Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds are salts of the general form (Q+)2[Zn(dmit)2]2-, where dmit corresponds to the ligand (C3S5)- present in both and Q+ to the counter-cations (nBu4N)+ [or C16H36N+] and (Ph4As)+ [or C24H20As+], respectively. In the first case, Zn is in the 4e special positions of space group C2/c and hence the [Zn(dmit)2]2- dianion possesses twofold axial crystallographic symmetry. Including these, there are now 11 known examples of [Zn(dmit)2]2- or its analogues, with O replacing the exocyclic thione S, and [Zn(dmio)2]2- dianions in nine structures with various Q. Comparison of these reveals a remarkable variation in details of the conformation which the dianion may adopt in terms of Zn coordination, equivalence of the Zn-S bond lengths, displacement of Zn from the plane of the ligand and overall dianion shape.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018534/tr1005sup1.cif
Contains datablocks global, IV150, IX

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018534/tr1005IV150sup2.hkl
Contains datablock IV150

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018534/tr1005IXsup3.hkl
Contains datablock IX

CCDC references: 181994; 181995

Comment top

Chohan et al. (1997) and Harrison et al. (2000) and references therein have already pointed out the importance of onium salts of the [Zn(dmit)2]2- dianion, where dmit is the 1,3-dithiole-2-thione-4,5-dithiolato ligand, as stable and convenient precursors for the formation of complexes with other transition and main group metal elements and the synthesis of heterocyclic compounds. Müller et al. (1998) concur with this view and show that it is equally applicable to the analogous [Zn(dmio)2]2- dianion, where dmio is the 1,3-dithiole-2-one-4,5-dithiolato ligand i.e. with O now replacing the thione S of dmit. Müller et al. however use the acronym 'dmid' rather than 'dmio' used here.

The [Zn(dmit)2]2- dianions of the title compounds, Q = nBu4N at 150 K, IV(150), Fig. 1 and Table 1, and Q = Ph4As, IX, Fig. 2 and Table 2, are as anticipated for this type of species although the twofold axial crystallographic symmetry of the dianion in IV(150) is a notable but not unusual feature. As a result whereas the asymmetric unit of IX consists of a complete dianion and two distinct Ph4As counter cations that of IV(150) contains Zn, one complete dmit ligand and only a single cation. Aside from a degree of disorder affecting two of the nBu groups in IV(150) the counter-cations are unremarkable and are not discussed further.

The results for IV(150) and IX can be compared, Table 3, with a series of previously known related structures as Chohan et al. (1997) and Harrison et al. (2000) have already done but now focused upon the shape of the dianions rather than details of their internal geometry and the sometime presence of S.·S inter-anion contacts. Certain conventions are noted here which have been adopted in the creation of Table 3. First in the calculation of out of plane Zn and exocyclic thione S for dmit and O for dmio distances, Zn_op and one_op respectively, the reference ligand plane has been defined by the CC bond and the four S attached to it e.g. S1, S2, C1, C2, S3 and S4 in Figs. 1 and 2 or their equivalent. Second in order that the angle IP may be used as a measure of the flattening of the tetrahedral coordination of Zn it is defined as the angle between the plane defined by Zn1, S1 and S2 and that defined by Zn1, S6 and S7 as in Fig. 2. This usage avoids complications which would be induced by Zn out of plane distances if the ligand planes as defined first above were used for this purpose. The angle L, calculated as X—Zn—X' where X and X' are exocyclic thione S or, for dmio, O e.g. S5—Zn1—S10 in Fig. 2 is used as a measure of the non-linear or V-shaped nature of the dianions. The entries in the table are in order of decreasing L which is also wholly compatible with the dianions ordered in categories according to their crystallographic symmetry which decreases down the list.

The values given in Table 3 give rise to some general observations. First the ligand bite angles show little variation and fall in the comparatively narrow range 93.44 (10) to 95.22 (4)° and have, therefore, virtually no effect on the variation in the shape of the dianions. In all but two cases, both ligands of I by symmetry and fortuitously the second ligand of IX, the bidentate ligands coordinate in an asymmetric manner contributing therefore to the variation in L. L is clearly affected primarily by variation of Zn_op and to a lesser extent by one_op in which the variation is less and essentially random in nature. The primary significance of one_op is its relationship to Zn_op. If these have the same or different signs the chelate formed by the ligand is overall boat or Z shaped respectively with displacement of Zn and thione S or, for dmio, O from the chelate mean plane in both cases.

In terms of crystallographic symmetry the dianions of the compounds presented in Table 3 occur in three groups. Group 1 has I as the only representative. This is the most constrained situation and here the dianion is subject to the operation of a crystallographic twofold axis running along its length and passing through Zn and C and S of the thione groups. As a consequence the ligands coordinate in a symmetric manner, Zn and thione S are rigorously confined to the ligand planes and the dianion is strictly linear from one thione S to the other. Here, however, is found by far the lowest value of IP, 69.29 (12)°, corresponding to the most flattened form of tetrahedral coordination of Zn in the series.

In group 2, with compounds II to V providing 5 cases, the dianions are again subject to the operation of a crystallographic twofold axis but now perpendicular to the length of the ligand. Now, as for group 3 excepting the second ligand of IX, the ligands coordinate in an asymmetric manner and contribute to the non-linearity of the dianions with L now in the range 171.05 (8) to 177.86 (3)°. Within the group the values of L indicate the existence of two subgroups as II and III together with smallest Zn_op and L = 177.86 (3) and 177.04 (4) respectively and III to V with greater Zn_op and smaller L. IP now in the range 81.18 (6) to 83.58 (9)° indicates a much less flattened coordination of Zn than before.

The dianions of group 3, VI to IX and again 5 cases, are totally free from constraint by symmetry. These display the least linearity with L in the range 158.51 (2) to 169.49 (1)° and still less flattened Zn coordination with IP in the range 82.47 (4) to 89.25 (18)° which last is close to the ideal of 90°. Noticeable here is the special situation of IX with the smallest value of L where Zn is similarly greatly displaced from the planes of both ligands whereas in VI to VIII the Zn displacement is much greater for one ligand than the other.

It is clear that the linearity of the dianions, L, correlates not only with their classification in terms of crystallographic symmetry but also, because of the manner in which it is calculated, with the values of Zn_op. The flattening of the tetrahedral Zn coordination, IP, on the other hand, relates to the crystallographic dianion symmetry solely in terms of ranges of values and correlates with no other entries in the table. L and IP are in any case crude measures of completely different aspects of the shape of the dianions and no relationship between them is therefore expected. Any relationship between the nature of the counter cations and the shape of the dianions is at best superficial and supported by nothing more than I, methanol solvate with Q = Et4N, at one extreme, IX with bulky Q = Ph4As at the other and species as IV with Q = nBu4N in between. However VI, Q = Ph4P DMSO solvate, and particularly VIII, Q = Et4N, are anomolous in terms of the predicated series. This implies that the size of the counter cations probably determines the shape of the dianions only in combination with several other factors such as counter cation shape, the presence of solvent molecules and the presence of short inter-anion S.·S contacts, less than the sum of the van der Waals radii, which do not in fact occur in either IV or IX.

Experimental top

The salt, IV or IX, was prepared following a general procedure (Valade et al. 1985) from Na2dmit, ZnSO4 and nBu4NBr or Ph4AsCl. Red crystals of IV were obtained from Me2CO/2-propanol, m.p. 436–438 K. IR (KBr): 1411 (CC), 1055 (CS), 889 (C—S) cm-1. Uv-vis (MeCN): 499 and 308 nm. Red crystals of IX were obtained from DMSO, m.p. 478–481 K. IR (KBr): 1437 (CC), 1056 (CS), 888 (C—S) cm-1. Uv-vis (MeCN): 497 and 311 nm.

Refinement top

In the course of the refinement of IV(150) severe disorder of the terminal methylene, C10 and C14, and methyl groups, C11 and C15, of two of the nBu groups of the nBu4N counter cation became apparent necessitating the splitting of each of these atoms over two sites of equal occupancy distinguished by suffix A or B. In addition constraints as 1.52 (1) and 2.48 (1) Å for direct C—C bonds and C—C—C angle defining C.·C contacts respectively were applied to the refinement of the disordered species, 16 constraints in all. Even then the need for further splitting of C14B and C15A was indicated but was not implemented. In the final stages of refinement H atoms were introduced in calculated positions and refined with a riding model with C—H 0.99 and 0.98 Å and Uiso 1.2 and 1.5Ueq of the C to which H are attached for the methylene and methyl H atoms respectively of IV(150) and with C—H 0.93 and Uiso 1.2Ueq for the phenyl H atoms of IX. Rotation parameters were refined for the methyl groups as rigid bodies of ordered C8 and C19 of IX but not for the remainder.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for IV150; SMART (Bruker, 1999) for (IX). Cell refinement: DENZO and COLLECT for IV150; SAINT (Bruker, 1999) for (IX). Data reduction: DENZO and COLLECT for IV150; SAINT (Bruker, 1999) for (IX). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
[Figure 2]
Figure 1. The dianion of IV(150) showing atom labels. Atoms are shown as 50% probability ellipsoids.

Figure 2. The dianion of IX. The representation is the same as in Fig. 1.

#The captions below and the drawings to which they refer, Supp. 1–4, are not #intended for publication. They are merely provided for the convenience of #editors and referees. The representation is the same as for Figs. 1 and 2 #except for H atoms which are shown as small open circles in Supps. 1 and 2 #and have been omitted for clarity in Supps. 3 and 4.

#Supp. 1. The cation of IV(150) displaying the disordered element comprising #C10A, C11A, C14A and C15A.

#Supp. 2. The cation of IV(150) now showing C10B, C11B, C14B and C15B.

#Supp. 3. Cation 1 of IX.

#Supp. 4. Cation 2 of IX.
(IV150) Bis(tetra-n-butylammonium) bis(1,3-dithiole-2-thione-4,5-dithiolato)zinc(II) at 150 K top
Crystal data top
(C6S10Zn2)·2(C16H36N+)Dx = 1.245 Mg m3
Mr = 942.95Melting point = 436–438 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.2564 (3) ÅCell parameters from 22851 reflections
b = 8.9478 (2) Åθ = 3.2–28.6°
c = 29.2379 (5) ŵ = 0.93 mm1
β = 92.9544 (7)°T = 150 K
V = 5031.06 (16) Å3Block, red
Z = 40.25 × 0.22 × 0.10 mm
F(000) = 2016
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
5525 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 9.091 pixels mm-1θmax = 28.6°, θmin = 3.2°
ϕ and ω scans to fill the Ewald sphereh = 2523
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 911
Tmin = 0.770, Tmax = 0.859l = 3739
22851 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0614P)2]
where P = (Fo2 + 2Fc2)/3
5525 reflections(Δ/σ)max < 0.001
269 parametersΔρmax = 0.23 e Å3
16 restraintsΔρmin = 0.20 e Å3
Crystal data top
(C6S10Zn2)·2(C16H36N+)V = 5031.06 (16) Å3
Mr = 942.95Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.2564 (3) ŵ = 0.93 mm1
b = 8.9478 (2) ÅT = 150 K
c = 29.2379 (5) Å0.25 × 0.22 × 0.10 mm
β = 92.9544 (7)°
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
5525 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2563 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.859Rint = 0.061
22851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04916 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.98Δρmax = 0.23 e Å3
5525 reflectionsΔρmin = 0.20 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Because of the manner in which the disordered atoms have been treated (see above) the following angles involving atoms of different PART's have been discarded. C10A C9 C10B 33.5 (6).. ?; C10B C9 H9A 89.0.. ?; C10B C9 H9B 140.9.. ?; C10A C9 H9C 78.5.. ?; H9A C9 H9C 130.4.. ?; H9B C9 H9C 32.2.. ?; C10A C9 H9D 121.1.. ?; H9A C9 H9D 25.0.. ?; H9B C9 H9D 82.5.. ?; C14A C13 C14B 29.6 (4).. ?; C14B C13 H13A 136.9.. ?; C14B C13 H13B 91.4.. ?; C14A C13 H13C 120.0.. ?; H13A C13 H13C 85.1.. ?; H13B C13 H13C 22.4.. ?; C14A C13 H13D 81.8.. ?; H13A C13 H13D 28.7.. ?; H13B C13 H13D 128.4.. ?; C10B C9 C10A C11A 14.1 (15).. . . ?; C10A C9 C10B C11B -26.4 (10).. . . ?; C14B C13 C14A C15A -1.5 (12).. . . ?; C14A C13 C14B C15B 52.8 (13).. . . ?.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Anisotropic refinement of all non-H. Serious disorder of C10, C11, C14 and C15 for the most part dealt with in terms of atom pairs in different PART's but further possible splitting of already split atoms not applied.

H in calculated positions and refined with a riding model. Methyl group rigid body rotation for split methyl groups C11 and C15 not refined.

Within SHELXL97 the disordered species which are 4 in number, because of the manner in which the PART instructions have been used, are coded internally as:

C9/H9A_a/H9B_a-C10_a/H10A_a/H10B_a-C11_a/H11A_a/H11B_a/H11C_a

C9/H9C_b/H9D_b-C10_b/H10C_b/H10D_b-C11_b/H11D_b/H11E_b/H11F_b

C13/H13A_a/H13B_a-C14_a/H14A_a/H14B_a-C15_a/H15A_a/H15B_a/H15C_a

and

C13/H13C_b/H13D_b-C14_b/H14C_b/H14D_b-C15_b/H15D_b/H15E_b/H15F_b

but the suffices 'a' and 'b' which correspond to the PART nos. 1 and 2 set up in the input data do not appear in the cif finally produced. This does not matter for the H atoms which are rendered distinct by the choice of suffices as A, B ··· etc in any case but results in pairwise replication of atom labels for the split C atoms. Manual intervention has therefore been applied in all cases in the loops below where the replicate labels appeared originally to install, for example, C10A where C10_a would have appeared and so on for the remaining split C atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.07195 (6)0.25000.0810 (2)
S10.49898 (4)0.05345 (10)0.18009 (3)0.0868 (3)
S20.39523 (5)0.19862 (11)0.23401 (3)0.0944 (3)
C10.42446 (16)0.0334 (4)0.15742 (10)0.0752 (8)
C20.38302 (17)0.1293 (4)0.17908 (11)0.0775 (9)
S30.39837 (5)0.00687 (11)0.10064 (3)0.0920 (3)
S40.30907 (5)0.18760 (12)0.14666 (3)0.0992 (3)
C30.32301 (18)0.0963 (4)0.09618 (12)0.0919 (10)
S50.27099 (6)0.10584 (15)0.04999 (4)0.1263 (4)
N10.20341 (16)0.6561 (3)0.12021 (10)0.0932 (8)
C40.1601 (2)0.7962 (4)0.11474 (13)0.1090 (12)
H4A0.19130.88340.11960.131*
H4B0.14090.80080.08270.131*
C50.1012 (2)0.8118 (5)0.14589 (15)0.1211 (14)
H5A0.11930.80920.17820.145*
H5B0.06840.72730.14090.145*
C60.0631 (3)0.9597 (6)0.13621 (18)0.1482 (18)
H6A0.09651.04300.14100.178*
H6B0.04610.96150.10370.178*
C70.0028 (3)0.9845 (6)0.1657 (2)0.168 (2)
H7A0.03160.90490.16020.252*
H7B0.01871.08140.15830.252*
H7C0.01910.98330.19800.252*
C80.2357 (2)0.6398 (5)0.16769 (13)0.1128 (13)
H8A0.19770.62760.18890.135*
H8B0.26310.54610.16880.135*
C90.2813 (3)0.7618 (7)0.18532 (16)0.160 (2)
H9A0.32480.75730.16880.192*0.50
H9B0.25830.85760.17690.192*0.50
H9C0.25410.84890.19520.192*0.50
H9D0.31420.79430.16230.192*0.50
C10A0.3007 (5)0.7674 (15)0.2346 (3)0.149 (6)0.50
H10A0.25880.74770.25190.179*0.50
H10B0.31720.86940.24250.179*0.50
C11A0.3551 (9)0.6591 (16)0.2489 (5)0.191 (6)0.50
H11A0.35740.65000.28230.286*0.50
H11B0.40010.69380.23880.286*0.50
H11C0.34410.56160.23510.286*0.50
C10B0.3214 (9)0.6789 (13)0.2287 (4)0.190 (8)0.50
H10C0.28990.60620.24250.228*0.50
H10D0.36240.62410.21840.228*0.50
C11B0.3429 (8)0.7890 (14)0.2617 (3)0.176 (5)0.50
H11D0.36100.73960.28970.263*0.50
H11E0.30310.85180.26860.263*0.50
H11F0.37940.85130.24930.263*0.50
C120.2588 (2)0.6719 (5)0.08502 (13)0.1107 (13)
H12A0.23500.68480.05440.133*
H12B0.28540.76450.09190.133*
C130.3090 (2)0.5462 (6)0.08235 (14)0.1254 (15)
H13A0.31880.50870.11390.150*0.50
H13B0.28520.46460.06480.150*0.50
H13C0.28450.44990.07710.150*0.50
H13D0.33920.53900.11070.150*0.50
C14A0.3766 (4)0.5730 (15)0.0618 (3)0.133 (5)0.50
H14A0.40120.65520.07860.160*0.50
H14B0.40560.48200.06540.160*0.50
C15A0.3695 (8)0.611 (2)0.0141 (3)0.212 (8)0.50
H15A0.40980.67000.00570.319*0.50
H15B0.32690.66980.00830.319*0.50
H15C0.36670.51940.00430.319*0.50
C14B0.3532 (4)0.5907 (12)0.0390 (3)0.110 (4)0.50
H14C0.32250.59830.01090.132*0.50
H14D0.37700.68770.04430.132*0.50
C15B0.4053 (5)0.4677 (11)0.0346 (4)0.150 (4)0.50
H15D0.43660.49280.01030.224*0.50
H15E0.38090.37420.02690.224*0.50
H15F0.43230.45570.06370.224*0.50
C160.1602 (2)0.5160 (4)0.11141 (14)0.1012 (12)
H16A0.19180.42890.11440.121*
H16B0.12700.50790.13600.121*
C170.1196 (2)0.5027 (5)0.06635 (16)0.1237 (14)
H17A0.15060.51820.04080.148*
H17B0.08240.57910.06410.148*
C180.0871 (3)0.3416 (6)0.06367 (19)0.1397 (17)
H18A0.12510.26700.06460.168*
H18B0.05950.32520.09080.168*
C190.0432 (4)0.3186 (9)0.0228 (3)0.222 (3)
H19A0.00950.40030.01950.332*
H19B0.01850.22330.02520.332*
H19C0.07190.31640.00390.332*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0799 (4)0.0872 (4)0.0775 (4)0.0000.0190 (3)0.000
S10.0774 (6)0.0939 (7)0.0910 (6)0.0070 (5)0.0227 (4)0.0136 (5)
S20.1002 (7)0.1023 (7)0.0819 (6)0.0231 (5)0.0164 (5)0.0131 (5)
C10.077 (2)0.073 (2)0.0767 (19)0.0117 (17)0.0167 (16)0.0009 (16)
C20.079 (2)0.076 (2)0.079 (2)0.0013 (18)0.0151 (17)0.0012 (16)
S30.0922 (6)0.1015 (7)0.0837 (6)0.0143 (5)0.0173 (5)0.0163 (5)
S40.0998 (7)0.1026 (7)0.0952 (6)0.0175 (6)0.0052 (5)0.0021 (5)
C30.095 (2)0.090 (3)0.091 (2)0.018 (2)0.0105 (19)0.0041 (19)
S50.1238 (9)0.1489 (11)0.1038 (8)0.0100 (8)0.0178 (7)0.0035 (7)
N10.106 (2)0.088 (2)0.088 (2)0.0018 (18)0.0307 (16)0.0126 (16)
C40.145 (3)0.082 (3)0.103 (3)0.001 (2)0.034 (3)0.018 (2)
C50.135 (3)0.106 (3)0.124 (3)0.013 (3)0.028 (3)0.029 (3)
C60.160 (4)0.117 (4)0.171 (5)0.031 (3)0.039 (4)0.034 (3)
C70.174 (5)0.133 (4)0.202 (6)0.032 (4)0.061 (4)0.021 (4)
C80.117 (3)0.138 (4)0.086 (3)0.000 (3)0.029 (2)0.022 (2)
C90.157 (5)0.217 (6)0.107 (4)0.042 (4)0.014 (3)0.027 (4)
C10A0.080 (6)0.209 (16)0.161 (13)0.016 (8)0.028 (7)0.068 (11)
C11A0.236 (18)0.170 (13)0.157 (13)0.018 (12)0.079 (11)0.018 (10)
C10B0.26 (2)0.195 (16)0.104 (10)0.075 (13)0.070 (11)0.040 (9)
C11B0.185 (13)0.134 (11)0.209 (15)0.048 (10)0.023 (11)0.018 (10)
C120.125 (3)0.118 (3)0.093 (2)0.037 (3)0.043 (2)0.007 (2)
C130.111 (3)0.144 (4)0.126 (3)0.026 (3)0.055 (3)0.015 (3)
C14A0.174 (11)0.147 (9)0.080 (7)0.014 (8)0.023 (7)0.023 (8)
C15A0.233 (16)0.33 (2)0.077 (8)0.117 (15)0.017 (8)0.003 (10)
C14B0.132 (8)0.159 (9)0.042 (6)0.065 (7)0.033 (6)0.029 (7)
C15B0.133 (8)0.170 (10)0.152 (10)0.030 (7)0.075 (8)0.046 (8)
C160.098 (3)0.089 (3)0.120 (3)0.001 (2)0.042 (2)0.019 (2)
C170.118 (3)0.115 (4)0.139 (4)0.005 (3)0.023 (3)0.001 (3)
C180.137 (4)0.134 (4)0.152 (4)0.018 (3)0.041 (3)0.027 (3)
C190.206 (7)0.237 (8)0.227 (8)0.074 (6)0.057 (6)0.051 (6)
Geometric parameters (Å, º) top
Zn1—S12.3308 (9)C11A—H11B0.9800
Zn1—S1i2.3308 (9)C11A—H11C0.9800
Zn1—S2i2.3401 (10)C10B—C11B1.424 (9)
Zn1—S22.3401 (10)C10B—H10C0.9900
S1—C11.733 (3)C10B—H10D0.9900
S2—C21.726 (3)C11B—H11D0.9800
C1—C21.351 (4)C11B—H11E0.9800
C1—S31.747 (3)C11B—H11F0.9800
C2—S41.749 (3)C12—C131.487 (6)
S3—C31.719 (4)C12—H12A0.9900
S4—C31.720 (4)C12—H12B0.9900
C3—S51.642 (4)C13—C14A1.483 (7)
N1—C81.498 (5)C13—C14B1.613 (7)
N1—C41.509 (5)C13—H13A0.9900
N1—C161.520 (5)C13—H13B0.9900
N1—C121.526 (4)C13—H13C0.9900
C4—C51.498 (5)C13—H13D0.9900
C4—H4A0.9900C14A—C15A1.435 (8)
C4—H4B0.9900C14A—H14A0.9900
C5—C61.532 (6)C14A—H14B0.9900
C5—H5A0.9900C15A—H15A0.9800
C5—H5B0.9900C15A—H15B0.9800
C6—C71.499 (6)C15A—H15C0.9800
C6—H6A0.9900C14B—C15B1.498 (9)
C6—H6B0.9900C14B—H14C0.9900
C7—H7A0.9800C14B—H14D0.9900
C7—H7B0.9800C15B—H15D0.9800
C7—H7C0.9800C15B—H15E0.9800
C8—C91.478 (6)C15B—H15F0.9800
C8—H8A0.9900C16—C171.501 (5)
C8—H8B0.9900C16—H16A0.9900
C9—C10A1.469 (8)C16—H16B0.9900
C9—C10B1.629 (8)C17—C181.571 (6)
C9—H9A0.9900C17—H17A0.9900
C9—H9B0.9900C17—H17B0.9900
C9—H9C0.9900C18—C191.442 (8)
C9—H9D0.9900C18—H18A0.9900
C10A—C11A1.473 (9)C18—H18B0.9900
C10A—H10A0.9900C19—H19A0.9800
C10A—H10B0.9900C19—H19B0.9800
C11A—H11A0.9800C19—H19C0.9800
S1—Zn1—S1i122.45 (5)C11B—C10B—C9108.8 (9)
S1—Zn1—S2i112.12 (3)C11B—C10B—H10C109.9
S1i—Zn1—S2i95.15 (3)C9—C10B—H10C109.9
S1—Zn1—S295.15 (3)C11B—C10B—H10D109.9
S1i—Zn1—S2112.12 (3)C9—C10B—H10D109.9
S2i—Zn1—S2122.06 (6)H10C—C10B—H10D108.3
C1—S1—Zn195.11 (11)C10B—C11B—H11D109.5
C2—S2—Zn194.97 (11)C10B—C11B—H11E109.5
C2—C1—S1127.1 (2)H11D—C11B—H11E109.5
C2—C1—S3115.4 (3)C10B—C11B—H11F109.5
S1—C1—S3117.58 (19)H11D—C11B—H11F109.5
C1—C2—S2127.5 (3)H11E—C11B—H11F109.5
C1—C2—S4114.8 (2)C13—C12—N1116.3 (3)
S2—C2—S4117.71 (19)C13—C12—H12A108.2
C3—S3—C199.30 (16)N1—C12—H12A108.2
C3—S4—C299.48 (17)C13—C12—H12B108.2
S5—C3—S3124.5 (2)N1—C12—H12B108.2
S5—C3—S4124.5 (2)H12A—C12—H12B107.4
S3—C3—S4111.0 (2)C14A—C13—C12119.1 (6)
C8—N1—C4112.3 (3)C12—C13—C14B103.1 (4)
C8—N1—C16105.9 (3)C14A—C13—H13A107.6
C4—N1—C16111.9 (3)C12—C13—H13A107.6
C8—N1—C12111.3 (3)C14A—C13—H13B107.6
C4—N1—C12104.6 (3)C12—C13—H13B107.6
C16—N1—C12111.0 (3)H13A—C13—H13B107.0
C5—C4—N1116.4 (3)C12—C13—H13C111.2
C5—C4—H4A108.2C14B—C13—H13C111.2
N1—C4—H4A108.2C12—C13—H13D111.2
C5—C4—H4B108.2C14B—C13—H13D111.2
N1—C4—H4B108.2H13C—C13—H13D109.1
H4A—C4—H4B107.3C15A—C14A—C13112.9 (8)
C4—C5—C6109.8 (3)C15A—C14A—H14A109.0
C4—C5—H5A109.7C13—C14A—H14A109.0
C6—C5—H5A109.7C15A—C14A—H14B109.0
C4—C5—H5B109.7C13—C14A—H14B109.0
C6—C5—H5B109.7H14A—C14A—H14B107.8
H5A—C5—H5B108.2C14A—C15A—H15A109.5
C7—C6—C5113.5 (4)C14A—C15A—H15B109.5
C7—C6—H6A108.9H15A—C15A—H15B109.5
C5—C6—H6A108.9C14A—C15A—H15C109.5
C7—C6—H6B108.9H15A—C15A—H15C109.5
C5—C6—H6B108.9H15B—C15A—H15C109.5
H6A—C6—H6B107.7C15B—C14B—C13105.6 (7)
C6—C7—H7A109.5C15B—C14B—H14C110.6
C6—C7—H7B109.5C13—C14B—H14C110.6
H7A—C7—H7B109.5C15B—C14B—H14D110.6
C6—C7—H7C109.5C13—C14B—H14D110.6
H7A—C7—H7C109.5H14C—C14B—H14D108.7
H7B—C7—H7C109.5C14B—C15B—H15D109.5
C9—C8—N1117.5 (4)C14B—C15B—H15E109.5
C9—C8—H8A107.9H15D—C15B—H15E109.5
N1—C8—H8A107.9C14B—C15B—H15F109.5
C9—C8—H8B107.9H15D—C15B—H15F109.5
N1—C8—H8B107.9H15E—C15B—H15F109.5
H8A—C8—H8B107.2C17—C16—N1118.0 (3)
C10A—C9—C8118.9 (6)C17—C16—H16A107.8
C8—C9—C10B100.6 (6)N1—C16—H16A107.8
C10A—C9—H9A107.6C17—C16—H16B107.8
C8—C9—H9A107.6N1—C16—H16B107.8
C10A—C9—H9B107.6H16A—C16—H16B107.1
C8—C9—H9B107.6C16—C17—C18107.7 (4)
H9A—C9—H9B107.0C16—C17—H17A110.2
C8—C9—H9C111.6C18—C17—H17A110.2
C10B—C9—H9C111.6C16—C17—H17B110.2
C8—C9—H9D111.6C18—C17—H17B110.2
C10B—C9—H9D111.6H17A—C17—H17B108.5
H9C—C9—H9D109.4C19—C18—C17112.8 (5)
C9—C10A—C11A113.4 (8)C19—C18—H18A109.0
C9—C10A—H10A108.9C17—C18—H18A109.0
C11A—C10A—H10A108.9C19—C18—H18B109.0
C9—C10A—H10B108.9C17—C18—H18B109.0
C11A—C10A—H10B108.9H18A—C18—H18B107.8
H10A—C10A—H10B107.7C18—C19—H19A109.5
C10A—C11A—H11A109.5C18—C19—H19B109.5
C10A—C11A—H11B109.5H19A—C19—H19B109.5
H11A—C11A—H11B109.5C18—C19—H19C109.5
C10A—C11A—H11C109.5H19A—C19—H19C109.5
H11A—C11A—H11C109.5H19B—C19—H19C109.5
H11B—C11A—H11C109.5
S1i—Zn1—S1—C1124.23 (10)C16—N1—C4—C560.3 (5)
S2i—Zn1—S1—C1123.85 (10)C12—N1—C4—C5179.5 (4)
S2—Zn1—S1—C13.88 (10)N1—C4—C5—C6179.6 (4)
S1—Zn1—S2—C22.76 (11)C4—C5—C6—C7179.7 (5)
S1i—Zn1—S2—C2130.94 (11)C4—N1—C8—C957.8 (5)
S2i—Zn1—S2—C2117.41 (11)C16—N1—C8—C9179.8 (4)
Zn1—S1—C1—C25.1 (3)C12—N1—C8—C959.1 (5)
Zn1—S1—C1—S3175.64 (15)N1—C8—C9—C10A166.0 (6)
S1—C1—C2—S23.6 (5)N1—C8—C9—C10B163.9 (7)
S3—C1—C2—S2177.13 (19)C8—C9—C10A—C11A77.3 (13)
S1—C1—C2—S4176.50 (18)C8—C9—C10B—C11B153.7 (12)
S3—C1—C2—S42.8 (3)C8—N1—C12—C1359.4 (4)
Zn1—S2—C2—C10.5 (3)C4—N1—C12—C13179.1 (4)
Zn1—S2—C2—S4179.38 (17)C16—N1—C12—C1358.3 (5)
C2—C1—S3—C32.0 (3)N1—C12—C13—C14A159.2 (5)
S1—C1—S3—C3177.39 (18)N1—C12—C13—C14B174.0 (5)
C1—C2—S4—C32.2 (3)C12—C13—C14A—C15A64.4 (15)
S2—C2—S4—C3177.70 (19)C12—C13—C14B—C15B179.8 (7)
C1—S3—C3—S5179.3 (2)C8—N1—C16—C17178.3 (3)
C1—S3—C3—S40.4 (2)C4—N1—C16—C1755.7 (4)
C2—S4—C3—S5179.5 (2)C12—N1—C16—C1760.8 (4)
C2—S4—C3—S30.8 (2)N1—C16—C17—C18173.4 (3)
C8—N1—C4—C558.6 (5)C16—C17—C18—C19176.5 (4)
Symmetry code: (i) x+1, y, z+1/2.
(IX) Bis(tetraphenylarsonium) bis(1,3-dithiole-2-thione-4,5-dithiolato)zinc(II) top
Crystal data top
(C6S10Zn2)·2(C24H20As+)F(000) = 1240
Mr = 1224.67Dx = 1.524 Mg m3
Triclinic, P1Melting point = 478–481 K
a = 10.3451 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.0563 (7) ÅCell parameters from 4866 reflections
c = 18.8083 (8) Åθ = 2.3–24.9°
α = 73.072 (1)°µ = 2.12 mm1
β = 85.867 (1)°T = 300 K
γ = 72.259 (1)°Block, red
V = 2668.9 (2) Å30.33 × 0.21 × 0.15 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
9377 independent reflections
Radiation source: fine-focus sealed tube6069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1212
Tmin = 0.738, Tmax = 0.862k = 1717
16003 measured reflectionsl = 2217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0285P)2]
where P = (Fo2 + 2Fc2)/3
9377 reflections(Δ/σ)max = 0.001
604 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
(C6S10Zn2)·2(C24H20As+)γ = 72.259 (1)°
Mr = 1224.67V = 2668.9 (2) Å3
Triclinic, P1Z = 2
a = 10.3451 (5) ÅMo Kα radiation
b = 15.0563 (7) ŵ = 2.12 mm1
c = 18.8083 (8) ÅT = 300 K
α = 73.072 (1)°0.33 × 0.21 × 0.15 mm
β = 85.867 (1)°
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
9377 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
6069 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.862Rint = 0.028
16003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 0.86Δρmax = 0.36 e Å3
9377 reflectionsΔρmin = 0.28 e Å3
604 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H in calculated positions and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.46443 (4)0.31624 (3)0.24779 (2)0.05534 (12)
S10.60851 (9)0.38669 (7)0.28674 (6)0.0644 (3)
S20.26338 (9)0.42316 (8)0.27927 (6)0.0723 (3)
S30.52705 (12)0.58335 (8)0.31011 (6)0.0798 (3)
S40.24297 (12)0.61810 (8)0.29600 (6)0.0820 (3)
S50.3427 (2)0.77712 (10)0.31257 (9)0.1408 (6)
C10.4792 (4)0.4877 (2)0.29685 (18)0.0556 (9)
C20.3445 (4)0.5028 (3)0.29171 (19)0.0564 (9)
C30.3679 (5)0.6661 (3)0.3068 (2)0.0828 (13)
S60.50098 (9)0.14820 (7)0.29673 (5)0.0609 (3)
S70.47653 (10)0.31170 (7)0.12382 (5)0.0605 (2)
S80.44669 (9)0.01920 (6)0.21430 (6)0.0610 (3)
S90.42531 (9)0.15664 (7)0.07082 (5)0.0603 (3)
S100.39256 (10)0.03646 (7)0.08149 (7)0.0738 (3)
C40.4703 (3)0.1303 (2)0.21255 (19)0.0497 (8)
C50.4595 (3)0.1952 (2)0.14478 (19)0.0494 (8)
C60.4204 (3)0.0421 (2)0.1203 (2)0.0539 (9)
As10.09051 (3)0.26052 (2)0.009498 (19)0.04457 (10)
C70.0398 (3)0.2595 (2)0.08742 (19)0.0480 (8)
C80.0067 (4)0.3353 (3)0.1510 (2)0.0698 (11)
H80.07900.38050.15680.084*
C90.1004 (5)0.3445 (3)0.2064 (2)0.0855 (13)
H90.07830.39690.24900.103*
C100.2257 (4)0.2772 (4)0.1993 (3)0.0754 (12)
H100.28850.28320.23700.090*
C110.2570 (4)0.2021 (4)0.1370 (3)0.0816 (13)
H110.34210.15620.13230.098*
C120.1656 (3)0.1914 (3)0.0798 (2)0.0730 (12)
H120.18890.13930.03720.088*
C130.2677 (3)0.3162 (2)0.05412 (17)0.0439 (8)
C140.3464 (3)0.4081 (2)0.05359 (18)0.0502 (8)
H140.31340.44550.03220.060*
C150.4747 (3)0.4437 (3)0.08515 (19)0.0584 (9)
H150.52820.50600.08590.070*
C160.5236 (3)0.3877 (3)0.11534 (19)0.0598 (10)
H160.61150.41140.13500.072*
C170.4444 (4)0.2974 (3)0.1168 (2)0.0636 (10)
H170.47770.26050.13860.076*
C180.3165 (3)0.2611 (2)0.0864 (2)0.0582 (10)
H180.26250.19950.08750.070*
C190.0554 (3)0.3344 (2)0.04976 (18)0.0449 (8)
C200.0658 (3)0.3565 (2)0.0428 (2)0.0594 (10)
H200.12610.34170.00590.071*
C210.0968 (4)0.4012 (3)0.0920 (2)0.0740 (12)
H210.17850.41600.08850.089*
C220.0066 (5)0.4231 (3)0.1452 (2)0.0767 (12)
H220.02860.45130.17870.092*
C230.1160 (4)0.4044 (3)0.1505 (2)0.0722 (11)
H230.17820.42320.18550.087*
C240.1472 (3)0.3577 (2)0.10374 (19)0.0562 (9)
H240.22840.34220.10840.067*
C250.0801 (3)0.1356 (2)0.05673 (18)0.0484 (8)
C260.1940 (4)0.1090 (3)0.0799 (2)0.0817 (13)
H260.27820.15000.05990.098*
C270.1860 (4)0.0229 (4)0.1320 (3)0.1075 (17)
H270.26510.00630.14750.129*
C280.0653 (5)0.0387 (3)0.1618 (2)0.0808 (12)
H280.06140.09810.19630.097*
C290.0497 (4)0.0138 (3)0.1411 (2)0.0801 (12)
H290.13290.05560.16200.096*
C300.0437 (4)0.0735 (3)0.0892 (2)0.0702 (11)
H300.12270.09100.07580.084*
As20.12845 (3)0.24463 (2)0.466014 (19)0.04693 (10)
C310.0549 (3)0.2143 (2)0.37682 (18)0.0459 (8)
C320.0692 (3)0.2284 (3)0.3523 (2)0.0612 (10)
H320.11410.25470.37810.073*
C330.1253 (4)0.2034 (3)0.2898 (2)0.0740 (12)
H330.20770.21350.27260.089*
C340.0592 (4)0.1633 (3)0.2528 (2)0.0798 (12)
H340.09770.14550.21090.096*
C350.0627 (4)0.1491 (3)0.2769 (2)0.0774 (12)
H350.10590.12110.25170.093*
C360.1221 (4)0.1762 (2)0.3385 (2)0.0593 (10)
H360.20660.16880.35390.071*
C370.0163 (3)0.1883 (2)0.53869 (18)0.0484 (8)
C380.0233 (4)0.2348 (3)0.5906 (2)0.0649 (10)
H380.03990.29420.58980.078*
C390.1266 (5)0.1914 (3)0.6442 (2)0.0859 (13)
H390.13430.22280.67890.103*
C400.2171 (4)0.1027 (3)0.6461 (2)0.0813 (13)
H400.28520.07370.68260.098*
C410.2082 (4)0.0563 (3)0.5948 (2)0.0744 (12)
H410.26900.00440.59700.089*
C420.1094 (3)0.0998 (3)0.5401 (2)0.0627 (10)
H420.10510.06960.50410.075*
C430.2685 (3)0.1839 (3)0.50079 (19)0.0495 (8)
C440.2364 (4)0.0975 (3)0.5569 (2)0.0649 (10)
H440.15090.07250.57960.078*
C450.3317 (5)0.0485 (3)0.5791 (3)0.0844 (13)
H450.31060.00980.61680.101*
C460.4558 (6)0.0853 (4)0.5461 (3)0.0971 (17)
H460.51920.05130.56100.117*
C470.4898 (4)0.1710 (4)0.4915 (3)0.0944 (16)
H470.57650.19580.47020.113*
C480.3948 (4)0.2220 (3)0.4674 (2)0.0722 (11)
H480.41670.28030.42970.087*
C490.1865 (3)0.3800 (2)0.45792 (18)0.0487 (8)
C500.2910 (3)0.4166 (3)0.5012 (2)0.0601 (10)
H500.34220.37780.52880.072*
C510.3188 (4)0.5125 (3)0.5030 (2)0.0734 (12)
H510.38870.53760.53220.088*
C520.2443 (5)0.5694 (3)0.4624 (2)0.0814 (13)
H520.26340.63320.46410.098*
C530.1418 (5)0.5335 (3)0.4193 (2)0.0826 (13)
H530.09170.57300.39140.099*
C540.1119 (4)0.4385 (3)0.4166 (2)0.0686 (11)
H540.04180.41420.38720.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0551 (2)0.0473 (3)0.0651 (3)0.01599 (19)0.0011 (2)0.0167 (2)
S10.0547 (6)0.0607 (7)0.0760 (7)0.0200 (5)0.0117 (5)0.0105 (5)
S20.0533 (6)0.0750 (7)0.1034 (9)0.0200 (5)0.0032 (5)0.0469 (7)
S30.1210 (9)0.0772 (8)0.0609 (7)0.0575 (7)0.0091 (6)0.0174 (6)
S40.1028 (9)0.0671 (7)0.0768 (8)0.0101 (6)0.0011 (6)0.0372 (6)
S50.254 (2)0.0762 (10)0.1161 (12)0.0655 (11)0.0303 (12)0.0529 (9)
C10.078 (3)0.051 (2)0.042 (2)0.0281 (19)0.0060 (18)0.0079 (17)
C20.064 (2)0.059 (2)0.051 (2)0.0159 (18)0.0027 (18)0.0236 (19)
C30.132 (4)0.067 (3)0.054 (3)0.029 (3)0.007 (2)0.025 (2)
S60.0701 (6)0.0476 (6)0.0603 (6)0.0158 (5)0.0059 (5)0.0086 (5)
S70.0742 (6)0.0477 (6)0.0599 (6)0.0236 (5)0.0033 (5)0.0106 (5)
S80.0628 (6)0.0433 (6)0.0751 (7)0.0160 (4)0.0047 (5)0.0145 (5)
S90.0618 (6)0.0563 (6)0.0649 (6)0.0171 (5)0.0003 (5)0.0204 (5)
S100.0619 (6)0.0631 (7)0.1069 (9)0.0168 (5)0.0004 (6)0.0411 (6)
C40.0461 (19)0.038 (2)0.061 (2)0.0080 (15)0.0018 (17)0.0130 (18)
C50.0428 (19)0.043 (2)0.060 (2)0.0094 (15)0.0021 (17)0.0146 (18)
C60.0331 (17)0.052 (2)0.077 (3)0.0055 (15)0.0002 (17)0.026 (2)
As10.03888 (18)0.0435 (2)0.0527 (2)0.01203 (15)0.00089 (16)0.01553 (17)
C70.045 (2)0.056 (2)0.049 (2)0.0172 (17)0.0006 (17)0.0206 (19)
C80.071 (3)0.068 (3)0.058 (3)0.010 (2)0.012 (2)0.013 (2)
C90.108 (4)0.080 (3)0.062 (3)0.031 (3)0.018 (3)0.012 (2)
C100.074 (3)0.110 (4)0.070 (3)0.055 (3)0.026 (2)0.044 (3)
C110.044 (2)0.110 (4)0.094 (4)0.016 (2)0.005 (2)0.044 (3)
C120.050 (2)0.087 (3)0.065 (3)0.006 (2)0.004 (2)0.013 (2)
C130.0402 (18)0.046 (2)0.047 (2)0.0158 (15)0.0017 (15)0.0132 (17)
C140.052 (2)0.041 (2)0.057 (2)0.0117 (16)0.0065 (17)0.0137 (17)
C150.056 (2)0.043 (2)0.064 (2)0.0019 (17)0.0055 (19)0.0079 (19)
C160.046 (2)0.064 (3)0.060 (2)0.0130 (19)0.0154 (18)0.002 (2)
C170.064 (2)0.064 (3)0.070 (3)0.025 (2)0.017 (2)0.019 (2)
C180.054 (2)0.046 (2)0.077 (3)0.0083 (17)0.0087 (19)0.025 (2)
C190.0418 (18)0.044 (2)0.049 (2)0.0114 (15)0.0063 (16)0.0132 (16)
C200.047 (2)0.058 (2)0.079 (3)0.0195 (18)0.0037 (19)0.024 (2)
C210.062 (3)0.068 (3)0.103 (4)0.027 (2)0.013 (2)0.029 (3)
C220.090 (3)0.062 (3)0.086 (3)0.016 (2)0.027 (3)0.033 (2)
C230.080 (3)0.071 (3)0.069 (3)0.012 (2)0.004 (2)0.034 (2)
C240.052 (2)0.058 (2)0.061 (2)0.0169 (18)0.0010 (19)0.021 (2)
C250.0429 (19)0.047 (2)0.055 (2)0.0121 (16)0.0036 (17)0.0165 (17)
C260.045 (2)0.066 (3)0.109 (4)0.011 (2)0.002 (2)0.009 (3)
C270.065 (3)0.081 (4)0.145 (5)0.028 (3)0.014 (3)0.020 (3)
C280.093 (3)0.053 (3)0.079 (3)0.019 (3)0.018 (3)0.000 (2)
C290.064 (3)0.063 (3)0.084 (3)0.001 (2)0.004 (2)0.001 (2)
C300.051 (2)0.069 (3)0.076 (3)0.015 (2)0.002 (2)0.002 (2)
As20.0499 (2)0.0444 (2)0.0495 (2)0.01694 (16)0.00489 (17)0.01579 (17)
C310.0457 (19)0.047 (2)0.045 (2)0.0136 (16)0.0052 (16)0.0141 (16)
C320.057 (2)0.072 (3)0.061 (3)0.0202 (19)0.005 (2)0.028 (2)
C330.055 (2)0.089 (3)0.073 (3)0.015 (2)0.012 (2)0.023 (3)
C340.080 (3)0.093 (3)0.063 (3)0.013 (3)0.014 (2)0.034 (3)
C350.090 (3)0.085 (3)0.069 (3)0.025 (2)0.002 (2)0.040 (3)
C360.059 (2)0.062 (3)0.063 (3)0.0208 (19)0.0047 (19)0.025 (2)
C370.050 (2)0.050 (2)0.046 (2)0.0171 (17)0.0041 (16)0.0142 (17)
C380.080 (3)0.054 (2)0.055 (2)0.007 (2)0.009 (2)0.017 (2)
C390.113 (4)0.078 (3)0.063 (3)0.017 (3)0.019 (3)0.021 (2)
C400.070 (3)0.094 (4)0.065 (3)0.020 (3)0.016 (2)0.001 (3)
C410.058 (3)0.061 (3)0.090 (3)0.006 (2)0.007 (2)0.012 (2)
C420.057 (2)0.056 (2)0.077 (3)0.0104 (19)0.001 (2)0.027 (2)
C430.055 (2)0.053 (2)0.048 (2)0.0232 (17)0.0145 (17)0.0204 (18)
C440.072 (3)0.056 (3)0.070 (3)0.023 (2)0.023 (2)0.024 (2)
C450.103 (4)0.062 (3)0.091 (3)0.040 (3)0.044 (3)0.021 (3)
C460.100 (4)0.111 (5)0.117 (5)0.070 (4)0.051 (4)0.059 (4)
C470.061 (3)0.144 (5)0.100 (4)0.049 (3)0.016 (3)0.052 (4)
C480.062 (3)0.088 (3)0.069 (3)0.028 (2)0.008 (2)0.021 (2)
C490.056 (2)0.043 (2)0.045 (2)0.0130 (17)0.0051 (17)0.0101 (17)
C500.066 (2)0.052 (2)0.058 (2)0.0138 (19)0.0027 (19)0.015 (2)
C510.088 (3)0.053 (3)0.069 (3)0.001 (2)0.000 (2)0.022 (2)
C520.119 (4)0.048 (3)0.079 (3)0.021 (3)0.010 (3)0.022 (2)
C530.111 (4)0.058 (3)0.088 (3)0.043 (3)0.006 (3)0.017 (3)
C540.083 (3)0.058 (3)0.067 (3)0.026 (2)0.017 (2)0.018 (2)
Geometric parameters (Å, º) top
Zn1—S12.3360 (10)C25—C301.392 (4)
Zn1—S62.3458 (10)C26—C271.362 (5)
Zn1—S72.3458 (10)C26—H260.9300
Zn1—S22.3674 (10)C27—C281.351 (5)
S1—C11.740 (4)C27—H270.9300
S2—C21.733 (4)C28—C291.352 (5)
S3—C31.728 (4)C28—H280.9300
S3—C11.745 (3)C29—C301.377 (5)
S4—C31.711 (5)C29—H290.9300
S4—C21.755 (3)C30—H300.9300
S5—C31.646 (4)As2—C491.904 (3)
C1—C21.347 (4)As2—C311.911 (3)
S6—C41.747 (3)As2—C371.917 (3)
S7—C51.743 (3)As2—C431.919 (3)
S8—C61.725 (4)C31—C361.373 (4)
S8—C41.754 (3)C31—C321.389 (4)
S9—C61.719 (4)C32—C331.375 (5)
S9—C51.751 (3)C32—H320.9300
S10—C61.660 (3)C33—C341.372 (5)
C4—C51.349 (4)C33—H330.9300
As1—C251.906 (3)C34—C351.366 (5)
As1—C191.908 (3)C34—H340.9300
As1—C131.908 (3)C35—C361.381 (5)
As1—C71.918 (3)C35—H350.9300
C7—C81.370 (5)C36—H360.9300
C7—C121.376 (4)C37—C381.374 (4)
C8—C91.376 (5)C37—C421.380 (4)
C8—H80.9300C38—C391.391 (5)
C9—C101.367 (5)C38—H380.9300
C9—H90.9300C39—C401.370 (5)
C10—C111.348 (5)C39—H390.9300
C10—H100.9300C40—C411.368 (5)
C11—C121.386 (5)C40—H400.9300
C11—H110.9300C41—C421.372 (5)
C12—H120.9300C41—H410.9300
C13—C141.378 (4)C42—H420.9300
C13—C181.380 (4)C43—C481.372 (5)
C14—C151.377 (4)C43—C441.380 (5)
C14—H140.9300C44—C451.376 (5)
C15—C161.367 (5)C44—H440.9300
C15—H150.9300C45—C461.350 (6)
C16—C171.364 (4)C45—H450.9300
C16—H160.9300C46—C471.359 (6)
C17—C181.365 (4)C46—H460.9300
C17—H170.9300C47—C481.398 (6)
C18—H180.9300C47—H470.9300
C19—C201.380 (4)C48—H480.9300
C19—C241.386 (4)C49—C541.380 (5)
C20—C211.397 (5)C49—C501.380 (4)
C20—H200.9300C50—C511.393 (5)
C21—C221.360 (5)C50—H500.9300
C21—H210.9300C51—C521.359 (6)
C22—C231.371 (5)C51—H510.9300
C22—H220.9300C52—C531.363 (5)
C23—C241.383 (4)C52—H520.9300
C23—H230.9300C53—C541.382 (5)
C24—H240.9300C53—H530.9300
C25—C261.360 (5)C54—H540.9300
S1—Zn1—S6118.44 (4)C30—C25—As1120.3 (3)
S1—Zn1—S7117.89 (4)C25—C26—C27120.6 (4)
S6—Zn1—S794.02 (3)C25—C26—H26119.7
S1—Zn1—S294.36 (3)C27—C26—H26119.7
S6—Zn1—S2118.53 (4)C28—C27—C26121.2 (4)
S7—Zn1—S2115.56 (4)C28—C27—H27119.4
C1—S1—Zn194.92 (12)C26—C27—H27119.4
C2—S2—Zn194.10 (12)C27—C28—C29119.7 (4)
C3—S3—C198.84 (19)C27—C28—H28120.2
C3—S4—C299.15 (18)C29—C28—H28120.2
C2—C1—S1127.1 (3)C28—C29—C30120.0 (4)
C2—C1—S3115.5 (3)C28—C29—H29120.0
S1—C1—S3117.2 (2)C30—C29—H29120.0
C1—C2—S2127.3 (3)C29—C30—C25120.3 (4)
C1—C2—S4115.0 (3)C29—C30—H30119.8
S2—C2—S4117.7 (2)C25—C30—H30119.8
S5—C3—S4125.2 (3)C49—As2—C31114.12 (14)
S5—C3—S3123.4 (3)C49—As2—C37105.56 (13)
S4—C3—S3111.4 (2)C31—As2—C37106.56 (13)
C4—S6—Zn194.86 (12)C49—As2—C43112.69 (14)
C5—S7—Zn194.65 (12)C31—As2—C43109.46 (13)
C6—S8—C498.36 (17)C37—As2—C43108.02 (15)
C6—S9—C598.44 (16)C36—C31—C32120.3 (3)
C5—C4—S6126.3 (3)C36—C31—As2120.3 (3)
C5—C4—S8115.3 (3)C32—C31—As2119.4 (2)
S6—C4—S8118.3 (2)C33—C32—C31119.8 (3)
C4—C5—S7126.9 (3)C33—C32—H32120.1
C4—C5—S9115.7 (3)C31—C32—H32120.1
S7—C5—S9117.4 (2)C34—C33—C32119.6 (4)
S10—C6—S9123.4 (2)C34—C33—H33120.2
S10—C6—S8124.4 (2)C32—C33—H33120.2
S9—C6—S8112.18 (18)C35—C34—C33120.8 (4)
C25—As1—C19106.02 (14)C35—C34—H34119.6
C25—As1—C13108.40 (14)C33—C34—H34119.6
C19—As1—C13112.06 (13)C34—C35—C36120.3 (4)
C25—As1—C7114.53 (14)C34—C35—H35119.9
C19—As1—C7107.73 (13)C36—C35—H35119.9
C13—As1—C7108.17 (13)C31—C36—C35119.2 (3)
C8—C7—C12119.8 (3)C31—C36—H36120.4
C8—C7—As1116.8 (3)C35—C36—H36120.4
C12—C7—As1123.2 (3)C38—C37—C42120.6 (3)
C7—C8—C9120.0 (4)C38—C37—As2119.5 (2)
C7—C8—H8120.0C42—C37—As2119.8 (2)
C9—C8—H8120.0C37—C38—C39118.7 (3)
C10—C9—C8120.6 (4)C37—C38—H38120.6
C10—C9—H9119.7C39—C38—H38120.6
C8—C9—H9119.7C40—C39—C38120.3 (4)
C11—C10—C9119.2 (4)C40—C39—H39119.9
C11—C10—H10120.4C38—C39—H39119.9
C9—C10—H10120.4C41—C40—C39120.5 (4)
C10—C11—C12121.7 (4)C41—C40—H40119.7
C10—C11—H11119.2C39—C40—H40119.7
C12—C11—H11119.2C40—C41—C42119.8 (4)
C7—C12—C11118.8 (4)C40—C41—H41120.1
C7—C12—H12120.6C42—C41—H41120.1
C11—C12—H12120.6C41—C42—C37120.0 (3)
C14—C13—C18120.4 (3)C41—C42—H42120.0
C14—C13—As1121.5 (2)C37—C42—H42120.0
C18—C13—As1118.1 (2)C48—C43—C44120.7 (3)
C15—C14—C13119.0 (3)C48—C43—As2120.8 (3)
C15—C14—H14120.5C44—C43—As2118.4 (3)
C13—C14—H14120.5C45—C44—C43119.7 (4)
C16—C15—C14120.2 (3)C45—C44—H44120.2
C16—C15—H15119.9C43—C44—H44120.2
C14—C15—H15119.9C46—C45—C44119.9 (5)
C17—C16—C15120.5 (3)C46—C45—H45120.0
C17—C16—H16119.8C44—C45—H45120.0
C15—C16—H16119.8C45—C46—C47121.2 (5)
C16—C17—C18120.2 (3)C45—C46—H46119.4
C16—C17—H17119.9C47—C46—H46119.4
C18—C17—H17119.9C46—C47—C48120.1 (5)
C17—C18—C13119.7 (3)C46—C47—H47119.9
C17—C18—H18120.2C48—C47—H47119.9
C13—C18—H18120.2C43—C48—C47118.4 (4)
C20—C19—C24121.0 (3)C43—C48—H48120.8
C20—C19—As1119.7 (2)C47—C48—H48120.8
C24—C19—As1119.1 (2)C54—C49—C50119.9 (3)
C19—C20—C21119.2 (3)C54—C49—As2119.5 (3)
C19—C20—H20120.4C50—C49—As2120.0 (3)
C21—C20—H20120.4C49—C50—C51119.2 (4)
C22—C21—C20119.5 (4)C49—C50—H50120.4
C22—C21—H21120.3C51—C50—H50120.4
C20—C21—H21120.3C52—C51—C50120.4 (4)
C21—C22—C23121.4 (4)C52—C51—H51119.8
C21—C22—H22119.3C50—C51—H51119.8
C23—C22—H22119.3C51—C52—C53120.4 (4)
C22—C23—C24120.1 (4)C51—C52—H52119.8
C22—C23—H23120.0C53—C52—H52119.8
C24—C23—H23120.0C52—C53—C54120.3 (4)
C23—C24—C19118.8 (3)C52—C53—H53119.8
C23—C24—H24120.6C54—C53—H53119.8
C19—C24—H24120.6C49—C54—C53119.7 (4)
C26—C25—C30118.1 (4)C49—C54—H54120.1
C26—C25—As1121.2 (3)C53—C54—H54120.1
S6—Zn1—S1—C1137.10 (12)C24—C19—C20—C211.2 (5)
S7—Zn1—S1—C1110.77 (12)As1—C19—C20—C21173.0 (3)
S2—Zn1—S1—C111.23 (12)C19—C20—C21—C220.7 (6)
S1—Zn1—S2—C212.53 (13)C20—C21—C22—C231.7 (6)
S6—Zn1—S2—C2138.34 (12)C21—C22—C23—C243.5 (6)
S7—Zn1—S2—C2111.27 (12)C22—C23—C24—C192.9 (6)
Zn1—S1—C1—C27.5 (3)C20—C19—C24—C230.5 (5)
Zn1—S1—C1—S3168.69 (17)As1—C19—C24—C23174.8 (3)
C3—S3—C1—C22.6 (3)C19—As1—C25—C26104.5 (3)
C3—S3—C1—S1174.0 (2)C13—As1—C25—C2616.0 (3)
S1—C1—C2—S24.2 (5)C7—As1—C25—C26136.9 (3)
S3—C1—C2—S2179.5 (2)C19—As1—C25—C3068.1 (3)
S1—C1—C2—S4174.1 (2)C13—As1—C25—C30171.4 (3)
S3—C1—C2—S42.2 (4)C7—As1—C25—C3050.5 (3)
Zn1—S2—C2—C112.7 (3)C30—C25—C26—C271.5 (6)
Zn1—S2—C2—S4165.51 (18)As1—C25—C26—C27174.3 (4)
C3—S4—C2—C10.7 (3)C25—C26—C27—C280.6 (8)
C3—S4—C2—S2179.1 (2)C26—C27—C28—C291.9 (8)
C2—S4—C3—S5178.3 (3)C27—C28—C29—C300.9 (7)
C2—S4—C3—S31.1 (2)C28—C29—C30—C251.2 (6)
C1—S3—C3—S5177.4 (3)C26—C25—C30—C292.4 (6)
C1—S3—C3—S42.0 (2)As1—C25—C30—C29175.3 (3)
S1—Zn1—S6—C4139.31 (11)C49—As2—C31—C36112.6 (3)
S7—Zn1—S6—C414.46 (11)C37—As2—C31—C36131.3 (3)
S2—Zn1—S6—C4107.57 (11)C43—As2—C31—C3614.7 (3)
S1—Zn1—S7—C5140.13 (11)C49—As2—C31—C3269.3 (3)
S6—Zn1—S7—C514.87 (11)C37—As2—C31—C3246.8 (3)
S2—Zn1—S7—C5109.48 (11)C43—As2—C31—C32163.4 (3)
Zn1—S6—C4—C511.5 (3)C36—C31—C32—C330.5 (5)
Zn1—S6—C4—S8166.78 (16)As2—C31—C32—C33177.5 (3)
C6—S8—C4—C51.1 (3)C31—C32—C33—C341.0 (6)
C6—S8—C4—S6179.58 (18)C32—C33—C34—C350.8 (6)
S6—C4—C5—S71.4 (5)C33—C34—C35—C360.8 (7)
S8—C4—C5—S7179.75 (17)C32—C31—C36—C352.2 (5)
S6—C4—C5—S9178.90 (17)As2—C31—C36—C35175.9 (3)
S8—C4—C5—S90.5 (3)C34—C35—C36—C312.3 (6)
Zn1—S7—C5—C413.3 (3)C49—As2—C37—C3823.9 (3)
Zn1—S7—C5—S9166.98 (15)C31—As2—C37—C38145.6 (3)
C6—S9—C5—C40.3 (3)C43—As2—C37—C3896.9 (3)
C6—S9—C5—S7179.46 (18)C49—As2—C37—C42158.4 (3)
C5—S9—C6—S10179.4 (2)C31—As2—C37—C4236.7 (3)
C5—S9—C6—S80.98 (19)C43—As2—C37—C4280.8 (3)
C4—S8—C6—S10179.2 (2)C42—C37—C38—C390.5 (6)
C4—S8—C6—S91.22 (19)As2—C37—C38—C39178.1 (3)
C25—As1—C7—C8155.0 (3)C37—C38—C39—C401.7 (6)
C19—As1—C7—C887.3 (3)C38—C39—C40—C410.9 (7)
C13—As1—C7—C834.0 (3)C39—C40—C41—C421.1 (7)
C25—As1—C7—C1229.8 (3)C40—C41—C42—C372.4 (6)
C19—As1—C7—C1287.8 (3)C38—C37—C42—C411.5 (6)
C13—As1—C7—C12150.8 (3)As2—C37—C42—C41176.1 (3)
C12—C7—C8—C91.6 (6)C49—As2—C43—C4851.3 (3)
As1—C7—C8—C9173.7 (3)C31—As2—C43—C4876.8 (3)
C7—C8—C9—C101.5 (6)C37—As2—C43—C48167.5 (3)
C8—C9—C10—C110.6 (6)C49—As2—C43—C44132.8 (3)
C9—C10—C11—C120.2 (7)C31—As2—C43—C4499.0 (3)
C8—C7—C12—C110.7 (6)C37—As2—C43—C4416.6 (3)
As1—C7—C12—C11174.3 (3)C48—C43—C44—C450.7 (5)
C10—C11—C12—C70.2 (6)As2—C43—C44—C45175.1 (3)
C25—As1—C13—C14128.0 (3)C43—C44—C45—C460.2 (6)
C19—As1—C13—C1411.4 (3)C44—C45—C46—C470.9 (7)
C7—As1—C13—C14107.2 (3)C45—C46—C47—C481.4 (7)
C25—As1—C13—C1851.1 (3)C44—C43—C48—C470.2 (5)
C19—As1—C13—C18167.7 (3)As2—C43—C48—C47175.5 (3)
C7—As1—C13—C1873.7 (3)C46—C47—C48—C430.8 (6)
C18—C13—C14—C150.5 (5)C31—As2—C49—C5437.9 (3)
As1—C13—C14—C15178.5 (2)C37—As2—C49—C5478.7 (3)
C13—C14—C15—C161.1 (5)C43—As2—C49—C54163.6 (3)
C14—C15—C16—C172.2 (6)C31—As2—C49—C50151.0 (3)
C15—C16—C17—C181.6 (6)C37—As2—C49—C5092.3 (3)
C16—C17—C18—C130.1 (6)C43—As2—C49—C5025.4 (3)
C14—C13—C18—C171.1 (5)C54—C49—C50—C510.6 (5)
As1—C13—C18—C17178.0 (3)As2—C49—C50—C51170.4 (3)
C25—As1—C19—C20108.5 (3)C49—C50—C51—C520.3 (6)
C13—As1—C19—C20133.4 (3)C50—C51—C52—C530.2 (6)
C7—As1—C19—C2014.5 (3)C51—C52—C53—C540.4 (7)
C25—As1—C19—C2465.9 (3)C50—C49—C54—C530.4 (6)
C13—As1—C19—C2452.2 (3)As2—C49—C54—C53170.6 (3)
C7—As1—C19—C24171.1 (3)C52—C53—C54—C490.1 (6)

Experimental details

(IV150)(IX)
Crystal data
Chemical formula(C6S10Zn2)·2(C16H36N+)(C6S10Zn2)·2(C24H20As+)
Mr942.951224.67
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)150300
a, b, c (Å)19.2564 (3), 8.9478 (2), 29.2379 (5)10.3451 (5), 15.0563 (7), 18.8083 (8)
α, β, γ (°)90, 92.9544 (7), 9073.072 (1), 85.867 (1), 72.259 (1)
V3)5031.06 (16)2668.9 (2)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.932.12
Crystal size (mm)0.25 × 0.22 × 0.100.33 × 0.21 × 0.15
Data collection
DiffractometerEnraf Nonius KappaCCD area detector
diffractometer
Bruker SMART 1000 CCD area detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.770, 0.8590.738, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
22851, 5525, 2563 16003, 9377, 6069
Rint0.0610.028
(sin θ/λ)max1)0.6740.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.132, 0.98 0.034, 0.067, 0.86
No. of reflections55259377
No. of parameters269604
No. of restraints160
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.200.36, 0.28

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SMART (Bruker, 1999), DENZO and COLLECT, SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) for (IV150) top
Zn1—S12.3308 (9)C1—S31.747 (3)
Zn1—S22.3401 (10)C2—S41.749 (3)
S1—C11.733 (3)S3—C31.719 (4)
S2—C21.726 (3)S4—C31.720 (4)
C1—C21.351 (4)C3—S51.642 (4)
S1—Zn1—S1i122.45 (5)C1—C2—S2127.5 (3)
S1—Zn1—S2i112.12 (3)C1—C2—S4114.8 (2)
S1—Zn1—S295.15 (3)S2—C2—S4117.71 (19)
S2i—Zn1—S2122.06 (6)C3—S3—C199.30 (16)
C1—S1—Zn195.11 (11)C3—S4—C299.48 (17)
C2—S2—Zn194.97 (11)S5—C3—S3124.5 (2)
C2—C1—S1127.1 (2)S5—C3—S4124.5 (2)
C2—C1—S3115.4 (3)S3—C3—S4111.0 (2)
S1—C1—S3117.58 (19)
Symmetry code: (i) x+1, y, z+1/2.
Selected geometric parameters (Å, º) for (IX) top
Zn1—S12.3360 (10)S5—C31.646 (4)
Zn1—S62.3458 (10)C1—C21.347 (4)
Zn1—S72.3458 (10)S6—C41.747 (3)
Zn1—S22.3674 (10)S7—C51.743 (3)
S1—C11.740 (4)S8—C61.725 (4)
S2—C21.733 (4)S8—C41.754 (3)
S3—C31.728 (4)S9—C61.719 (4)
S3—C11.745 (3)S9—C51.751 (3)
S4—C31.711 (5)S10—C61.660 (3)
S4—C21.755 (3)C4—C51.349 (4)
S1—Zn1—S6118.44 (4)S5—C3—S4125.2 (3)
S1—Zn1—S7117.89 (4)S5—C3—S3123.4 (3)
S6—Zn1—S794.02 (3)S4—C3—S3111.4 (2)
S1—Zn1—S294.36 (3)C4—S6—Zn194.86 (12)
S6—Zn1—S2118.53 (4)C5—S7—Zn194.65 (12)
S7—Zn1—S2115.56 (4)C6—S8—C498.36 (17)
C1—S1—Zn194.92 (12)C6—S9—C598.44 (16)
C2—S2—Zn194.10 (12)C5—C4—S6126.3 (3)
C3—S3—C198.84 (19)C5—C4—S8115.3 (3)
C3—S4—C299.15 (18)S6—C4—S8118.3 (2)
C2—C1—S1127.1 (3)C4—C5—S7126.9 (3)
C2—C1—S3115.5 (3)C4—C5—S9115.7 (3)
S1—C1—S3117.2 (2)S7—C5—S9117.4 (2)
C1—C2—S2127.3 (3)S10—C6—S9123.4 (2)
C1—C2—S4115.0 (3)S10—C6—S8124.4 (2)
S2—C2—S4117.7 (2)S9—C6—S8112.18 (18)
Table 3. Selected distances and angles (Å, °) for the dianions in Q2ZnX2, X = dmit or, where indicated, dmio and Q various counter cations. Room temperature data except where indicated. top
Cpd./gp.Q+/solZn—S1/6aZn—S2/7aBiteZn_opbone_opbIPbLbCSD ref.
I/1Et4N/MeOH2.346 (3)2.346 (3)94.00 (9)0069.29 (12)180NEYSOZ
2.350 (3)2.350 (3)93.44 (10)00
II/2DMPyc2.3372 (12)2.3419 (12)95.22 (4)-0.0171 (4)0.0687 (17)81.18 (6)177.86 (3)DOQXIQ
III/2FcCH2NMe3d2.3311 (19)2.345 (2)93.65 (6)-0.074 (1)-0.025 (2)83.58 (9)177.04 (4)NEYSIT
IV(150)/2nBu4N2.3308 (9)2.3401 (10)95.15 (3)0.1078 (14)-0.005 (2)81.71 (3)175.14 (2)this work
IV/2Bun4N2.330 (3)2.345 (3)94.99 (12)-0.0995 (14)-0.001 (4)81.78 (16)175.02 (9)DOZPUD
V/2Et4N2.308 (2)2.313 (2)93.81 (8)-0.2119 (8)0.036 (7)82.08 (13)171.05 (8)JAFXET (dmio)
VI(150)/3Ph4P/DMSO2.3284 (9)2.3376 (8)95.06 (3)0.098 (1)0.045 (1)82.47 (4)169.49 (1)DOQXUC
2.3355 (8)2.3473 (9)95.05 (3)-0.263 (1)-0.138 (1)
VII/3nBu4N2.324 (4)2.346 (3)95.06 (13)0.055 (1)0.075 (10)89.25 (18)169.19 (13)JAFXIX (dmio)
2.338 (4)2.344 (4)93.61 (13)-0.368 (1)-0.061 (11)
VIII(150)/3Et4N2.3355 (19)2.3478 (10)95.27 (3)-0.014 (1)0.064 (1)86.20 (5)168.07 (1)DOQXOW
2.3447 (10)2.3519 (8)94.49 (3)0.342 (1)0.096 (1)anion 1
VIII(150)/3Et4N2.3383 (9)2.3405 (11)95.12 (4)-0.005 (1)-0.055 (1)84.67 (5)166.24 (1)DOQXOW
2.3484 (9)2.3521 (10)94.77 (3)-0.369 (1)-0.132 (1)anion 2
IX/3Ph4As2.3360 (10)2.3675 (12)94.36 (3)-0.4651 (15)-0.159 (2)88.97 (4)158.51 (2)this work
2.3458 (10)2.3458 (10)94.02 (3)-0.5158 (13)0.0289 (17)
Notes: (a) S1 and S2 as in Fig. 2 is implied in the first or only line of entries for each compound and S6 and S7 in the second; (b) these quantities are defined in the text; (c) 1,4-dimethylpyridinium; (d) (ferrocenylmethyl)trimethylammonium. For all except IV(150) and IX the tabulated values have been obtained by means of PLATON (Spek, 1990) from cif data extracted from CSD (Allen & Kennard, 1993) at the Chemical Database Service of the EPSRC at Daresbury (Fletcher et al., 1996). Full references for the CSD codes as follows: DOQXIQ, DOQXOW and DOQXUC - Harrison et al. (2000); DOZPUD - Wang et al. (1986); NEYSIT and NEYSOZ - Chohan et al. (1997) and JAFXET and JAFXIX - Müller at al. (1998).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds