Download citation
Download citation
link to html
The modified stress scanning method [Meixner, Fuss, Klaus & Genzel (2015). J. Appl. Cryst. 48, 1451-1461 ] is experimentally implemented for the analysis of near-surface residual stress depth distributions that are strongly inhomogeneous. The suggested procedure is validated by analyzing the very steep in-plane residual stress depth profile of a shot-peened Al2O3 ceramic specimen and comparing the results with those that were obtained by well established X-ray diffraction-based gradient methods. In addition, the evaluation formalism is adapted to the depth-dependent determination of the residual stresses inside of multilayer thin-film systems. The applicability for this purpose is demonstrated by investigating the residual stress depth distribution within the individual sublayers of a multilayered coating that consists of alternating Al2O3 and TiCN thin films. In this connection, the specific diffraction geometry that was used for the implementation of the stress scanning method at the energy-dispersive materials science beamline EDDI@BESSYII is presented, and experimental issues as well as limitations of the method are discussed.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds