Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
This paper is a continuation of a previous one, Special directions in momentum space. I. Cubic symmetries [Kontrym-Sznajd & Samsel-Czekala (2011). J. Appl. Cryst. 44, 1246-1254], where new sets of special directions (SDs), having the full symmetry of the Brillouin zone, were proposed for cubic lattices. In the present paper, such directions are derived for structures with unique six-, four- and threefold axes, i.e. hexagonal, tetragonal and trigonal lattices, for both two- and three-dimensional space. The SDs presented here allow for construction, in the whole space, of anisotropic quantities from the knowledge of such quantities along a limited number of SDs. The task at hand is to determine as many anisotropic components as the number of available sampling directions. Also discussed is a way of dealing with data when the number of anisotropic components is restricted by a non-optimal set of SDs.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds