Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The metallation reaction between di­butyl­magnesium and 2,6-diiso­propyl-N-(tri­methyl­silyl)­aniline gives the unusual monomeric three-coordinate complex (diethyl ether-[kappa]O)­bis­[2,6-diiso­propyl-N-(tri­methyl­silyl)­anilido-[kappa]N]­magnesium(II), [Mg(C15H26NSi)2(C4H10O)] or [Mg{(Me3Si)(2,6-iPr2C6H3)N}2(Et2O)]. This low-coordinate species has a distorted trigonal-planar coordination environment, with an additional short Mg-Cipso contact of 2.799 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101014408/tr1003sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101014408/tr1003Isup2.hkl
Contains datablock I

CCDC reference: 175074

Comment top

Magnesium bis(amides) are typically isolated as tetrahedrally coordinated compounds of the type [MgL2S2], where L is an amide ligand and S a donating solvent, or as dimeric species of the type [LSxMg(µL)2MgLSx] (x = 0 or 1), where Mg is in either a trigonal-planar or a tetrahedral environment [for typical examples, see Sebestl et al. (1998) and Clegg et al. (1997)]. Lower coordination numbers are favoured by sterically demanding amide groups. Indeed, it has been shown that where L is [(Me3Si)2N], HMDS *Is this bis(trimethylsilyl), which would, in principle, give hexamethyldisilyl? Should it have amido, as in the original Sebestl reference?* or [(PhCH2)2N], monomers of the type MgL2 are present in solution (Henderson et al., 1997; Clegg et al., 1997). In an attempt to isolate, in the solid state, such coordinatively unsaturated species, we turned to the sterically hindered amide [(Me3Si)(2,6-iPr2C6H3)N], A. This ligand is known to stabilize low coordination number complexes in d-block chemistry (Chao et al., 1989; Kennepohl et al., 1992), including ZnA2 (Schumann et al., 2000). This last example is of particular relevance, as many Mg and Zn amides are isostructural (Forbes et al., 2000). To our knowledge, the use of this ligand in s-block chemistry has been limited to lithium chemistry, where it has allowed the structural characterization of the first non-solvated [Li(µ-L)2Li] dimer (Kennepohl et al., 1991) and of the unusual three-coordinate monomeric species [LiA(Et2O)(C5H5N)] (Blake et al., 1996). Reaction of [(Me3Si)(2,6-iPr2C6H3)NH] with dibutylmagnesium formed a colourless compound which was identified as the title compound, (I), by single-crystal diffraction. These results are presented here. \sch

The crystal structure of (I) consists of discrete monomers separated by at least the sum of van der Waal's radii. Unusually, the Mg atom is three-coordinate, bonding to two amide units and a diethyl ether molecule in a planar manner [Mg1 lies 0.042 (1) Å from the N1/N2/O1 plane]. Although this coordination geometry is common in dimeric (Clegg et al., 1997) and polymeric (Andrews et al., 2000) magnesium amide solid-state structures, a search of the Cambridge Structural Database (version 5.21; Allen & Kennard, 1993) revealed only [Mg(HMDS)2S], (II), (S = 2-picoline or 2,6-lutidine; Sebestl et al., 1998) and the chelate [MgtBu{(N,N-(2,6-iPr2C6H3)NC(Me)CHC(Me)N(2,6-iPr2C6H3)}] (Gibson et al., 2000), with similar three-coordinate monomeric structures. An illustration of the coordinatively unsaturated nature of these species is that, unlike (I), (II) is not isolated in the presence of solvent. Indeed, dissolution of (II) in any suitable solvent gives only [Mg(HMDS)2S2] as an isolatable product. Some relief from coordinative unsaturation is perhaps gained from the short Mg1···C4 interaction [2.799 (2) Å, compared with 2.399–2.443 Å for Mg—C distances in Mg—Cp; Lehmkuhl et al., 1986]. This interaction is accompanied by the compression of the bond angle at N1 compared with that in the second A moiety [Mg1—N1—C4 109.37 (10) and Mg1—N2—C19 116.07 (10)°, and Mg1···C19 2.906 (2) Å]. A similar short contact was observed in [LiA(Et2O)(C5H5N)] (Blake et al., 1996).

The environment of atom N1 is less planar than that of N2 [N-atom deviations from planarity are 0.119 (2) and 0.037 (2) Å, respectively]. The Mg—N bond lengths are similar to each other (Table 1), and to those found in (II) and in the non-bridging bonds of [(HMDS)Mg(µ-HMDS)2Mg(HMDS)] (Westerhausen & Schwarz, 1992) *The first and third bis(trimethylsilyl) ligands in this ref are amino rather than amido. How do you wish to indicate this?*. They are, however, approximately 0.05–0.06 Å shorter than the typical distances observed in the tetrahedral species [Mg(HMDS)2S2] (Sebestl et al., 1998; Forbes et al., 2001 *Is this azido, as used in their 2000 work? Either way, please specify how you wish to indicate the exact nature of the ligand*). The N1—Mg1—N2 angle of 140.69 (6)° shows considerable widening to accommodate the two A ligands. The planes of the two aryl rings and of the ether ligand lie approximately perpendicular to the N1/N2/O1 plane [85.92 (5), 88.83 (5) and 83.35 (7)° for the angles to the planes defined by C4—C9, C19—C24 and O1/C32/C33, respectively] so as to minimize steric interactions. Similarly, the two aryl rings are mutually anti with respect to the coordination plane and the improper torsion angle C4—N1—N2—C19 is -150.1 (3)°.

Please adopt a nomenclature which distinguishes adequately between HMDS-amido, HMDS-amino and HMDS-azido [or whatever was used in the Forbes et al. (2001) work]. HMDS alone may not be used to indicate a variety of similar ligands - specific details are required for each point of difference, for accuracy and rigour.

Related literature top

For related literature, see: Allen & Kennard (1993); Andrews et al. (2000); Blake et al. (1996); Chao et al. (1989); Clegg et al. (1997); Forbes et al. (2000, 2001); Gibson et al. (2000); Henderson et al. (1997); Kennepohl et al. (1991, 1992); Lehmkuhl et al. (1986); Schumann et al. (2000); Sebestl et al. (1998); Westerhausen & Schwarz (1992).

Experimental top

All manipulations were carried out under an inert atmosphere of argon using standard Schlenk tube techniques. 2,6-Diisopropyl-N-(trimethylsilyl)aniline was synthesized as an ether-containing yellow liquid by the method of Chao et al. (1989). This amine (6 mmol) was then added to a 0.875 M solution of dibutylmagnesium (3 mmol) in heptane at 273 K. After heating the solution to reflux for 2 h, the volatile portions were removed under vacuum to leave (I) as a colourless solid (0.6 mmol, 20% yield), together with an unidentified orange oil. Crystals of (I) suitable for study by single-crystal diffraction were obtained from hexane solution.

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.95–1.00 Å. Query.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992); program(s) used to solve structure: SIR (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular view of (I) showing the atom-numbering scheme and with 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
(diethyl ether-O)bis[2,6-diisopropyl-N-(trimethylsilyl)aniline-N]magnesium(II) top
Crystal data top
[Mg(C4H10O)(C15H26NSi)2]F(000) = 1312
Mr = 595.35Dx = 1.044 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 12.359 (2) ÅCell parameters from 25 reflections
b = 18.443 (3) Åθ = 15.7–18.5°
c = 16.984 (2) ŵ = 0.14 mm1
β = 101.900 (14)°T = 123 K
V = 3788.1 (10) Å3Plate, colourless
Z = 40.55 × 0.30 × 0.15 mm
Data collection top
Rigaku AFC-7S
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.5°
Graphite monochromatorh = 016
ω/2θ scansk = 023
9082 measured reflectionsl = 2221
8689 independent reflections3 standard reflections every 150 reflections
5523 reflections with I > 2σ(I) intensity decay: 0.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.9303P]
where P = (Fo2 + 2Fc2)/3
8689 reflections(Δ/σ)max = 0.001
377 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Mg(C4H10O)(C15H26NSi)2]V = 3788.1 (10) Å3
Mr = 595.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.359 (2) ŵ = 0.14 mm1
b = 18.443 (3) ÅT = 123 K
c = 16.984 (2) Å0.55 × 0.30 × 0.15 mm
β = 101.900 (14)°
Data collection top
Rigaku AFC-7S
diffractometer
Rint = 0.023
9082 measured reflections3 standard reflections every 150 reflections
8689 independent reflections intensity decay: 0.9%
5523 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.00Δρmax = 0.44 e Å3
8689 reflectionsΔρmin = 0.20 e Å3
377 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.65378 (4)0.32763 (3)0.14686 (3)0.02303 (11)
Si20.16565 (4)0.32305 (3)0.21298 (3)0.03127 (13)
Mg10.40542 (5)0.26980 (3)0.17360 (3)0.02219 (13)
O10.34555 (11)0.16729 (6)0.17737 (9)0.0376 (3)
N10.54609 (10)0.26683 (7)0.13559 (8)0.0201 (3)
N20.29920 (11)0.34006 (7)0.20277 (8)0.0228 (3)
C10.76462 (15)0.31349 (13)0.23954 (11)0.0400 (5)
H1A0.73100.31190.28700.060*
H1B0.81770.35360.24510.060*
H1C0.80290.26770.23490.060*
C20.72382 (14)0.32362 (10)0.05869 (11)0.0313 (4)
H2A0.74660.27360.05110.047*
H2B0.78910.35510.06890.047*
H2C0.67240.34000.01010.047*
C30.60505 (15)0.42211 (10)0.15767 (13)0.0351 (4)
H3A0.55520.43690.10760.053*
H3B0.66880.45490.16900.053*
H3C0.56560.42410.20210.053*
C40.54010 (13)0.21146 (9)0.07572 (9)0.0206 (3)
C50.59877 (14)0.14499 (9)0.09145 (10)0.0262 (4)
C60.58773 (16)0.09231 (10)0.03145 (11)0.0320 (4)
H60.62710.04800.04250.038*
C70.52142 (17)0.10273 (10)0.04331 (11)0.0344 (4)
H70.51420.06580.08310.041*
C80.46534 (16)0.16769 (10)0.05989 (11)0.0314 (4)
H80.42010.17520.11170.038*
C90.47367 (14)0.22250 (9)0.00232 (10)0.0234 (3)
C100.67640 (15)0.12981 (10)0.17153 (11)0.0332 (4)
H100.66640.16930.20980.040*
C110.79721 (17)0.13112 (14)0.16257 (14)0.0484 (6)
H11A0.80930.09260.12560.073*
H11B0.84580.12330.21520.073*
H11C0.81380.17820.14120.073*
C120.6529 (2)0.05715 (12)0.20888 (14)0.0507 (6)
H12A0.57430.05430.21080.076*
H12B0.69760.05350.26360.076*
H12C0.67190.01720.17610.076*
C130.41333 (14)0.29364 (9)0.02586 (10)0.0250 (3)
H130.43720.32860.01940.030*
C140.44259 (16)0.32680 (10)0.10154 (11)0.0320 (4)
H14A0.52320.32890.09520.048*
H14B0.41190.37590.10950.048*
H14C0.41140.29680.14830.048*
C150.28797 (15)0.28499 (11)0.03823 (12)0.0358 (4)
H15A0.26360.24540.07630.054*
H15B0.25190.33020.05980.054*
H15C0.26810.27380.01340.054*
C160.1577 (2)0.24671 (12)0.28396 (17)0.0549 (7)
H16A0.18960.20290.26520.082*
H16B0.08020.23770.28610.082*
H16C0.19910.25950.33780.082*
C170.07103 (17)0.29789 (14)0.11545 (16)0.0537 (6)
H17A0.06390.33910.07830.081*
H17B0.00200.28520.12550.081*
H17C0.10170.25620.09170.081*
C180.10410 (17)0.40344 (11)0.25463 (15)0.0445 (5)
H18A0.14500.41310.30950.067*
H18B0.02650.39350.25550.067*
H18C0.10860.44590.22070.067*
C190.34066 (13)0.41149 (9)0.22280 (10)0.0228 (3)
C200.40035 (14)0.42735 (10)0.30152 (11)0.0284 (4)
C210.44440 (15)0.49658 (11)0.31918 (13)0.0359 (4)
H210.48600.50650.37160.043*
C220.42891 (15)0.55088 (10)0.26230 (14)0.0383 (5)
H220.45970.59760.27530.046*
C230.36835 (15)0.53671 (9)0.18637 (13)0.0337 (4)
H230.35660.57460.14760.040*
C240.32364 (13)0.46818 (9)0.16472 (11)0.0270 (4)
C250.42075 (17)0.36972 (11)0.36707 (11)0.0360 (4)
H250.37450.32680.34580.043*
C260.54130 (19)0.34483 (14)0.38423 (15)0.0570 (6)
H26A0.56030.32700.33440.085*
H26B0.55150.30580.42420.085*
H26C0.58940.38570.40500.085*
C270.3860 (3)0.39311 (15)0.44438 (14)0.0678 (8)
H27A0.42980.43520.46720.102*
H27B0.39850.35310.48320.102*
H27C0.30740.40600.43240.102*
C280.25881 (16)0.45672 (11)0.07964 (12)0.0360 (4)
H280.23850.40420.07320.043*
C290.3241 (2)0.47660 (12)0.01556 (13)0.0477 (5)
H29A0.34410.52810.02050.071*
H29B0.27860.46740.03800.071*
H29C0.39140.44710.02310.071*
C300.1517 (2)0.50133 (17)0.06245 (15)0.0643 (7)
H30A0.10360.48570.09850.096*
H30B0.11360.49400.00640.096*
H30C0.16940.55280.07150.096*
C310.4557 (2)0.16224 (12)0.31084 (15)0.0533 (6)
H31A0.51950.17830.28950.080*
H31B0.48090.13070.35750.080*
H31C0.41770.20450.32720.080*
C320.3778 (2)0.12119 (11)0.24721 (15)0.0482 (6)
H32A0.41430.07690.23250.058*
H32B0.31160.10650.26760.058*
C330.26193 (17)0.13398 (11)0.11493 (14)0.0425 (5)
H33A0.23370.17080.07330.051*
H33B0.19920.11820.13890.051*
C340.3038 (2)0.07003 (12)0.07545 (16)0.0522 (6)
H34A0.36990.08410.05570.078*
H34B0.24650.05350.03030.078*
H34C0.32250.03070.11470.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0174 (2)0.0290 (2)0.0220 (2)0.00193 (18)0.00244 (16)0.00078 (19)
Si20.0276 (3)0.0240 (2)0.0480 (3)0.00492 (19)0.0211 (2)0.0078 (2)
Mg10.0240 (3)0.0185 (3)0.0266 (3)0.0001 (2)0.0111 (2)0.0006 (2)
O10.0449 (8)0.0196 (6)0.0553 (9)0.0020 (6)0.0268 (7)0.0023 (6)
N10.0194 (6)0.0222 (7)0.0187 (6)0.0010 (5)0.0038 (5)0.0001 (5)
N20.0238 (7)0.0180 (7)0.0297 (7)0.0022 (5)0.0123 (6)0.0024 (5)
C10.0270 (9)0.0579 (13)0.0307 (10)0.0054 (9)0.0038 (8)0.0021 (9)
C20.0253 (9)0.0364 (10)0.0343 (9)0.0033 (8)0.0111 (7)0.0014 (8)
C30.0286 (9)0.0313 (10)0.0470 (11)0.0068 (8)0.0114 (8)0.0085 (8)
C40.0197 (7)0.0222 (8)0.0213 (8)0.0000 (6)0.0076 (6)0.0020 (6)
C50.0261 (8)0.0258 (8)0.0283 (9)0.0048 (7)0.0090 (7)0.0034 (7)
C60.0379 (10)0.0245 (9)0.0361 (10)0.0100 (7)0.0134 (8)0.0016 (7)
C70.0462 (11)0.0275 (9)0.0314 (10)0.0016 (8)0.0123 (8)0.0075 (7)
C80.0406 (10)0.0283 (9)0.0235 (8)0.0005 (8)0.0023 (7)0.0027 (7)
C90.0266 (8)0.0230 (8)0.0206 (8)0.0001 (6)0.0052 (6)0.0014 (6)
C100.0331 (9)0.0354 (10)0.0303 (9)0.0145 (8)0.0047 (7)0.0051 (8)
C110.0330 (11)0.0637 (15)0.0459 (12)0.0202 (10)0.0018 (9)0.0019 (11)
C120.0659 (15)0.0440 (12)0.0427 (12)0.0208 (11)0.0122 (11)0.0166 (10)
C130.0292 (9)0.0241 (8)0.0196 (8)0.0014 (7)0.0001 (6)0.0004 (6)
C140.0359 (10)0.0306 (9)0.0295 (9)0.0011 (8)0.0066 (7)0.0074 (8)
C150.0316 (10)0.0395 (11)0.0381 (10)0.0058 (8)0.0110 (8)0.0037 (8)
C160.0551 (14)0.0354 (11)0.0879 (19)0.0060 (10)0.0465 (14)0.0065 (12)
C170.0257 (10)0.0609 (15)0.0756 (17)0.0082 (10)0.0131 (10)0.0282 (13)
C180.0394 (11)0.0349 (11)0.0691 (15)0.0018 (9)0.0341 (11)0.0117 (10)
C190.0196 (8)0.0192 (8)0.0319 (9)0.0011 (6)0.0105 (7)0.0025 (7)
C200.0245 (8)0.0289 (9)0.0330 (9)0.0039 (7)0.0089 (7)0.0052 (7)
C210.0258 (9)0.0363 (10)0.0450 (11)0.0010 (8)0.0056 (8)0.0168 (9)
C220.0270 (9)0.0230 (9)0.0674 (14)0.0050 (7)0.0152 (9)0.0131 (9)
C230.0298 (9)0.0212 (8)0.0550 (12)0.0009 (7)0.0197 (9)0.0039 (8)
C240.0220 (8)0.0242 (8)0.0375 (10)0.0015 (6)0.0122 (7)0.0015 (7)
C250.0397 (10)0.0400 (11)0.0277 (9)0.0088 (9)0.0059 (8)0.0021 (8)
C260.0443 (13)0.0660 (16)0.0563 (15)0.0173 (11)0.0003 (11)0.0095 (12)
C270.102 (2)0.0679 (18)0.0389 (13)0.0253 (16)0.0280 (14)0.0030 (12)
C280.0393 (11)0.0349 (10)0.0340 (10)0.0009 (8)0.0081 (8)0.0068 (8)
C290.0628 (14)0.0402 (12)0.0441 (12)0.0127 (10)0.0207 (11)0.0109 (9)
C300.0478 (14)0.094 (2)0.0480 (14)0.0208 (14)0.0016 (11)0.0118 (14)
C310.0691 (16)0.0385 (12)0.0570 (15)0.0028 (11)0.0239 (12)0.0104 (11)
C320.0551 (13)0.0269 (10)0.0693 (16)0.0039 (9)0.0281 (12)0.0132 (10)
C330.0427 (11)0.0275 (10)0.0629 (14)0.0056 (9)0.0238 (10)0.0014 (9)
C340.0606 (15)0.0333 (12)0.0675 (16)0.0038 (10)0.0241 (12)0.0085 (11)
Geometric parameters (Å, º) top
Si1—N11.7206 (14)C15—H15B0.9800
Si1—C31.8650 (19)C15—H15C0.9800
Si1—C21.8794 (18)C16—H16A0.9800
Si1—C11.8796 (19)C16—H16B0.9800
Si2—N21.7236 (14)C16—H16C0.9800
Si2—C161.869 (2)C17—H17A0.9800
Si2—C181.8705 (19)C17—H17B0.9800
Si2—C171.878 (2)C17—H17C0.9800
Mg1—N11.9761 (14)C18—H18A0.9800
Mg1—N21.9789 (14)C18—H18B0.9800
Mg1—O12.0361 (13)C18—H18C0.9800
Mg1—C42.7988 (16)C19—C201.418 (2)
O1—C321.447 (3)C19—C241.423 (2)
O1—C331.455 (3)C20—C211.396 (3)
N1—C41.432 (2)C20—C251.522 (3)
N2—C191.429 (2)C21—C221.377 (3)
C1—H1A0.9800C21—H210.9500
C1—H1B0.9800C22—C231.376 (3)
C1—H1C0.9800C22—H220.9500
C2—H2A0.9800C23—C241.398 (2)
C2—H2B0.9800C23—H230.9500
C2—H2C0.9800C24—C281.516 (3)
C3—H3A0.9800C25—C271.526 (3)
C3—H3B0.9800C25—C261.528 (3)
C3—H3C0.9800C25—H251.0000
C4—C51.421 (2)C26—H26A0.9800
C4—C91.423 (2)C26—H26B0.9800
C5—C61.394 (2)C26—H26C0.9800
C5—C101.520 (2)C27—H27A0.9800
C6—C71.375 (3)C27—H27B0.9800
C6—H60.9500C27—H27C0.9800
C7—C81.384 (3)C28—C291.527 (3)
C7—H70.9500C28—C301.535 (3)
C8—C91.395 (2)C28—H281.0000
C8—H80.9500C29—H29A0.9800
C9—C131.521 (2)C29—H29B0.9800
C10—C111.532 (3)C29—H29C0.9800
C10—C121.536 (3)C30—H30A0.9800
C10—H101.0000C30—H30B0.9800
C11—H11A0.9800C30—H30C0.9800
C11—H11B0.9800C31—C321.497 (3)
C11—H11C0.9800C31—H31A0.9800
C12—H12A0.9800C31—H31B0.9800
C12—H12B0.9800C31—H31C0.9800
C12—H12C0.9800C32—H32A0.9900
C13—C151.528 (2)C32—H32B0.9900
C13—C141.533 (2)C33—C341.501 (3)
C13—H131.0000C33—H33A0.9900
C14—H14A0.9800C33—H33B0.9900
C14—H14B0.9800C34—H34A0.9800
C14—H14C0.9800C34—H34B0.9800
C15—H15A0.9800C34—H34C0.9800
N1—Si1—C3111.21 (7)Si2—C16—H16A109.5
N1—Si1—C2111.01 (7)Si2—C16—H16B109.5
C3—Si1—C2109.04 (9)H16A—C16—H16B109.5
N1—Si1—C1114.60 (8)Si2—C16—H16C109.5
C3—Si1—C1103.98 (10)H16A—C16—H16C109.5
C2—Si1—C1106.62 (9)H16B—C16—H16C109.5
N2—Si2—C16112.37 (9)Si2—C17—H17A109.5
N2—Si2—C18111.49 (8)Si2—C17—H17B109.5
C16—Si2—C18105.88 (10)H17A—C17—H17B109.5
N2—Si2—C17113.03 (9)Si2—C17—H17C109.5
C16—Si2—C17106.06 (12)H17A—C17—H17C109.5
C18—Si2—C17107.56 (11)H17B—C17—H17C109.5
N1—Mg1—N2140.69 (6)Si2—C18—H18A109.5
N1—Mg1—O1109.54 (6)Si2—C18—H18B109.5
N2—Mg1—O1109.63 (6)H18A—C18—H18B109.5
C32—O1—C33112.54 (15)Si2—C18—H18C109.5
C32—O1—Mg1122.07 (13)H18A—C18—H18C109.5
C33—O1—Mg1125.25 (12)H18B—C18—H18C109.5
C4—N1—Si1117.98 (10)C20—C19—C24118.42 (15)
C4—N1—Mg1109.37 (10)C20—C19—N2120.40 (15)
Si1—N1—Mg1131.15 (8)C24—C19—N2121.18 (15)
C19—N2—Si2116.59 (10)C21—C20—C19119.69 (17)
C19—N2—Mg1116.07 (10)C21—C20—C25118.87 (17)
Si2—N2—Mg1127.20 (8)C19—C20—C25121.41 (16)
Si1—C1—H1A109.5C22—C21—C20121.50 (18)
Si1—C1—H1B109.5C22—C21—H21119.2
H1A—C1—H1B109.5C20—C21—H21119.2
Si1—C1—H1C109.5C23—C22—C21119.31 (17)
H1A—C1—H1C109.5C23—C22—H22120.3
H1B—C1—H1C109.5C21—C22—H22120.3
Si1—C2—H2A109.5C22—C23—C24121.82 (18)
Si1—C2—H2B109.5C22—C23—H23119.1
H2A—C2—H2B109.5C24—C23—H23119.1
Si1—C2—H2C109.5C23—C24—C19119.21 (17)
H2A—C2—H2C109.5C23—C24—C28118.64 (16)
H2B—C2—H2C109.5C19—C24—C28122.15 (15)
Si1—C3—H3A109.5C20—C25—C27113.49 (17)
Si1—C3—H3B109.5C20—C25—C26110.92 (17)
H3A—C3—H3B109.5C27—C25—C26110.9 (2)
Si1—C3—H3C109.5C20—C25—H25107.0
H3A—C3—H3C109.5C27—C25—H25107.0
H3B—C3—H3C109.5C26—C25—H25107.0
C5—C4—C9118.21 (15)C25—C26—H26A109.5
C5—C4—N1122.13 (14)C25—C26—H26B109.5
C9—C4—N1119.66 (14)H26A—C26—H26B109.5
C6—C5—C4119.64 (16)C25—C26—H26C109.5
C6—C5—C10118.32 (15)H26A—C26—H26C109.5
C4—C5—C10122.03 (15)H26B—C26—H26C109.5
C7—C6—C5121.83 (17)C25—C27—H27A109.5
C7—C6—H6119.1C25—C27—H27B109.5
C5—C6—H6119.1H27A—C27—H27B109.5
C6—C7—C8119.14 (17)C25—C27—H27C109.5
C6—C7—H7120.4H27A—C27—H27C109.5
C8—C7—H7120.4H27B—C27—H27C109.5
C7—C8—C9121.55 (17)C24—C28—C29113.13 (17)
C7—C8—H8119.2C24—C28—C30111.86 (17)
C9—C8—H8119.2C29—C28—C30107.31 (17)
C8—C9—C4119.62 (15)C24—C28—H28108.1
C8—C9—C13118.64 (15)C29—C28—H28108.1
C4—C9—C13121.72 (14)C30—C28—H28108.1
C5—C10—C11110.88 (16)C28—C29—H29A109.5
C5—C10—C12113.09 (17)C28—C29—H29B109.5
C11—C10—C12109.01 (17)H29A—C29—H29B109.5
C5—C10—H10107.9C28—C29—H29C109.5
C11—C10—H10107.9H29A—C29—H29C109.5
C12—C10—H10107.9H29B—C29—H29C109.5
C10—C11—H11A109.5C28—C30—H30A109.5
C10—C11—H11B109.5C28—C30—H30B109.5
H11A—C11—H11B109.5H30A—C30—H30B109.5
C10—C11—H11C109.5C28—C30—H30C109.5
H11A—C11—H11C109.5H30A—C30—H30C109.5
H11B—C11—H11C109.5H30B—C30—H30C109.5
C10—C12—H12A109.5C32—C31—H31A109.5
C10—C12—H12B109.5C32—C31—H31B109.5
H12A—C12—H12B109.5H31A—C31—H31B109.5
C10—C12—H12C109.5C32—C31—H31C109.5
H12A—C12—H12C109.5H31A—C31—H31C109.5
H12B—C12—H12C109.5H31B—C31—H31C109.5
C9—C13—C15111.98 (14)O1—C32—C31108.79 (17)
C9—C13—C14112.13 (14)O1—C32—H32A109.9
C15—C13—C14109.52 (14)C31—C32—H32A109.9
C9—C13—H13107.7O1—C32—H32B109.9
C15—C13—H13107.7C31—C32—H32B109.9
C14—C13—H13107.7H32A—C32—H32B108.3
C13—C14—H14A109.5O1—C33—C34113.49 (18)
C13—C14—H14B109.5O1—C33—H33A108.9
H14A—C14—H14B109.5C34—C33—H33A108.9
C13—C14—H14C109.5O1—C33—H33B108.9
H14A—C14—H14C109.5C34—C33—H33B108.9
H14B—C14—H14C109.5H33A—C33—H33B107.7
C13—C15—H15A109.5C33—C34—H34A109.5
C13—C15—H15B109.5C33—C34—H34B109.5
H15A—C15—H15B109.5H34A—C34—H34B109.5
C13—C15—H15C109.5C33—C34—H34C109.5
H15A—C15—H15C109.5H34A—C34—H34C109.5
H15B—C15—H15C109.5H34B—C34—H34C109.5
N1—Mg1—O1—C3287.27 (14)C10—C5—C6—C7178.26 (17)
N2—Mg1—O1—C3296.17 (14)C5—C6—C7—C81.0 (3)
C4—Mg1—O1—C32103.92 (14)C6—C7—C8—C90.6 (3)
N1—Mg1—O1—C3397.29 (14)C7—C8—C9—C40.8 (3)
N2—Mg1—O1—C3379.28 (14)C7—C8—C9—C13177.58 (17)
C4—Mg1—O1—C3380.63 (14)C5—C4—C9—C81.9 (2)
C3—Si1—N1—C4136.36 (12)N1—C4—C9—C8178.15 (15)
C2—Si1—N1—C414.77 (14)Mg1—C4—C9—C8137.64 (14)
C1—Si1—N1—C4106.08 (13)C5—C4—C9—C13176.46 (15)
C3—Si1—N1—Mg128.00 (13)N1—C4—C9—C133.5 (2)
C2—Si1—N1—Mg1149.59 (10)Mg1—C4—C9—C1344.03 (16)
C1—Si1—N1—Mg189.56 (12)C6—C5—C10—C1170.1 (2)
N2—Mg1—N1—C4138.58 (11)C4—C5—C10—C11108.30 (19)
O1—Mg1—N1—C436.30 (12)C6—C5—C10—C1252.7 (2)
N2—Mg1—N1—Si126.80 (16)C4—C5—C10—C12128.91 (18)
O1—Mg1—N1—Si1158.31 (9)C8—C9—C13—C1570.1 (2)
C4—Mg1—N1—Si1165.38 (17)C4—C9—C13—C15111.60 (18)
C16—Si2—N2—C19121.69 (14)C8—C9—C13—C1453.5 (2)
C18—Si2—N2—C193.00 (16)C4—C9—C13—C14124.82 (16)
C17—Si2—N2—C19118.30 (14)Si2—N2—C19—C2092.90 (16)
C16—Si2—N2—Mg153.70 (14)Mg1—N2—C19—C2083.02 (16)
C18—Si2—N2—Mg1172.39 (11)Si2—N2—C19—C2487.29 (17)
C17—Si2—N2—Mg166.31 (14)Mg1—N2—C19—C2496.79 (15)
N1—Mg1—N2—C1920.50 (17)C24—C19—C20—C212.6 (2)
O1—Mg1—N2—C19164.61 (11)N2—C19—C20—C21177.25 (15)
C4—Mg1—N2—C1969.80 (19)C24—C19—C20—C25179.33 (15)
N1—Mg1—N2—Si2164.09 (8)N2—C19—C20—C250.9 (2)
O1—Mg1—N2—Si210.80 (12)C19—C20—C21—C221.7 (3)
C4—Mg1—N2—Si2114.79 (13)C25—C20—C21—C22179.86 (16)
Si1—N1—C4—C585.29 (17)C20—C21—C22—C230.2 (3)
Mg1—N1—C4—C5107.13 (15)C21—C22—C23—C241.2 (3)
Si1—N1—C4—C994.69 (15)C22—C23—C24—C190.3 (3)
Mg1—N1—C4—C972.89 (15)C22—C23—C24—C28179.44 (16)
Si1—N1—C4—Mg1167.57 (15)C20—C19—C24—C231.6 (2)
N1—Mg1—C4—C5101.75 (17)N2—C19—C24—C23178.22 (14)
N2—Mg1—C4—C5174.05 (14)C20—C19—C24—C28178.68 (15)
O1—Mg1—C4—C544.23 (14)N2—C19—C24—C281.5 (2)
N1—Mg1—C4—C9122.07 (15)C21—C20—C25—C2754.2 (3)
N2—Mg1—C4—C937.87 (19)C19—C20—C25—C27127.6 (2)
O1—Mg1—C4—C991.95 (11)C21—C20—C25—C2671.4 (2)
N2—Mg1—C4—N184.20 (17)C19—C20—C25—C26106.7 (2)
O1—Mg1—C4—N1145.98 (11)C23—C24—C28—C2955.6 (2)
C9—C4—C5—C61.6 (2)C19—C24—C28—C29124.15 (18)
N1—C4—C5—C6178.46 (15)C23—C24—C28—C3065.8 (2)
Mg1—C4—C5—C6128.09 (15)C19—C24—C28—C30114.5 (2)
C9—C4—C5—C10176.80 (15)C33—O1—C32—C31174.87 (17)
N1—C4—C5—C103.2 (2)Mg1—O1—C32—C311.1 (2)
Mg1—C4—C5—C1053.6 (2)C32—O1—C33—C3468.5 (2)
C4—C5—C6—C70.2 (3)Mg1—O1—C33—C34115.67 (17)

Experimental details

Crystal data
Chemical formula[Mg(C4H10O)(C15H26NSi)2]
Mr595.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)12.359 (2), 18.443 (3), 16.984 (2)
β (°) 101.900 (14)
V3)3788.1 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.55 × 0.30 × 0.15
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9082, 8689, 5523
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.116, 1.00
No. of reflections8689
No. of parameters377
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.20

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1992), SIR (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Mg1—N11.9761 (14)Mg1—O12.0361 (13)
Mg1—N21.9789 (14)
N1—Mg1—N2140.69 (6)Si1—N1—Mg1131.15 (8)
N1—Mg1—O1109.54 (6)C19—N2—Si2116.59 (10)
N2—Mg1—O1109.63 (6)C19—N2—Mg1116.07 (10)
C4—N1—Si1117.98 (10)Si2—N2—Mg1127.20 (8)
C4—N1—Mg1109.37 (10)
N1—Mg1—O1—C3287.27 (14)O1—Mg1—N1—C436.30 (12)
N2—Mg1—O1—C3296.17 (14)N1—Mg1—N2—C1920.50 (17)
N2—Mg1—N1—C4138.58 (11)O1—Mg1—N2—C19164.61 (11)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds