41.1 (3)S6—C8—C9—S9179.04 (18)
S1—C3—C4—S4176.67 (17)S8—C8—C9—S7178.56 (19)
S3—C3—C4—S2178.72 (17)S6—C8—C9—S72.9 (5)
S1—C3—C4—S23.5 (4)C10—S9—C9—C80.4 (3)
C5—S4—C4—C30.5 (3)C10—S9—C9—S7177.9 (2)
C5—S4—C4—S2179.66 (17)C7—S7—C9—C871.1 (4)
C2—S2—C4—C388.9 (3)S2v—S7—C9—C8164.0 (3)
S7iii—S2—C4—C329.0 (4)C7—S7—C9—S9110.8 (2)
C2—S2—C4—S491.33 (19)S2v—S7—C9—S914.1 (7)
S7iii—S2—C4—S4150.78 (10)S10vi—S10—C10—S8125.4 (5)
S1iv—S5—C5—S3119.32 (18)S10vi—S10—C10—S955.0 (8)
Sn1i—S5—C5—S381.8 (7)C8—S8—C10—S10179.1 (2)
S1iv—S5—C5—S458.88 (19)C8—S8—C10—S91.2 (2)
Sn1i—S5—C5—S499.9 (7)C9—S9—C10—S10179.3 (2)
C3—S3—C5—S5179.2 (2)C9—S9—C10—S81.0 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x1/2, y1/2, z+3/2; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+3/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y+1, z+1.

Experimental details

(IV)(V)
Crystal data
Chemical formula[Sn(C17H14S5)][Sn(C10H8S10)]
Mr497.27567.45
Crystal system, space groupMonoclinic, P21Monoclinic, P21/n
Temperature (K)303297
a, b, c (Å)8.6706 (5), 8.5319 (6), 13.3143 (9)11.3973 (4), 14.2749 (5), 12.5609 (5)
β (°) 103.840 (1) 114.625 (1)
V3)956.35 (11)1857.74 (12)
Z24
Radiation typeMo KαMo Kα
µ (mm1)1.882.49
Crystal size (mm)0.38 × 0.28 × 0.220.60 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Bruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.295, 0.6620.347, 0.780
No. of measured, independent and
observed [I > 2σ(I)] reflections
6046, 3107, 2767 15205, 5312, 4279
Rint0.0380.033
(sin θ/λ)max1)0.6130.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.04 0.033, 0.091, 1.01
No. of reflections31075312
No. of parameters208190
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.581.31, 0.75
Absolute structureFlack (1983), 1133 Friedel pairs?
Absolute structure parameter0.03 (5)?

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS86 (Sheldrick, 1990), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) for (IV) top
Sn1—C122.149 (8)Sn1—C12.152 (10)
Sn1—C62.151 (7)Sn1—C22.165 (8)
C12—Sn1—C6109.0 (3)C12—Sn1—C2108.2 (4)
C12—Sn1—C1112.8 (3)C6—Sn1—C2107.8 (3)
C6—Sn1—C1109.2 (3)C1—Sn1—C2109.8 (4)
Selected geometric parameters (Å, º) for (V) top
Sn1—C72.146 (4)Sn1—C22.168 (3)
Sn1—C12.151 (3)Sn1—S5i3.7788 (9)
Sn1—C62.157 (3)
C7—Sn1—C1106.37 (13)C6—Sn1—C2108.73 (16)
C7—Sn1—C6105.46 (18)C7—Sn1—S5i70.88 (13)
C1—Sn1—C6108.40 (13)C1—Sn1—S5i70.01 (9)
C7—Sn1—C2114.51 (16)C6—Sn1—S5i174.96 (13)
C1—Sn1—C2112.98 (12)C2—Sn1—S5i76.17 (9)
Symmetry code: (i) x, y+1, z+2.
Comparison of selected bond lengths and angles (Å, °) for (IV) and (V) top
(IV)(Va)(Vb)a
C1-S11.818 (9)1.822 (3)1.791 (4)
C2-S21.768 (9)1.813 (3)1.784 (4)
S1-C31.776 (13)1.754 (3)1.758 (3)
S2-C41.742 (9)1.759 (3)1.755 (3)
C3-C41.336 (15)1.342 (4)1.345 (5)
C3-S31.744 (7)1.744 (3)1.749 (3)
C4-S41.751 (12)1.741 (3)1.744 (4)
S3-C51.716 (12)1.717 (3)1.726 (4)
S4-C51.728 (10)1.726 (3)1.735 (4)
S5-C51.657 (11)1.650 (3)1.643 (4)
Sn1-C1-S1114.4 (5)115.34 (16)114.44 (19)
Sn1-C2-S2118.1 (4)113.67 (16)119.35 (19)
C1-S1-C3100.2 (4)97.83 (14)101.69 (17)
C2-S2-C4105.5 (4)100.33 (14)104.44 (16)
S1-C3-S3116.1 (6)117.47 (17)117.5 (2)
S1-C3-C4126.4 (7)126.9 (2)126.4 (3)
S3-C3-C4117.5 (9)115.6 (2)116.1 (3)
S2-C4-S4119.2 (6)117.28 (17)116.9 (2)
S2-C4-C3126.3 (9)126.6 (2)127.1 (3)
S4-C4-C3114.5 (7)116.1 (2)116.0 (3)
C3-S3-C597.1 (5)98.02 (15)97.74 (17)
C4-S4-C598.0 (5)97.74 (14)97.75 (17)
S3-C5-S4112.8 (6)112.45 (16)112.5 (2)
S3-C5-S5123.9 (6)123.7 (2)123.8 (2)
S4-C5-S5123.3 (7)123.8 (2)123.8 (2)
Sn1-C1-S1-C3-43.1 (5)-75.49 (17)-39.5 (3)
Sn1-C2-S2-C419.8 (8)71.67 (19)10.6 (3)
(a) The numerical elements of the atom designations which are directly applicable to (IV) and (Va) to be incremented by 5 for application to (Vb).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds