Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In bis­[1,1',2,2',3,3',4,4'-octa­methyl-5-(2-pyridinio)-5'-(2-pyri­dyl)­ferrocene] di-[mu]3-chloro-hexadeca-[mu]2-chloro-hexa­chloro­di-[mu]4-oxo-di-[mu]3-oxo-bis­[([eta]5,[kappa]N)-1,2,3,4-tetra­methyl-5-(2-pyridyl)­cyclo­penta­dienyl]octauranium(IV) di­chloro­methane tetrasolvate, [Fe(C14H17N)(C14H16N)]2[U8Cl24O4(C14H16N)2]·4CH2Cl2, (I), two protonated Fe(cp*py)2 units [cp*py is tetra­methyl-5-(2-pyridyl)­cyclo­penta­diene] form an ion pair with the dianionic centrosymmetric cluster U8Cl24O4(cp*py)2. The latter is the highest nuclearity assemblage in the chemistry of uranium (non-uranyl) compounds reported to date.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101020029/tr1004sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101020029/tr1004Isup2.hkl
Contains datablock I

CCDC reference: 181991

Comment top

Although discrete molecular species including up to six (Thuéry, Nierlich, Souley et al., 1999) and even eight (Thuéry, Nierlich, Baldwin et al., 1999) uranyl ions are known, as well as a cluster comprising six uranium(V) centres (Duval et al., 2001), only one compound with six U atoms in the +3 or +4 oxidation state has been structurally characterized, namely octa(µ3-hydroxo)-dodeca(µ2-diphenylphosphato)-hexauranium(III,IV) (Mokry et al., 1996). In the course of our studies of the synthesis and structures of uranium complexes with the ligand tetramethyl-5-(2-pyridyl)cyclopentadiene, hereinafter denoted cp*py, we unintentionally obtained the title compound, (I), containing an octanuclear uranium(IV) cluster, and its structure is described here. \sch

The asymmetric unit in (I) comprises one complete cationic iron complex (Fig. 1) and half the dianionic centrosymmetric polyuranium assemblage. The FeII atom in the protonated octamethyl-5,5'-di(2-pyridyl)ferrocene moiety is in the same environment as described earlier by Siemeling et al. (1995) and Neumann et al. (1997), with a mean Fe—C distance of 2.05 (4) Å (the distances to the centroids are 1.651 Å for both ligands, and the angle around the Fe atom is 176.8°). The two η5-cyclopentadienyl rings are nearly parallel, with a dihedral angle of 1.0 (5)°. Whereas octamethyl-5,5'-di(2-pyridyl)ferrocene is a neutral species, the N atom of one of the pyridyl moieties in (I) is protonated and involved in an intramolecular hydrogen bond with the N atom of the second pyridyl group, thus giving a cationic species with hydrogen-bonding geometry N3—H3 0.92, H3···N2 1.80 and N3···N2 2.696 (14) Å, and N3—H3···N2 164.0°. The dihedral angle between the two pyridyl moieties is 34.5 (5)°. Atoms C16, C19, C30 and C33 are slightly displaced out of the mean planes of the corresponding cycopentadienyl rings, the maximum deviation being 0.52 (4) Å for C16. This deformation of the ligands is probably due to the presence of the hydrogen bond.

The U8Cl24O4(cp*py)2 dianion is a large elongated assemblage (Fig. 2), roughly cylinder-shaped, with the two cp*py ligands as bases. The environment of atom U1 is the most unusual, whereas atoms U2, U3 and, to a lesser extent, U4, possess nearly similar coordination spheres. Atom U1 is bonded to the tetramethylcyclopentadienyl moiety, denoted cp*, in an η5 fashion, with a mean U—C bond length of 2.72 (9) Å (distance to the centroid 2.43 Å), and also to the N atom of the pyridyl group. The cp*py ligand is distorted so that atom N1 comes closer to U1, atoms C2 and C5 being strongly displaced out of the mean plane of the cyclopentadienyl ring, by 1.62 (3) and 0.42 (2) Å, respectively. The dihedral angle between the two rings is 71.7 (4)°, which indicates that the U-cp*py assemblage does not contain a pseudo-symmetry plane, due to the tilting of the pyridyl group.

Several cases are known in which the Fe(cp*py)2 complex is involved in the design of di- or trinuclear heterometallic complexes in which the ligand geometry is close to that observed in (I) and the N atoms of the pyridyl units are bonded to the second transition metal atom (Neumann et al., 1997), but, to the best of our knowledge, there is only one other case in which the N atom of a cp*py moiety (or its equivalent without methyl substituents, cppy) is bonded to the same metal atom as the cp* (or cp) ring (Le Borgne et al., 2002).

Atom U1 is further bonded to four µ2-chloro ions, with a mean U—Cl bond length of 2.80 (5) Å, and one µ3-oxo ion, O1, with a bond length of 2.244 (7) Å, in good agreement with the mean distance of 2.24 (7) Å for similar cases reported in the Cambridge Structural Database (CSD, Release?; Allen & Kennard, 1993). The four Cl atoms define a plane to within 0.078 (2) Å, atoms U1 and O1 being 0.937 (2) and -1.307 (7) Å, respectively, from this mean plane, which is, further, roughly parallel to the cyclopentadienyl mean plane, with a dihedral angle of 10.2 (3)°. However, the four Cl atoms are far from defining a regular square, the Cl···Cl distances being in the range 2.271 (5)–4.456 (4) Å.

The geometry of the uranium coordination sphere does not exactly match any of the polyhedra common in such seven-coordinate cases (Kepert, 1982). If the cp* ring is approximated to its centroid, this geometry may perhaps best be viewed as a distorted capped octahedron, with N1 in the capping position. Atoms U2 and U3 share similar bonding features, each being bonded to a monodentate Cl atom directed towards the exterior of the `cylinder', to the µ3-oxo ion O1, with bond lengths of 2.184 (7) and 2.159 (7) Å, respectively, slightly less than U1—O1, to the µ4-oxo ion O2, with larger bond lengths of 2.493 (8) and 2.454 (7) Å, and to four µ2– and one µ3-chloro ions. For both U2 and U3, two of these Cl atoms are shared with U1, while U2 shares two Cl atoms with U4i [symmetry code: (i) -x, -y, -z] and one with U4. Atom U3 exhibits the reverse pattern (two Cl atoms with U4 and one with U4i). Finally, U4 is bonded to two symmetrically related µ4-oxo ions, with a mean U—O bond length of 2.33 (4) Å, to a monodentate Cl atom and to five bridging ones, one shared with U2, one with U3, one with U2i, one with U3i and one (Cl12) with both U3 and U2i. The geometry of the coordination sphere of the three eight-coordinated atoms U2, U3 and U4 can be viewed as a distorted dodecahedron, if the difference in nature between O and Cl atoms is neglected.

The twelve Cl atoms of the repeat unit can be divided into three groups, corresponding to η1, µ2 and µ3 coordination modes. The mean U—Cl bond lengths are 2.60 (5), 2.79 (5) and 3.0 (1) Å, respectively, showing the expected bond lengthening. The U—Cl—U mean angles are 88 (5)° for the µ2-chloro ions. In the case of the µ3-chloro ion Cl12, two U—Cl—U angles have a comparable mean value, 82 (2)°, while the third, U2i—Cl12—U3, is much larger at 147.7 (1)°. The bonding mode of Cl12 appears to be strongly asymmetric, the U3—Cl12 bond length in particular [3.183 (3) Å] being so large that it hardly can be considered as indicative of a true coordinative bond. There is only one other example of a µ3-chloro bridge in UIV chemistry (Arliguie et al., 1994), in which the mean U—Cl bond length is 2.91 (1) Å, in good agreement with the present results, particularly for the bond lengths involving U2 and U4. As previously indicated, the two oxo ions have different bonding patterns: O1 is a µ3-oxo bridge, with a mean U—O bond length of 2.20 (4) Å [in good agreement with the literature mean value of 2.24 (7) Å, as indicated above] and a mean U—O—U angle of 120 (4)°, whereas O2 is a µ4-oxo, with a mean U—O of 2.40 (9) Å, the bond length involving U4 and U4i being about 0.15 Å smaller than those of U2 and U3, and a mean U—O—U of 110 (5)°. A search of the CSD (version 5.21) indicates that this is the first occurrence of a µ4-oxo ion in uranium chemistry.

The eight U atoms in the cluster can be viewed as located in two planes, one defined by U1, U2, U3, U1i, U2i and U3i [maximum deviation 0.0282 (3) Å], and the second by U1, U4, U1i and U4i. These two planes are nearly orthogonal [dihedral angle 85.70 (1)°] and the four O atoms are located close to their intersection [maximum distance from the planes 0.151 (8) Å]. If the cp*py ligands are disregarded, the intersection of the two planes defines a pseudo-binary axis. The mean U···U distance between U atoms bridged by O or Cl ions is 3.9 (1) Å. In the hexanuclear uranium(III,IV) cluster previously described (Mokry et al., 1996), the six U atoms were held together by µ3-hydroxo and µ2-diphenylphosphato bridges, with a mean U···U distance of 3.854 (9) Å, and were octahedrally arranged. The novelty of the structure of (I) is the variety of bonding modes exhibited by the constituent atoms, and the unprecedented elongated shape of the molecule that contains two terminal organic ligands.

Experimental top

Both the lithium salt of the ligand cp*py and octamethyl-5,5'-di(2-pyridyl)ferrocene were synthesized according to the procedure described by Siemeling et al. (1995). The latter [i.e. just the octamethyl-5,5'-di(2-pyridyl)ferrocene?] was mixed in a 1:1 ratio with UCl4 in CH2Cl2. Adventitious traces of oxygen probably entered the flask during prolonged heating. Single crystals of (I) deposited upon standing at room temperature.

Refinement top

The H atom bonded to N3 was found in the difference Fourier map and constrained to ride on its parent atom with Uiso(H) = 1.2Ueq(N). All other H atoms, except those of the solvent molecules, were introduced at calculated positions and refined as riding atoms (C—H =?) with Uiso(H) = 1.2 (CH) or 1.5 (CH3) times Ueq(C). Both dichloromethane solvent molecules in the asymmetric unit are disordered, one with two positions for one Cl atom and the second with two positions for the C atom. Both were refined with constraints on bond lengths and displacement parameters. The bond between the two C atoms linking one tetramethylcyclopentadienyl and one pyridyl species is longer than usual, C19—C20 1.552 (9) Å. The highest residual electron-density peak is located 0.86 Å from U4.

Computing details top

Data collection: KappaCCD Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL and PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The cationic part of (I) with the atom-numbering scheme and displacement ellipsoids drawn at the 10% probability level. H atoms have been omitted for clarity, except for that involved in a hydrogen bond, which is drawn as a small sphere of arbitrary radius. The hydrogen bond is shown as a dashed line. Solvent molecules have been omitted.
[Figure 2] Fig. 2. The anionic part of (I) with the atom-numbering scheme and displacement ellipsoids drawn at the 10% probability level. H atoms and solvent molecules have been omitted for clarity [symmetry code: (i) -x, -y, -z].
bis[1,1',2,2',3,3',4,4'-octamethyl-5-(2-pyridinio)-5'-(2-pyridyl)ferrocene] di-µ3-chloro-hexadeca-µ2-chloro-hexachlorodi-µ4-oxo-di-µ3-oxo- bis[(η5,κN)-1,2,3,4-tetramethyl-5-(2-pyridyl)cyclopentadienyl] octauranium(IV) dichloromethane tetrasolvate top
Crystal data top
[Fe(C14H17N)(C14H16N)]2[U8Cl24O4(C14H16N)2]·4CH2Cl2Z = 1
Mr = 4462.13F(000) = 2040
Triclinic, P1Dx = 2.432 Mg m3
a = 14.3894 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.9758 (7) ÅCell parameters from 20837 reflections
c = 16.0646 (9) Åθ = 3.0–25.7°
α = 61.128 (3)°µ = 11.57 mm1
β = 70.648 (2)°T = 100 K
γ = 83.316 (3)°Parallelepiped, dark brown
V = 3047.0 (3) Å30.20 × 0.20 × 0.15 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
10693 independent reflections
Radiation source: fine-focus sealed tube7972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 18 pixels mm-1θmax = 25.7°, θmin = 3.0°
ϕ scansh = 1517
Absorption correction: empirical (using intensity measurements)
(MULABS in PLATON; Spek, 2000)
k = 1818
Tmin = 0.082, Tmax = 0.176l = 1919
20837 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0201P)2 + 11.4271P]
where P = (Fo2 + 2Fc2)/3
10693 reflections(Δ/σ)max = 0.001
680 parametersΔρmax = 1.19 e Å3
35 restraintsΔρmin = 1.16 e Å3
Crystal data top
[Fe(C14H17N)(C14H16N)]2[U8Cl24O4(C14H16N)2]·4CH2Cl2γ = 83.316 (3)°
Mr = 4462.13V = 3047.0 (3) Å3
Triclinic, P1Z = 1
a = 14.3894 (8) ÅMo Kα radiation
b = 15.9758 (7) ŵ = 11.57 mm1
c = 16.0646 (9) ÅT = 100 K
α = 61.128 (3)°0.20 × 0.20 × 0.15 mm
β = 70.648 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
10693 independent reflections
Absorption correction: empirical (using intensity measurements)
(MULABS in PLATON; Spek, 2000)
7972 reflections with I > 2σ(I)
Tmin = 0.082, Tmax = 0.176Rint = 0.057
20837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04435 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0201P)2 + 11.4271P]
where P = (Fo2 + 2Fc2)/3
10693 reflectionsΔρmax = 1.19 e Å3
680 parametersΔρmin = 1.16 e Å3
Special details top

Experimental. A 180° range in ϕ was scanned during data collection, with 2° ϕ steps. Crystal-to-detector distance fixed at 28 mm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and expanded by subsequent difference Fourier synthesis. The two dichloromethane solvent molecules have been found disordered over two sites each, sharing the carbon and one chlorine atoms in one case, and two chlorine atoms in the second, both molecules have been refined with occupation factors constrained to the sum of unity or fixed to 1/2, with some restraints on bond distances. All non-hydrogen atoms have been refined anisotropically, except the disordered atoms. The proton bonded to the nitrogen atom of one ligand in the iron complex was found in the difference Fourier map and introduced as a riding atom with a displacement factor equal to 1.2 times that of the parent atom. All other hydrogen atoms (except those of the solvent molecules) were introduced at calculated positions as riding atoms, with a displacement parameter equal to 1.2 (CH) or 1.5 (CH3) times that of the parent atom. The highest residual electron density peak is located 0.86 Å from U4, as a result of imperfect absorption corrections. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.16535 (3)0.40443 (3)0.17498 (3)0.02944 (11)
U20.20671 (3)0.14128 (3)0.00935 (3)0.03239 (11)
U30.04858 (3)0.24356 (3)0.18078 (3)0.02978 (11)
U40.02128 (3)0.02242 (3)0.09604 (3)0.03512 (12)
Fe0.31218 (14)0.20283 (13)0.51142 (13)0.0423 (4)
Cl10.2875 (2)0.2620 (2)0.1456 (2)0.0429 (7)
Cl20.0367 (2)0.3754 (2)0.32903 (19)0.0392 (7)
Cl30.2718 (2)0.3095 (2)0.0260 (2)0.0462 (8)
Cl40.0329 (2)0.4209 (2)0.1799 (2)0.0388 (7)
Cl50.3840 (2)0.0799 (2)0.1254 (3)0.0576 (10)
Cl60.1225 (2)0.1429 (2)0.1368 (2)0.0455 (7)
Cl70.1251 (2)0.2009 (2)0.0324 (2)0.0392 (7)
Cl80.2185 (2)0.3137 (2)0.3107 (2)0.0447 (8)
Cl90.0150 (2)0.1510 (2)0.2727 (2)0.0419 (7)
Cl100.2156 (2)0.0307 (2)0.0753 (2)0.0405 (7)
Cl110.0627 (3)0.0569 (3)0.2259 (3)0.0591 (9)
Cl120.1732 (2)0.0585 (2)0.1494 (2)0.0391 (7)
O10.1020 (6)0.2610 (5)0.1066 (5)0.0311 (17)
O20.0361 (6)0.0908 (5)0.0433 (5)0.0330 (18)
N10.1554 (7)0.5152 (7)0.1047 (7)0.036 (2)
N20.5789 (8)0.2039 (7)0.4463 (7)0.042 (2)
N30.5154 (7)0.1506 (7)0.2884 (7)0.037 (2)
H30.52630.16490.34740.045*
C10.1169 (9)0.5170 (10)0.0396 (10)0.045 (3)
H10.10530.45880.01000.055*
C20.0946 (10)0.5966 (11)0.0419 (12)0.056 (4)
H20.06880.59370.00540.067*
C30.1102 (15)0.6828 (12)0.1151 (12)0.078 (5)
H3A0.09870.73930.11570.094*
C40.1425 (14)0.6858 (10)0.1869 (12)0.071 (5)
H40.14630.74380.24140.085*
C50.1701 (10)0.5995 (9)0.1767 (9)0.047 (3)
C60.2161 (10)0.5806 (9)0.2367 (10)0.042 (3)
C70.3076 (10)0.5291 (9)0.1966 (8)0.042 (3)
C80.3103 (9)0.4978 (8)0.2641 (9)0.037 (3)
C90.2202 (9)0.5292 (8)0.3460 (9)0.037 (3)
C100.1609 (9)0.5808 (8)0.3295 (8)0.033 (3)
C110.3881 (11)0.5162 (11)0.1062 (10)0.063 (4)
H11A0.43940.55820.12480.094*
H11B0.36360.53080.06560.094*
H11C0.41410.45100.06880.094*
C120.3981 (10)0.4521 (10)0.2588 (11)0.056 (4)
H12A0.43250.50010.30080.083*
H12B0.44120.42160.19090.083*
H12C0.37710.40520.28140.083*
C130.1962 (11)0.5161 (9)0.4366 (9)0.049 (3)
H13A0.23220.55970.47980.074*
H13B0.21440.45150.41650.074*
H13C0.12680.52850.47170.074*
C140.0616 (9)0.6283 (8)0.3988 (9)0.048 (3)
H14A0.06940.69100.44910.072*
H14B0.02690.59080.43030.072*
H14C0.02470.63370.36130.072*
C150.6710 (10)0.1828 (9)0.4226 (11)0.049 (3)
H150.70580.14740.35490.059*
C160.7233 (11)0.2092 (10)0.4915 (11)0.054 (4)
H160.79090.19640.47070.065*
C170.6692 (10)0.2539 (9)0.5893 (10)0.050 (3)
H170.69790.26900.63850.060*
C180.5711 (12)0.2770 (11)0.6152 (11)0.059 (4)
H180.53520.31030.68280.071*
C190.5229 (8)0.2529 (9)0.5452 (10)0.044 (3)
C200.4118 (8)0.2774 (7)0.5736 (7)0.032 (3)
C210.3798 (10)0.3279 (9)0.5394 (10)0.049 (3)
C220.2793 (10)0.3484 (8)0.5933 (9)0.043 (3)
C230.2528 (10)0.3051 (9)0.6567 (9)0.044 (3)
C240.3423 (11)0.2625 (10)0.6451 (9)0.058 (4)
C250.4365 (11)0.3684 (10)0.4687 (10)0.052 (4)
H25A0.50600.36030.45450.078*
H25B0.41830.43530.50000.078*
H25C0.42050.33500.40740.078*
C260.2083 (11)0.4065 (10)0.5862 (10)0.056 (4)
H26A0.23060.47010.60410.084*
H26B0.14360.40950.63110.084*
H26C0.20600.37660.51880.084*
C270.1509 (10)0.3103 (10)0.7289 (11)0.058 (4)
H27A0.10190.32270.70720.087*
H27B0.14690.36080.79490.087*
H27C0.13950.25050.73040.087*
C280.3485 (13)0.2077 (12)0.6985 (11)0.070 (5)
H28A0.35440.25180.76320.105*
H28B0.40510.16350.65960.105*
H28C0.28990.17300.70640.105*
C290.5893 (10)0.1588 (9)0.2133 (9)0.047 (3)
H290.65170.17540.21970.056*
C300.5710 (11)0.1427 (10)0.1305 (10)0.052 (4)
H300.62020.15080.08050.063*
C310.4814 (13)0.1147 (10)0.1184 (11)0.066 (5)
H310.47010.10200.05970.079*
C320.4089 (11)0.1053 (9)0.1918 (10)0.048 (3)
H320.34760.08620.18350.057*
C330.4249 (10)0.1239 (8)0.2795 (9)0.043 (3)
C340.3510 (9)0.1134 (8)0.3609 (9)0.043 (3)
C350.3624 (10)0.0652 (8)0.4139 (10)0.051 (4)
C360.2657 (12)0.0653 (9)0.4823 (10)0.056 (4)
C370.1968 (11)0.1176 (10)0.4721 (12)0.061 (4)
C380.2482 (10)0.1474 (10)0.3986 (11)0.055 (4)
C390.4517 (11)0.0107 (9)0.3957 (11)0.055 (4)
H39A0.43740.05520.37570.083*
H39B0.46900.03760.45610.083*
H39C0.50590.01490.34360.083*
C400.2433 (15)0.0211 (13)0.5453 (13)0.088 (6)
H40A0.30010.02060.56380.132*
H40B0.22550.04350.50990.132*
H40C0.18940.05650.60460.132*
C410.0891 (13)0.1301 (14)0.5244 (14)0.088 (6)
H41A0.05660.07870.48320.132*
H41B0.06490.19000.53720.132*
H41C0.07610.12960.58680.132*
C420.2000 (11)0.2005 (12)0.3648 (12)0.063 (4)
H42A0.15040.24630.42150.095*
H42B0.17010.15550.31600.095*
H42C0.24910.23310.33550.095*
Cl130.3451 (4)0.4818 (4)0.1392 (3)0.0876 (14)
Cl140.3505 (7)0.6464 (6)0.1554 (6)0.078 (3)*0.516 (10)
Cl150.3854 (8)0.5867 (8)0.2651 (8)0.098 (4)*0.484 (10)
C430.3039 (14)0.5321 (10)0.1968 (12)0.095 (6)
Cl160.4235 (6)1.2419 (5)0.1840 (6)0.070 (2)
Cl170.3383 (6)1.1448 (5)0.1189 (6)0.070 (2)
C440.3260 (14)1.1591 (16)0.2271 (11)0.073 (9)0.50
C450.4151 (16)1.2467 (12)0.0718 (9)0.068 (8)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0305 (2)0.0279 (2)0.0293 (2)0.00313 (17)0.00959 (18)0.01338 (18)
U20.0298 (2)0.0296 (2)0.0311 (2)0.00045 (17)0.00676 (18)0.01097 (18)
U30.0281 (2)0.0291 (2)0.0288 (2)0.00150 (17)0.00668 (17)0.01267 (18)
U40.0413 (3)0.0302 (2)0.0384 (2)0.00493 (19)0.0179 (2)0.0170 (2)
Fe0.0419 (11)0.0406 (9)0.0460 (10)0.0033 (8)0.0087 (8)0.0238 (9)
Cl10.0406 (18)0.0370 (15)0.0511 (17)0.0013 (13)0.0244 (14)0.0138 (14)
Cl20.0450 (18)0.0411 (15)0.0269 (13)0.0118 (13)0.0116 (12)0.0145 (12)
Cl30.053 (2)0.0398 (16)0.0358 (15)0.0091 (14)0.0031 (14)0.0192 (14)
Cl40.0366 (17)0.0341 (14)0.0482 (17)0.0003 (12)0.0133 (13)0.0210 (13)
Cl50.0348 (18)0.0418 (16)0.059 (2)0.0001 (14)0.0067 (15)0.0092 (16)
Cl60.053 (2)0.0522 (18)0.0445 (17)0.0120 (15)0.0204 (15)0.0319 (15)
Cl70.0434 (18)0.0376 (15)0.0439 (16)0.0007 (13)0.0219 (14)0.0193 (13)
Cl80.0346 (17)0.0387 (15)0.0416 (16)0.0023 (13)0.0023 (13)0.0110 (13)
Cl90.0504 (19)0.0447 (16)0.0353 (15)0.0063 (14)0.0201 (14)0.0192 (14)
Cl100.0419 (18)0.0404 (15)0.0437 (16)0.0014 (13)0.0204 (14)0.0187 (14)
Cl110.082 (3)0.055 (2)0.054 (2)0.0082 (19)0.0399 (19)0.0254 (17)
Cl120.0359 (17)0.0363 (14)0.0346 (15)0.0022 (12)0.0098 (12)0.0098 (12)
O10.035 (5)0.026 (4)0.027 (4)0.001 (3)0.010 (3)0.008 (3)
O20.030 (4)0.031 (4)0.036 (4)0.002 (3)0.009 (3)0.016 (4)
N10.033 (6)0.041 (5)0.042 (6)0.004 (4)0.017 (5)0.024 (5)
N20.036 (6)0.050 (6)0.044 (6)0.007 (5)0.014 (5)0.026 (5)
N30.033 (6)0.038 (5)0.041 (6)0.002 (4)0.016 (5)0.014 (5)
C10.041 (8)0.060 (8)0.049 (8)0.016 (6)0.021 (6)0.034 (7)
C20.039 (8)0.075 (10)0.073 (10)0.002 (7)0.018 (7)0.049 (9)
C30.119 (16)0.062 (10)0.076 (11)0.012 (10)0.030 (11)0.046 (10)
C40.123 (16)0.041 (8)0.066 (10)0.009 (9)0.026 (10)0.038 (8)
C50.056 (9)0.046 (7)0.046 (7)0.017 (6)0.016 (6)0.031 (7)
C60.042 (8)0.039 (6)0.059 (8)0.014 (6)0.023 (6)0.031 (6)
C70.055 (9)0.039 (6)0.028 (6)0.009 (6)0.013 (6)0.015 (5)
C80.036 (7)0.028 (6)0.045 (7)0.003 (5)0.017 (6)0.013 (5)
C90.038 (7)0.027 (5)0.041 (7)0.007 (5)0.021 (6)0.008 (5)
C100.038 (7)0.027 (5)0.036 (6)0.010 (5)0.021 (5)0.013 (5)
C110.048 (9)0.076 (10)0.054 (9)0.033 (8)0.018 (7)0.029 (8)
C120.045 (9)0.051 (8)0.062 (9)0.002 (7)0.025 (7)0.014 (7)
C130.064 (10)0.048 (7)0.047 (7)0.011 (7)0.031 (7)0.023 (6)
C140.044 (8)0.030 (6)0.050 (8)0.000 (6)0.013 (6)0.007 (6)
C150.046 (9)0.047 (7)0.062 (9)0.014 (6)0.026 (7)0.029 (7)
C160.042 (8)0.053 (8)0.081 (11)0.012 (7)0.022 (8)0.042 (8)
C170.046 (9)0.046 (7)0.055 (8)0.000 (6)0.027 (7)0.015 (7)
C180.071 (11)0.060 (9)0.055 (9)0.004 (8)0.025 (8)0.031 (8)
C190.039 (8)0.053 (8)0.050 (8)0.001 (6)0.020 (6)0.027 (7)
C200.063 (7)0.016 (4)0.020 (4)0.001 (4)0.012 (4)0.012 (4)
C210.043 (8)0.048 (7)0.050 (8)0.004 (6)0.014 (6)0.019 (7)
C220.051 (8)0.034 (6)0.038 (7)0.008 (6)0.011 (6)0.013 (6)
C230.041 (8)0.054 (8)0.043 (7)0.009 (6)0.006 (6)0.030 (6)
C240.064 (10)0.049 (8)0.032 (7)0.026 (7)0.001 (7)0.003 (6)
C250.053 (9)0.051 (8)0.050 (8)0.004 (7)0.009 (7)0.028 (7)
C260.055 (9)0.053 (8)0.046 (8)0.011 (7)0.001 (7)0.023 (7)
C270.043 (9)0.058 (9)0.072 (10)0.011 (7)0.005 (7)0.035 (8)
C280.081 (12)0.083 (11)0.053 (9)0.005 (9)0.005 (8)0.046 (9)
C290.042 (8)0.048 (7)0.051 (8)0.008 (6)0.009 (6)0.027 (7)
C300.046 (9)0.075 (10)0.045 (8)0.019 (7)0.007 (7)0.035 (7)
C310.090 (13)0.053 (9)0.045 (8)0.029 (9)0.019 (9)0.012 (7)
C320.046 (8)0.050 (8)0.049 (8)0.008 (6)0.021 (7)0.018 (7)
C330.049 (8)0.032 (6)0.037 (7)0.010 (6)0.010 (6)0.007 (5)
C340.038 (8)0.036 (6)0.046 (7)0.003 (5)0.010 (6)0.013 (6)
C350.053 (9)0.028 (6)0.056 (8)0.005 (6)0.008 (7)0.013 (6)
C360.071 (11)0.040 (7)0.053 (8)0.007 (7)0.004 (7)0.029 (7)
C370.038 (8)0.055 (8)0.072 (10)0.001 (7)0.006 (7)0.023 (8)
C380.042 (8)0.058 (8)0.057 (9)0.001 (7)0.019 (7)0.019 (7)
C390.061 (10)0.044 (7)0.060 (9)0.011 (7)0.021 (7)0.021 (7)
C400.096 (10)0.078 (8)0.088 (9)0.002 (7)0.008 (7)0.051 (7)
C410.075 (9)0.083 (8)0.096 (9)0.006 (7)0.014 (7)0.043 (7)
C420.047 (9)0.084 (11)0.072 (10)0.005 (8)0.024 (8)0.042 (9)
Cl130.066 (3)0.111 (3)0.073 (3)0.000 (2)0.013 (2)0.039 (3)
C430.098 (10)0.108 (10)0.090 (9)0.019 (8)0.026 (7)0.061 (8)
Cl160.099 (6)0.068 (4)0.079 (5)0.039 (4)0.051 (4)0.056 (4)
Cl170.090 (5)0.060 (4)0.080 (5)0.015 (4)0.029 (4)0.049 (4)
C440.049 (11)0.071 (11)0.064 (11)0.037 (9)0.022 (8)0.010 (8)
C450.067 (12)0.041 (9)0.086 (11)0.002 (8)0.022 (8)0.051 (9)
Geometric parameters (Å, º) top
U1—O12.244 (7)N1—C11.348 (15)
U1—N12.553 (9)N2—C151.288 (16)
U1—C62.596 (12)N2—C191.372 (15)
U1—C72.671 (13)N2—H31.7954
U1—C82.795 (12)N2—N32.696 (14)
U1—C92.816 (11)N3—H30.9239
U1—C102.700 (10)N3—C331.354 (16)
U1—Cl12.798 (3)N3—C291.370 (15)
U1—Cl22.764 (3)C1—C21.329 (19)
U1—Cl32.758 (3)C2—C31.37 (2)
U1—Cl42.867 (3)C3—C41.36 (2)
U2—O12.184 (7)C4—C51.398 (18)
U2—O22.493 (8)C5—C61.486 (18)
U2—Cl12.833 (3)C6—C71.416 (18)
U2—Cl32.848 (3)C6—C101.436 (16)
U2—Cl52.571 (3)C7—C81.407 (17)
U2—Cl62.713 (3)C7—C111.465 (17)
U2—Cl102.734 (3)C8—C91.431 (16)
U2—Cl12i2.985 (3)C8—C121.490 (18)
U3—O12.159 (7)C9—C101.416 (16)
U3—O22.454 (7)C9—C131.492 (17)
U3—Cl22.847 (3)C10—C141.496 (16)
U3—Cl42.822 (3)C15—C161.41 (2)
U3—Cl72.712 (3)C16—C171.349 (19)
U3—Cl82.566 (3)C17—C181.37 (2)
U3—Cl92.711 (3)C18—C191.389 (19)
U3—Cl123.183 (3)C19—C201.552 (9)
U4—O22.303 (7)C20—C241.350 (17)
U4—O2i2.354 (8)C20—C211.359 (17)
U4—Cl6i2.793 (3)C21—C221.399 (18)
U4—Cl7i2.808 (3)C21—C251.531 (18)
U4—Cl92.786 (3)C22—C231.421 (17)
U4—Cl102.785 (3)C22—C261.524 (18)
U4—Cl112.650 (3)C23—C241.442 (19)
U4—Cl122.901 (3)C23—C271.521 (18)
U1—U23.7668 (6)C24—C281.52 (2)
U1—U33.7800 (6)C29—C301.339 (18)
U2—U33.8256 (6)C30—C311.36 (2)
U2—U4i3.9156 (7)C31—C321.35 (2)
U2—U44.0600 (6)C32—C331.386 (18)
U3—U43.9269 (6)C33—C341.455 (17)
U3—U4i4.0503 (6)C34—C351.448 (19)
U4—U4i3.7281 (9)C34—C381.459 (18)
Fe—C201.969 (11)C35—C361.459 (19)
Fe—C212.028 (14)C35—C391.505 (18)
Fe—C222.061 (12)C36—C401.43 (2)
Fe—C232.042 (12)C36—C371.46 (2)
Fe—C242.063 (15)C37—C381.43 (2)
Fe—C342.038 (12)C37—C411.48 (2)
Fe—C352.025 (12)C38—C421.53 (2)
Fe—C362.090 (13)Cl13—C431.75 (2)
Fe—C372.086 (15)Cl14—Cl151.473 (13)
Fe—C382.070 (15)Cl14—C431.751 (9)
Cl6—U4i2.793 (3)Cl15—C431.781 (9)
Cl7—U4i2.808 (3)Cl16—C441.762 (10)
Cl12—U2i2.985 (3)Cl16—C451.812 (10)
O2—U4i2.354 (8)Cl17—C441.809 (10)
N1—C51.337 (16)Cl17—C451.766 (10)
O1—U1—N1115.3 (3)Cl7i—U4—U4i98.56 (6)
O1—U1—C6167.4 (4)Cl12—U4—U4i64.62 (6)
N1—U1—C652.7 (4)O2—U4—U2i96.1 (2)
O1—U1—C7155.7 (3)O2i—U4—U2i37.34 (18)
N1—U1—C768.9 (4)Cl11—U4—U2i118.15 (9)
C6—U1—C731.2 (4)Cl10—U4—U2i157.09 (6)
O1—U1—C10151.6 (3)Cl9—U4—U2i116.90 (7)
N1—U1—C1076.8 (3)Cl6i—U4—U2i43.85 (7)
C6—U1—C1031.4 (4)Cl7i—U4—U2i88.06 (6)
C7—U1—C1051.4 (4)Cl12—U4—U2i49.23 (6)
O1—U1—Cl371.97 (19)U4i—U4—U2i64.113 (15)
N1—U1—Cl374.2 (2)O2—U4—U335.62 (17)
C6—U1—Cl3105.3 (3)O2i—U4—U395.55 (17)
C7—U1—Cl387.3 (2)Cl11—U4—U3117.48 (8)
C10—U1—Cl3136.1 (3)Cl10—U4—U387.08 (6)
O1—U1—Cl272.10 (19)Cl9—U4—U343.64 (6)
N1—U1—Cl2132.5 (2)Cl6i—U4—U3120.92 (7)
C6—U1—Cl2112.2 (3)Cl7i—U4—U3155.41 (6)
C7—U1—Cl2124.2 (2)Cl12—U4—U353.02 (6)
C10—U1—Cl281.0 (2)U4i—U4—U363.828 (13)
Cl3—U1—Cl2142.41 (8)U2i—U4—U398.141 (14)
O1—U1—C8142.8 (3)O2—U4—U3i93.20 (18)
N1—U1—C897.5 (3)O2i—U4—U3i33.36 (18)
C6—U1—C849.6 (4)Cl11—U4—U3i118.13 (8)
C7—U1—C829.7 (4)Cl10—U4—U3i101.34 (6)
C10—U1—C849.5 (3)Cl9—U4—U3i167.68 (7)
Cl3—U1—C8102.9 (3)Cl6i—U4—U3i77.59 (6)
Cl2—U1—C899.0 (3)Cl7i—U4—U3i41.87 (6)
O1—U1—Cl170.2 (2)Cl12—U4—U3i100.88 (6)
N1—U1—Cl1141.8 (2)U4i—U4—U3i60.476 (14)
C6—U1—Cl1121.3 (3)U2i—U4—U3i57.374 (11)
C7—U1—Cl191.9 (3)U3—U4—U3i124.303 (13)
C10—U1—Cl1117.3 (3)C20—Fe—C2139.7 (5)
Cl3—U1—Cl172.11 (10)C20—Fe—C35111.0 (5)
Cl2—U1—Cl185.68 (10)C21—Fe—C35131.5 (6)
C8—U1—Cl173.2 (2)C20—Fe—C2366.6 (5)
O1—U1—C9140.9 (3)C21—Fe—C2368.5 (5)
N1—U1—C9102.1 (3)C35—Fe—C23148.0 (5)
C6—U1—C949.8 (4)C20—Fe—C34120.5 (5)
C7—U1—C949.7 (3)C21—Fe—C34110.1 (5)
C10—U1—C929.7 (3)C35—Fe—C3441.8 (5)
Cl3—U1—C9132.4 (3)C23—Fe—C34167.9 (5)
Cl2—U1—C974.5 (3)C20—Fe—C2265.6 (5)
C8—U1—C929.6 (3)C21—Fe—C2240.0 (5)
Cl1—U1—C987.8 (2)C35—Fe—C22170.2 (5)
O1—U1—Cl467.9 (2)C23—Fe—C2240.5 (5)
N1—U1—Cl469.9 (2)C34—Fe—C22130.9 (5)
C6—U1—Cl4101.7 (3)C20—Fe—C2439.1 (5)
C7—U1—Cl4131.6 (3)C21—Fe—C2468.1 (6)
C10—U1—Cl495.3 (3)C35—Fe—C24116.0 (6)
Cl3—U1—Cl4104.76 (10)C23—Fe—C2441.1 (5)
Cl2—U1—Cl471.05 (9)C34—Fe—C24150.5 (5)
C8—U1—Cl4144.8 (2)C22—Fe—C2467.8 (5)
Cl1—U1—Cl4136.49 (9)C20—Fe—C38152.3 (5)
C9—U1—Cl4118.7 (3)C21—Fe—C38117.6 (6)
O1—U1—U231.23 (18)C35—Fe—C3870.3 (6)
N1—U1—U2116.0 (2)C23—Fe—C38127.5 (5)
C6—U1—U2152.2 (3)C34—Fe—C3841.6 (5)
C7—U1—U2124.6 (3)C22—Fe—C38108.1 (6)
C10—U1—U2165.4 (2)C24—Fe—C38166.6 (6)
Cl3—U1—U248.81 (6)C20—Fe—C36131.0 (6)
Cl2—U1—U293.79 (6)C21—Fe—C36169.7 (6)
C8—U1—U2118.8 (2)C35—Fe—C3641.5 (5)
Cl1—U1—U248.41 (6)C23—Fe—C36114.1 (5)
C9—U1—U2135.8 (2)C34—Fe—C3669.5 (5)
Cl4—U1—U295.85 (6)C22—Fe—C36147.8 (5)
O1—U2—O266.8 (3)C24—Fe—C36106.9 (6)
O1—U2—Cl5149.2 (2)C38—Fe—C3669.3 (6)
O2—U2—Cl5143.97 (18)C20—Fe—C37167.4 (5)
O1—U2—Cl685.4 (2)C21—Fe—C37149.1 (6)
O2—U2—Cl676.01 (19)C35—Fe—C3769.4 (6)
Cl5—U2—Cl6101.37 (12)C23—Fe—C37106.0 (6)
O1—U2—Cl10106.0 (2)C34—Fe—C3768.7 (5)
O2—U2—Cl1073.39 (19)C22—Fe—C37116.0 (6)
Cl5—U2—Cl1088.47 (11)C24—Fe—C37128.7 (6)
Cl6—U2—Cl10139.36 (9)C38—Fe—C3740.3 (6)
O1—U2—Cl170.2 (2)C36—Fe—C3741.0 (6)
O2—U2—Cl1116.59 (18)U1—Cl1—U283.96 (9)
Cl5—U2—Cl187.68 (11)U1—Cl2—U384.69 (7)
Cl6—U2—Cl1142.51 (9)U1—Cl3—U284.40 (8)
Cl10—U2—Cl176.38 (9)U1—Cl4—U383.28 (8)
O1—U2—Cl370.9 (2)U2—Cl6—U4i90.65 (9)
O2—U2—Cl3129.95 (18)U3—Cl7—U4i94.40 (9)
Cl5—U2—Cl381.76 (10)U3—Cl9—U491.18 (9)
Cl6—U2—Cl375.09 (10)U2—Cl10—U494.72 (9)
Cl10—U2—Cl3145.54 (10)U2i—Cl12—U483.38 (7)
Cl1—U2—Cl370.30 (10)U3—Cl12—U480.24 (7)
O1—U2—Cl12i130.7 (2)U2i—Cl12—U3147.69 (10)
O2—U2—Cl12i66.05 (17)U1—O1—U2116.6 (3)
Cl5—U2—Cl12i79.15 (9)U2—O1—U3123.5 (3)
Cl6—U2—Cl12i70.03 (9)U1—O1—U3118.3 (3)
Cl10—U2—Cl12i73.43 (9)U2—O2—U3101.3 (3)
Cl1—U2—Cl12i147.24 (9)U2—O2—U4115.6 (3)
Cl3—U2—Cl12i135.61 (8)U2—O2—U4i107.7 (3)
O1—U2—U132.2 (2)U3—O2—U4111.2 (3)
O2—U2—U198.69 (16)U3—O2—U4i114.8 (3)
Cl5—U2—U1117.16 (7)U4—O2—U4i106.4 (3)
Cl6—U2—U197.34 (7)C5—N1—C1117.2 (11)
Cl10—U2—U1113.08 (6)C5—N1—U1100.8 (8)
Cl1—U2—U147.63 (6)C1—N1—U1138.8 (9)
Cl3—U2—U146.79 (6)C15—N2—C19120.1 (11)
Cl12i—U2—U1161.75 (6)C15—N2—H3118.3
O1—U2—U328.1 (2)C19—N2—H3121.5
O2—U2—U338.97 (16)C15—N2—N3114.3 (9)
Cl5—U2—U3175.39 (9)C19—N2—N3125.5 (8)
Cl6—U2—U382.66 (7)H3—N2—N35.4
Cl10—U2—U389.87 (6)H3—N3—C33118.6
Cl1—U2—U387.75 (6)H3—N3—C29120.0
Cl3—U2—U397.26 (6)C33—N3—C29121.4 (11)
Cl12i—U2—U3104.48 (6)H3—N3—N210.6
U1—U2—U359.713 (11)C33—N3—N2129.0 (8)
O1—U2—U4i84.8 (2)C29—N3—N2109.5 (8)
O2—U2—U4i34.93 (17)C2—C1—N1124.2 (14)
Cl5—U2—U4i121.37 (8)C1—C2—C3118.7 (15)
Cl6—U2—U4i45.50 (7)C4—C3—C2119.8 (14)
Cl10—U2—U4i95.82 (7)C3—C4—C5118.4 (15)
Cl1—U2—U4i150.05 (7)N1—C5—C4121.4 (13)
Cl3—U2—U4i117.49 (8)N1—C5—C6108.0 (11)
Cl12i—U2—U4i47.40 (6)C4—C5—C6130.6 (13)
U1—U2—U4i114.356 (15)C7—C6—C10109.4 (11)
U3—U2—U4i63.083 (12)C7—C6—C5124.0 (12)
O1—U2—U486.10 (19)C10—C6—C5123.2 (11)
O2—U2—U430.77 (17)C7—C6—U177.3 (7)
Cl5—U2—U4121.14 (8)C10—C6—U178.3 (6)
Cl6—U2—U4101.17 (7)C5—C6—U194.7 (8)
Cl10—U2—U443.12 (7)C8—C7—C6107.0 (10)
Cl1—U2—U4104.92 (7)C8—C7—C11125.7 (13)
Cl3—U2—U4156.86 (6)C6—C7—C11127.1 (13)
Cl12i—U2—U459.37 (6)C8—C7—U180.0 (7)
U1—U2—U4112.765 (13)C6—C7—U171.5 (7)
U3—U2—U459.646 (11)C11—C7—U1117.6 (8)
U4i—U2—U455.701 (13)C7—C8—C9109.0 (11)
O1—U3—O267.9 (2)C7—C8—C12125.3 (12)
O1—U3—Cl8151.03 (19)C9—C8—C12125.1 (12)
O2—U3—Cl8140.92 (19)C7—C8—U170.2 (7)
O1—U3—Cl999.3 (2)C9—C8—U176.0 (7)
O2—U3—Cl975.28 (19)C12—C8—U1126.7 (8)
Cl8—U3—Cl993.40 (10)C10—C9—C8108.0 (10)
O1—U3—Cl798.6 (2)C10—C9—C13126.0 (11)
O2—U3—Cl775.39 (19)C8—C9—C13125.9 (12)
Cl8—U3—Cl789.57 (10)C10—C9—U170.6 (6)
Cl9—U3—Cl7136.45 (9)C8—C9—U174.4 (7)
O1—U3—Cl469.77 (19)C13—C9—U1124.0 (8)
O2—U3—Cl4126.44 (18)C9—C10—C6106.6 (11)
Cl8—U3—Cl484.52 (9)C9—C10—C14125.4 (11)
Cl9—U3—Cl4143.43 (9)C6—C10—C14127.9 (11)
Cl7—U3—Cl480.10 (9)C9—C10—U179.7 (6)
O1—U3—Cl271.5 (2)C6—C10—U170.3 (6)
O2—U3—Cl2122.4 (2)C14—C10—U1117.2 (8)
Cl8—U3—Cl287.83 (9)N2—C15—C16125.1 (14)
Cl9—U3—Cl272.91 (9)C17—C16—C15115.9 (14)
Cl7—U3—Cl2150.63 (9)C16—C17—C18119.2 (14)
Cl4—U3—Cl270.53 (9)C17—C18—C19123.2 (14)
O1—U3—Cl12131.92 (19)N2—C19—C18116.3 (11)
O2—U3—Cl1264.07 (18)N2—C19—C20120.1 (10)
Cl8—U3—Cl1277.04 (8)C18—C19—C20123.6 (12)
Cl9—U3—Cl1266.71 (9)C24—C20—C21115.4 (11)
Cl7—U3—Cl1271.75 (9)C24—C20—C19121.9 (10)
Cl4—U3—Cl12146.18 (9)C21—C20—C19122.1 (10)
Cl2—U3—Cl12135.57 (8)C24—C20—Fe74.2 (8)
O1—U3—U131.51 (18)C21—C20—Fe72.5 (7)
O2—U3—U199.10 (18)C19—C20—Fe130.3 (8)
Cl8—U3—U1119.97 (7)C20—C21—C22104.8 (11)
Cl9—U3—U1103.98 (7)C20—C21—C25131.1 (12)
Cl7—U3—U1111.87 (7)C22—C21—C25123.7 (12)
Cl4—U3—U148.87 (6)C20—C21—Fe67.8 (7)
Cl2—U3—U146.72 (5)C22—C21—Fe71.3 (8)
Cl12—U3—U1161.94 (5)C25—C21—Fe130.7 (10)
O1—U3—U228.42 (18)C21—C22—C23108.7 (12)
O2—U3—U239.73 (18)C21—C22—C26126.5 (12)
Cl8—U3—U2179.04 (8)C23—C22—C26124.8 (12)
Cl9—U3—U286.14 (7)C21—C22—Fe68.7 (7)
Cl7—U3—U291.34 (6)C23—C22—Fe69.0 (7)
Cl4—U3—U295.34 (6)C26—C22—Fe127.9 (10)
Cl2—U3—U291.22 (6)C22—C23—C24106.9 (11)
Cl12—U3—U2103.54 (5)C22—C23—C27126.1 (12)
U1—U3—U259.371 (11)C24—C23—C27126.8 (12)
O1—U3—U489.88 (18)C22—C23—Fe70.5 (7)
O2—U3—U433.13 (17)C24—C23—Fe70.2 (7)
Cl8—U3—U4117.06 (7)C27—C23—Fe128.0 (11)
Cl9—U3—U445.18 (6)C20—C24—C23104.1 (12)
Cl7—U3—U495.73 (6)C20—C24—C28130.8 (13)
Cl4—U3—U4158.14 (6)C23—C24—C28124.9 (13)
Cl2—U3—U4111.44 (6)C20—C24—Fe66.7 (7)
Cl12—U3—U446.73 (5)C23—C24—Fe68.7 (8)
U1—U3—U4115.537 (15)C28—C24—Fe124.6 (11)
U2—U3—U463.145 (12)C30—C29—N3119.3 (13)
O1—U3—U4i81.69 (18)C29—C30—C31121.0 (14)
O2—U3—U4i31.84 (19)C32—C31—C30119.8 (14)
Cl8—U3—U4i121.39 (7)C31—C32—C33120.6 (14)
Cl9—U3—U4i100.82 (6)N3—C33—C32118.0 (12)
Cl7—U3—U4i43.73 (6)N3—C33—C34118.3 (12)
Cl4—U3—U4i111.40 (6)C32—C33—C34123.7 (13)
Cl2—U3—U4i150.69 (6)C35—C34—C33128.2 (12)
Cl12—U3—U4i58.45 (5)C35—C34—C38108.5 (12)
U1—U3—U4i111.039 (13)C33—C34—C38123.3 (12)
U2—U3—U4i59.544 (11)C35—C34—Fe68.7 (7)
U4—U3—U4i55.699 (13)C33—C34—Fe129.4 (9)
O2—U4—O2i73.6 (3)C38—C34—Fe70.4 (7)
O2—U4—Cl11142.1 (2)C34—C35—C36108.2 (12)
O2i—U4—Cl11144.02 (19)C34—C35—C39128.6 (12)
O2—U4—Cl1075.3 (2)C36—C35—C39122.7 (13)
O2i—U4—Cl10120.17 (19)C34—C35—Fe69.6 (7)
Cl11—U4—Cl1077.88 (11)C36—C35—Fe71.6 (7)
O2—U4—Cl976.13 (19)C39—C35—Fe130.9 (11)
O2i—U4—Cl9135.11 (19)C40—C36—C35126.3 (16)
Cl11—U4—Cl974.10 (10)C40—C36—C37127.2 (15)
Cl10—U4—Cl982.11 (9)C35—C36—C37106.5 (12)
O2—U4—Cl6i137.2 (2)C40—C36—Fe129.3 (12)
O2i—U4—Cl6i76.66 (19)C35—C36—Fe66.9 (7)
Cl11—U4—Cl6i74.30 (11)C37—C36—Fe69.3 (8)
Cl10—U4—Cl6i147.34 (9)C38—C37—C36109.6 (12)
Cl9—U4—Cl6i105.96 (9)C38—C37—C41125.8 (16)
O2—U4—Cl7i120.29 (18)C36—C37—C41124.4 (15)
O2i—U4—Cl7i75.06 (19)C38—C37—Fe69.2 (8)
Cl11—U4—Cl7i79.20 (10)C36—C37—Fe69.6 (9)
Cl10—U4—Cl7i78.67 (9)C41—C37—Fe131.3 (12)
Cl9—U4—Cl7i149.78 (9)C37—C38—C34107.2 (13)
Cl6i—U4—Cl7i79.62 (9)C37—C38—C42124.7 (13)
O2—U4—Cl1270.8 (2)C34—C38—C42128.0 (13)
O2i—U4—Cl1269.10 (19)C37—C38—Fe70.4 (9)
Cl11—U4—Cl12118.75 (11)C34—C38—Fe68.0 (8)
Cl10—U4—Cl12140.09 (8)C42—C38—Fe129.0 (11)
Cl9—U4—Cl1270.03 (9)Cl15—Cl14—C4366.4 (5)
Cl6i—U4—Cl1270.24 (9)Cl14—Cl15—C4364.3 (5)
Cl7i—U4—Cl12137.26 (9)Cl13—C43—Cl14104.0 (10)
O2—U4—U4i37.28 (19)Cl13—C43—Cl15121.9 (12)
O2i—U4—U4i36.35 (17)Cl14—C43—Cl1549.3 (5)
Cl11—U4—U4i176.59 (9)C44—Cl16—C4575.2 (6)
Cl10—U4—U4i99.22 (6)C44—Cl17—C4575.1 (6)
Cl9—U4—U4i107.40 (6)Cl16—C44—Cl17103.5 (7)
Cl6i—U4—U4i107.93 (7)Cl16—C45—Cl17103.2 (7)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C14H17N)(C14H16N)]2[U8Cl24O4(C14H16N)2]·4CH2Cl2
Mr4462.13
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)14.3894 (8), 15.9758 (7), 16.0646 (9)
α, β, γ (°)61.128 (3), 70.648 (2), 83.316 (3)
V3)3047.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)11.57
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(MULABS in PLATON; Spek, 2000)
Tmin, Tmax0.082, 0.176
No. of measured, independent and
observed [I > 2σ(I)] reflections
20837, 10693, 7972
Rint0.057
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.097, 1.03
No. of reflections10693
No. of parameters680
No. of restraints35
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0201P)2 + 11.4271P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.19, 1.16

Computer programs: KappaCCD Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999), SHELXTL and PARST97 (Nardelli, 1995).

Selected geometric parameters (Å, º) top
U1—O12.244 (7)U4—O22.303 (7)
U1—N12.553 (9)U4—O2i2.354 (8)
U1—C62.596 (12)U4—Cl6i2.793 (3)
U1—C72.671 (13)U4—Cl7i2.808 (3)
U1—C82.795 (12)U4—Cl92.786 (3)
U1—C92.816 (11)U4—Cl102.785 (3)
U1—C102.700 (10)U4—Cl112.650 (3)
U1—Cl12.798 (3)U4—Cl122.901 (3)
U1—Cl22.764 (3)U1—U23.7668 (6)
U1—Cl32.758 (3)U1—U33.7800 (6)
U1—Cl42.867 (3)U2—U33.8256 (6)
U2—O12.184 (7)U2—U4i3.9156 (7)
U2—O22.493 (8)U2—U44.0600 (6)
U2—Cl12.833 (3)U3—U43.9269 (6)
U2—Cl32.848 (3)U3—U4i4.0503 (6)
U2—Cl52.571 (3)U4—U4i3.7281 (9)
U2—Cl62.713 (3)Fe—C201.969 (11)
U2—Cl102.734 (3)Fe—C212.028 (14)
U2—Cl12i2.985 (3)Fe—C222.061 (12)
U3—O12.159 (7)Fe—C232.042 (12)
U3—O22.454 (7)Fe—C242.063 (15)
U3—Cl22.847 (3)Fe—C342.038 (12)
U3—Cl42.822 (3)Fe—C352.025 (12)
U3—Cl72.712 (3)Fe—C362.090 (13)
U3—Cl82.566 (3)Fe—C372.086 (15)
U3—Cl92.711 (3)Fe—C382.070 (15)
U3—Cl123.183 (3)
U1—Cl1—U283.96 (9)U2i—Cl12—U3147.69 (10)
U1—Cl2—U384.69 (7)U1—O1—U2116.6 (3)
U1—Cl3—U284.40 (8)U2—O1—U3123.5 (3)
U1—Cl4—U383.28 (8)U1—O1—U3118.3 (3)
U2—Cl6—U4i90.65 (9)U2—O2—U3101.3 (3)
U3—Cl7—U4i94.40 (9)U2—O2—U4115.6 (3)
U3—Cl9—U491.18 (9)U2—O2—U4i107.7 (3)
U2—Cl10—U494.72 (9)U3—O2—U4111.2 (3)
U2i—Cl12—U483.38 (7)U3—O2—U4i114.8 (3)
U3—Cl12—U480.24 (7)U4—O2—U4i106.4 (3)
Symmetry code: (i) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds