Download citation
Download citation
link to html
In the title compound, [SbCl2(C4H8N2S)2]Cl, the coordination around the Sb atom can be described as distorted pseudo-octahedral. Both rings of the tri­methyl­ene­thio­urea ligands [alternatively 3,4,5,6-tetrahydropyrimidine-2(1H)-thione] adopt an envel­ope conformation. The mol­ecules are connected into dimers in the ab plane by two intermolecular hydrogen bonds. The dimers are arranged into infinite one-dimensional chains along the a axis as a result of the Cl- ions forming intermolecular hydrogen bonds with three NH groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101020911/tr1006sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101020911/tr1006Isup2.hkl
Contains datablock I

CCDC reference: 182000

Comment top

Cyclic monothiones act exclusively as monodentate ligands with several metals. The complexes can be neutral molecules or cations. Some examples of cation complexes of the ligands are tetrakis[1-methyl-2(3H)-imidazolinethione]zinc(II) nitrate monohydrate (Nowell et al., 1979), tris(ethylenethiourea-S)tellurium(II) perchlorate and tris(trimethylenethiourea-S)tellurium(II) perchlorate (Foust, 1980). The ability of imidazolidine-2-thione (trimethylenethiourea) to reduce metallic salts and form complexes is demonstrated by the formation of tetrakis(imidazolidine-2-thione)copper(I) nitrate (Raper, 1985) and bis[bis(imidazolidine-2-thione)-µ-(imidazolidine-2-thione)copper(I)] diperchlorate (Raper et al., 1992) when reacted with copper(II) nitrate and copper(II) perchlorate, respectively. Our interest in the structures of antimony(III) halides complexed with S-donor ligands led us to investigate the title complex, (I).

The average thioamide N—C [1.314 (7) Å] and C—C [1.479 (12) Å] bond lengths of the ligands are shorter compared to the values in the free ligand (Dias & Truter, 1964) while the average S—C [1.751 (6) Å] and N—Cmethylene [1.456 (9) Å] bond lengths are longer. The longer S—C bond length results from the reduction in the π-electron density of the exocyclic S—C bond for the S atom coordinated to the metal atom. This reduction contributes to an increased π-electron density of the -thioamide N–C bonds, resulting in the shortening of the N—C bond lengths. The average S—C—N [119.2 (4)°], N—C—N [121.5 (5)°], C—N—C [122.7 (5)°] and N—C—C [109.9 (6)°] bond angles are also comparable with the reported values in the free ligand (Dias & Truter, 1964), while the average C—C—C bond angle is slightly bigger. Of the two Sb—Cl bonds, the Sb—Cl2 bond, where Cl2 is involved in intermolecular hydrogen bonding, is longer than Sb—Cl1. This behaviour is also observed in the Sb—Cl bond lengths reported by Razak et al. (1999) [SbCl3{[(C6H5)2PO]2CH2}] and in the Bi—Cl bond lengths reported in the structures of [BiCl3(pptu)3] and [{BiCl3(deimdt)2}2] [pptu is 1-phenyl-3-(2-pyridyl)-2-thiourea and deimdt is N,N'-diethylimidazolidine-2-thione; Battaglia et al., 1978].

The coordination around the Sb1 atom can be described as distorted octahedral. The basal plane is occupied by atoms S2, Cl1 and Cl2 from the cation and the Cl3- anion at a longer distance [Sb1···Cl3 = 3.010 (2) Å; S2—Sb1···Cl3 = 176.7 (1)°], which is less than the sum of the contact radii of Sb and Cl. The Sb1···Cl3 short contact has a lengthening effect on the Sb—S2 bond compared with that of Sb—S1. The apical positions of the octahedron are occupied by the S1 atom and the lone-pair electrons on Sb1.

The two trimethylenethiourea ring moieties adopt an envelope conformation, with atoms C3 and C7 deviating by 0.338 (9) and 0.262 (11) Å, respectively, from the mean plane through each of the two rings.

In the crystal, all the NH groups are involved in intermolecular hydrogen bonding (Table 2). N3—H3A···Cl2(1 - x, 1 - y,-z) hydrogen bonds interconnect molecules into dimers situated in the ab plane (Fig. 2). These dimers are arranged into infinite one-dimensional chains along the a axis as the Cl3 atoms form trifurcated intermolecular hydrogen bonds with the remaining NH groups; N2—H2A···Cl3, N1—H1A···Cl3(x - 1, y, z) and N4—H4A···Cl3(x - 1, y, z).

Experimental top

Solutions of antimony trichloride (0.320 g, 1.40 mmol) and trimethylenethiourea (0.325 g, 0.28 mmol) in a 1:2 molar ratio in acetonitrile were mixed in a 50 ml flask and stirred for about 30 min. The solution was then filtered and left to slowly evaporate. After three days, single crystals were collected (yield 62%), washed with hexane and dried before subjected to X-ray crystallographic analysis.

Refinement top

After checking their presence in a difference map, all the H atoms were fixed geometrically and allowed to ride on their attached atoms (N—H = 0.86 Å and C—H = 0.97 Å). The highest peak and the deepest hole were found near the Sb1 atom at distances of 0.94 and 1.12 Å, respectively.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram showing the hydrogen-bonding and secondary Sb···Cl interactions. [Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, 1 - y, -z.]
Dichlorobis(trimethylenethiourea-S)antimony(III) chloride top
Crystal data top
[SbCl2(C4H8N2S)2]ClF(000) = 452
Mr = 460.47Dx = 1.789 Mg m3
Triclinic, P1Melting point: 480K K
a = 7.5103 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3304 (5) ÅCell parameters from 5944 reflections
c = 12.1206 (6) Åθ = 1.8–29.4°
α = 71.358 (1)°µ = 2.32 mm1
β = 84.252 (1)°T = 293 K
γ = 73.612 (1)°Block, colourless
V = 854.78 (7) Å30.20 × 0.16 × 0.14 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
2981 independent reflections
Radiation source: fine-focus sealed tube2799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 78
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 129
Tmin = 0.655, Tmax = 0.738l = 1414
4916 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0841P)2 + 0.1942P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2981 reflectionsΔρmax = 1.55 e Å3
164 parametersΔρmin = 1.79 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.054 (5)
Crystal data top
[SbCl2(C4H8N2S)2]Clγ = 73.612 (1)°
Mr = 460.47V = 854.78 (7) Å3
Triclinic, P1Z = 2
a = 7.5103 (4) ÅMo Kα radiation
b = 10.3304 (5) ŵ = 2.32 mm1
c = 12.1206 (6) ÅT = 293 K
α = 71.358 (1)°0.20 × 0.16 × 0.14 mm
β = 84.252 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2981 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2799 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.738Rint = 0.069
4916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.09Δρmax = 1.55 e Å3
2981 reflectionsΔρmin = 1.79 e Å3
164 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating thirty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.47852 (4)0.44234 (3)0.19963 (3)0.0272 (3)
Cl10.4838 (2)0.18669 (15)0.29632 (14)0.0460 (4)
Cl20.3689 (2)0.72354 (15)0.10677 (14)0.0461 (4)
Cl30.7829 (2)0.4118 (2)0.35724 (15)0.0479 (4)
S10.26511 (19)0.51998 (14)0.34993 (11)0.0341 (4)
S20.2109 (2)0.48201 (15)0.06763 (13)0.0375 (4)
N10.1543 (7)0.3125 (6)0.5067 (4)0.0413 (12)
H1A0.05300.35100.46800.050*
N20.4532 (6)0.3148 (5)0.5265 (4)0.0358 (11)
H2A0.54210.35420.50070.043*
N30.2613 (8)0.2301 (6)0.0380 (4)0.0448 (13)
H3A0.33560.25990.01680.054*
N40.0529 (7)0.2768 (6)0.1814 (5)0.0429 (12)
H4A0.00750.33660.21650.051*
C10.2965 (7)0.3667 (6)0.4709 (4)0.0299 (11)
C20.4834 (10)0.1917 (7)0.6314 (6)0.0508 (16)
H2B0.56960.19900.68220.061*
H2C0.53620.10560.61020.061*
C30.3020 (12)0.1866 (8)0.6930 (6)0.058 (2)
H3B0.25690.26700.72260.070*
H3C0.31840.10070.75860.070*
C40.1618 (10)0.1896 (8)0.6098 (6)0.0548 (18)
H4B0.19850.10330.58770.066*
H4C0.04050.19620.64710.066*
C50.1724 (7)0.3149 (6)0.1001 (4)0.0311 (11)
C60.0166 (12)0.1354 (9)0.2161 (8)0.067 (2)
H6A0.09220.07300.28260.081*
H6B0.11270.14390.23890.081*
C70.0592 (13)0.0744 (9)0.1201 (9)0.077 (3)
H7A0.04040.12010.06400.093*
H7B0.06330.02540.15000.093*
C80.2382 (13)0.0891 (8)0.0592 (8)0.068 (3)
H8A0.34000.01960.10610.082*
H8B0.24220.07010.01450.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0260 (3)0.0231 (3)0.0318 (3)0.00468 (19)0.00005 (18)0.0094 (2)
Cl10.0568 (10)0.0221 (7)0.0557 (9)0.0049 (6)0.0151 (7)0.0078 (6)
Cl20.0515 (10)0.0259 (7)0.0568 (9)0.0125 (7)0.0074 (7)0.0075 (6)
Cl30.0249 (8)0.0723 (11)0.0598 (10)0.0116 (7)0.0029 (6)0.0403 (9)
S10.0322 (8)0.0289 (7)0.0337 (7)0.0006 (6)0.0011 (6)0.0075 (6)
S20.0456 (9)0.0260 (7)0.0404 (8)0.0052 (6)0.0173 (6)0.0082 (6)
N10.029 (3)0.042 (3)0.048 (3)0.011 (2)0.002 (2)0.006 (2)
N20.030 (3)0.036 (3)0.038 (2)0.008 (2)0.0100 (19)0.005 (2)
N30.054 (3)0.046 (3)0.046 (3)0.021 (3)0.014 (2)0.026 (2)
N40.045 (3)0.035 (3)0.053 (3)0.013 (2)0.005 (2)0.019 (2)
C10.026 (3)0.032 (3)0.033 (3)0.009 (2)0.001 (2)0.013 (2)
C20.066 (4)0.037 (3)0.050 (3)0.017 (3)0.021 (3)0.007 (3)
C30.084 (6)0.039 (4)0.040 (3)0.014 (4)0.001 (4)0.001 (3)
C40.054 (4)0.046 (4)0.058 (4)0.021 (3)0.014 (3)0.005 (3)
C50.031 (3)0.036 (3)0.032 (3)0.006 (2)0.006 (2)0.019 (2)
C60.062 (5)0.052 (4)0.096 (6)0.030 (4)0.021 (4)0.027 (4)
C70.082 (6)0.050 (5)0.113 (7)0.036 (5)0.017 (5)0.032 (5)
C80.097 (7)0.043 (4)0.082 (5)0.034 (4)0.038 (5)0.041 (4)
Geometric parameters (Å, º) top
Sb1—S12.481 (1)N4—H4A0.8600
Sb1—S22.555 (2)C2—C31.492 (11)
Sb1—Cl12.514 (1)C2—H2B0.9700
Sb1—Cl22.670 (2)C2—H2C0.9700
S1—C11.757 (5)C3—C41.517 (11)
S2—C51.745 (6)C3—H3B0.9700
N1—C11.316 (7)C3—H3C0.9700
N1—C41.462 (8)C4—H4B0.9700
N1—H1A0.8600C4—H4C0.9700
N2—C11.303 (7)C6—C71.461 (13)
N2—C21.465 (8)C6—H6A0.9700
N2—H2A0.8600C6—H6B0.9700
N3—C51.330 (7)C7—C81.490 (12)
N3—C81.453 (9)C7—H7A0.9700
N3—H3A0.8600C7—H7B0.9700
N4—C51.306 (7)C8—H8A0.9700
N4—C61.481 (9)C8—H8B0.9700
S1—Sb1—Cl192.41 (5)C4—C3—H3B109.7
S1—Sb1—Cl276.62 (5)C2—C3—H3C109.7
S1—Sb1—S292.59 (5)C4—C3—H3C109.7
S2—Sb1—Cl276.18 (5)H3B—C3—H3C108.2
Cl1—Sb1—S292.43 (5)N1—C4—C3108.3 (6)
Cl1—Sb1—Cl2163.60 (6)N1—C4—H4B110.0
C1—S1—Sb1104.01 (18)C3—C4—H4B110.0
C5—S2—Sb1104.18 (18)N1—C4—H4C110.0
C1—N1—C4122.6 (5)C3—C4—H4C110.0
C1—N1—H1A118.7H4B—C4—H4C108.4
C4—N1—H1A118.7N4—C5—N3121.1 (5)
C1—N2—C2122.4 (5)N4—C5—S2120.0 (4)
C1—N2—H2A118.8N3—C5—S2118.9 (4)
C2—N2—H2A118.8C7—C6—N4110.7 (6)
C5—N3—C8122.7 (5)C7—C6—H6A109.5
C5—N3—H3A118.7N4—C6—H6A109.5
C8—N3—H3A118.7C7—C6—H6B109.5
C5—N4—C6123.1 (5)N4—C6—H6B109.5
C5—N4—H4A118.4H6A—C6—H6B108.1
C6—N4—H4A118.4C6—C7—C8113.8 (7)
N2—C1—N1121.8 (5)C6—C7—H7A108.8
N2—C1—S1120.1 (4)C8—C7—H7A108.8
N1—C1—S1117.9 (4)C6—C7—H7B108.8
N2—C2—C3109.0 (5)C8—C7—H7B108.8
N2—C2—H2B109.9H7A—C7—H7B107.7
C3—C2—H2B109.9N3—C8—C7111.7 (6)
N2—C2—H2C109.9N3—C8—H8A109.3
C3—C2—H2C109.9C7—C8—H8A109.3
H2B—C2—H2C108.3N3—C8—H8B109.3
C2—C3—C4109.8 (6)C7—C8—H8B109.3
C2—C3—H3B109.7H8A—C8—H8B107.9
Cl1—Sb1—S1—C122.28 (19)N2—C2—C3—C454.1 (7)
S2—Sb1—S1—C1114.82 (19)C1—N1—C4—C327.9 (9)
Cl2—Sb1—S1—C1170.04 (19)C2—C3—C4—N153.7 (8)
S1—Sb1—S2—C596.33 (19)C6—N4—C5—N34.2 (10)
Cl1—Sb1—S2—C53.81 (19)C6—N4—C5—S2178.2 (5)
Cl2—Sb1—S2—C5171.87 (19)C8—N3—C5—N42.6 (10)
C2—N2—C1—N10.9 (9)C8—N3—C5—S2179.8 (6)
C2—N2—C1—S1176.8 (4)Sb1—S2—C5—N491.1 (5)
C4—N1—C1—N20.9 (9)Sb1—S2—C5—N391.3 (5)
C4—N1—C1—S1176.9 (5)C5—N4—C6—C725.8 (10)
Sb1—S1—C1—N268.2 (5)N4—C6—C7—C844.9 (11)
Sb1—S1—C1—N1115.7 (4)C5—N3—C8—C722.5 (11)
C1—N2—C2—C328.5 (8)C6—C7—C8—N344.0 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3i0.862.373.213 (6)169
N2—H2A···Cl30.862.443.227 (5)152
N3—H3A···Cl2ii0.862.403.203 (6)156
N4—H4A···Cl3i0.862.373.168 (6)155
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[SbCl2(C4H8N2S)2]Cl
Mr460.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5103 (4), 10.3304 (5), 12.1206 (6)
α, β, γ (°)71.358 (1), 84.252 (1), 73.612 (1)
V3)854.78 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.20 × 0.16 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.655, 0.738
No. of measured, independent and
observed [I > 2σ(I)] reflections
4916, 2981, 2799
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.158, 1.09
No. of reflections2981
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.55, 1.79

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Sb1—S12.481 (1)N2—C21.465 (8)
Sb1—S22.555 (2)N3—C51.330 (7)
Sb1—Cl12.514 (1)N3—C81.453 (9)
Sb1—Cl22.670 (2)N4—C51.306 (7)
S1—C11.757 (5)N4—C61.481 (9)
S2—C51.745 (6)C2—C31.492 (11)
N1—C11.316 (7)C3—C41.517 (11)
N1—C41.462 (8)C6—C71.461 (13)
N2—C11.303 (7)C7—C81.490 (12)
S1—Sb1—Cl192.41 (5)Cl1—Sb1—S292.43 (5)
S1—Sb1—Cl276.62 (5)Cl1—Sb1—Cl2163.60 (6)
S1—Sb1—S292.59 (5)C1—S1—Sb1104.01 (18)
S2—Sb1—Cl276.18 (5)C5—S2—Sb1104.18 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3i0.862.373.213 (6)169
N2—H2A···Cl30.862.443.227 (5)152
N3—H3A···Cl2ii0.862.403.203 (6)156
N4—H4A···Cl3i0.862.373.168 (6)155
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds