Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The non-planar title compound, C10H9NO3, prepared from a condensation reaction of benzoyl chloride and oxazolidin-2-one, has longer than usual C-N bond lengths compared with typical acyl­amine groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805027984/tk6290sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805027984/tk6290Isup2.hkl
Contains datablock I

CCDC reference: 287740

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.034
  • wR factor = 0.075
  • Data-to-parameter ratio = 16.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for N1 - C1 .. 7.42 su
Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - C1 .. 6.66 su PLAT230_ALERT_2_C Hirshfeld Test Diff for N1 - C4 .. 6.15 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C4 - C5 .. 5.64 su
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Oxazolidinone derivatives have a high potential for biological activity, e.g. they have been widely used as pesticides and fungicides (Edwin & Bing, 1963). As a continuation of our work on the structure–activity relationship of thiazolidinone derivatives, the structure of a colourless crystalline compound, (I), which was the product of the condensation reaction between benzoyl chloride and 2-oxazolidinone, was determined.

The molecular structure of (I) (Fig. 1 and Table 1) establishes the molecular connectivity. The molecule is non-planar, as seen in the C1/N1/C4/C5 and N1/C4/C5/C6 torsion angles of −30.23 (15) and −50.48 (13)°, respectively. The most notable feature of (I) is that the average (OC)—N bond length of 1.4211 (16) Å is longer than the C—N single-bond length of the typical acylamine group.

Experimental top

2-Oxazolidinone (0.44 g, 5 mmol), prepared according to the procedure of Homeyer (1946), and triethylamine (0.72 g, 7 mmol) were dissolved in dichloromethane (20 ml) with stirring. Benzoyl chloride (0.85 g, 6 mmol) was added dropwise to the mixture in an ice bath. The mixture was stirred at 273 K for 10 h, washed with water three times and then dried in vacuo to give a solid (yield 90.1%, 0.86 g), which was then recrystallized from ethanol to give colourless blocks (m.p. 447–448 K).

Refinement top

H atoms were included in the riding-model approximation, with C—H = 0.97 and 0.98 Å for methylene and aromatic H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) of the parent atom. Please check changes to text.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku & Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 [reference is for SIR97; which was used?] (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Watkins et al., 1996); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids.
3-Benzoyl-1,3-oxazolidin-2-one top
Crystal data top
C10H9NO3F(000) = 400
Mr = 191.19Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 6957 reflections
a = 13.305 (7) Åθ = 3.2–27.5°
b = 5.676 (4) ŵ = 0.11 mm1
c = 12.455 (6) ÅT = 296 K
β = 107.784 (16)°Block, colorless
V = 895.7 (9) Å30.24 × 0.23 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1403 reflections with F2 > 2σ(F2)
Detector resolution: 10.0 pixels mm-1Rint = 0.026
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1617
Tmin = 0.952, Tmax = 0.984k = 77
8404 measured reflectionsl = 1616
2051 independent reflections
Refinement top
Refinement on F2 w = 1/[0.0002Fo2 + σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max < 0.001
wR(F2) = 0.075Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.14 e Å3
2051 reflectionsExtinction correction: Larson (1970) Crystallographic Computing eq. 22
126 parametersExtinction coefficient: 195 (15)
H-atom parameters constrained
Crystal data top
C10H9NO3V = 895.7 (9) Å3
Mr = 191.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.305 (7) ŵ = 0.11 mm1
b = 5.676 (4) ÅT = 296 K
c = 12.455 (6) Å0.24 × 0.23 × 0.15 mm
β = 107.784 (16)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2051 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1403 reflections with F2 > 2σ(F2)
Tmin = 0.952, Tmax = 0.984Rint = 0.026
8404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034126 parameters
wR(F2) = 0.075H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2051 reflectionsΔρmin = 0.14 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38119 (6)0.09210 (18)0.33440 (6)0.0678 (2)
O20.44947 (6)0.06480 (16)0.19229 (6)0.0603 (2)
O30.23169 (8)0.66383 (18)0.15404 (8)0.0768 (3)
N10.32096 (6)0.32447 (17)0.17355 (6)0.0435 (2)
C10.38231 (8)0.1530 (2)0.24286 (9)0.0490 (3)
C20.43233 (10)0.1727 (2)0.08286 (10)0.0613 (3)
C30.36198 (9)0.3813 (2)0.08050 (9)0.0525 (3)
C40.25117 (9)0.4747 (2)0.20166 (9)0.0473 (3)
C50.19673 (8)0.3949 (2)0.28289 (8)0.0410 (2)
C60.14438 (8)0.1810 (2)0.27013 (9)0.0461 (3)
C70.08432 (9)0.1242 (2)0.33910 (10)0.0539 (3)
C80.07932 (9)0.2760 (2)0.42380 (10)0.0585 (3)
C90.13266 (9)0.4864 (2)0.43830 (10)0.0584 (3)
C100.19014 (9)0.5492 (2)0.36696 (9)0.0494 (3)
H210.49880.22190.07320.075*
H220.39760.06230.02370.075*
H310.30570.39290.00960.062*
H320.40210.52690.09430.062*
H60.15070.07070.21200.055*
H70.04470.02400.32780.064*
H80.03790.23400.47400.072*
H90.12950.59290.49910.071*
H100.22720.70060.37610.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0672 (5)0.0845 (7)0.0541 (5)0.0314 (5)0.0217 (4)0.0229 (4)
O20.0539 (4)0.0687 (6)0.0620 (5)0.0177 (4)0.0230 (4)0.0003 (4)
O30.0990 (7)0.0569 (6)0.0830 (6)0.0277 (5)0.0404 (5)0.0252 (5)
N10.0429 (4)0.0481 (5)0.0390 (4)0.0066 (4)0.0117 (3)0.0024 (4)
C10.0432 (5)0.0534 (7)0.0491 (6)0.0092 (5)0.0122 (4)0.0002 (5)
C20.0546 (6)0.0806 (9)0.0515 (6)0.0013 (6)0.0206 (5)0.0123 (6)
C30.0482 (6)0.0677 (9)0.0419 (5)0.0041 (5)0.0143 (4)0.0008 (5)
C40.0488 (5)0.0442 (7)0.0453 (5)0.0076 (5)0.0089 (4)0.0016 (5)
C50.0389 (5)0.0401 (6)0.0407 (5)0.0111 (4)0.0073 (4)0.0004 (4)
C60.0460 (5)0.0436 (7)0.0461 (5)0.0069 (5)0.0099 (4)0.0068 (5)
C70.0448 (5)0.0502 (8)0.0642 (7)0.0029 (5)0.0130 (5)0.0009 (6)
C80.0524 (6)0.0680 (9)0.0586 (7)0.0135 (6)0.0221 (5)0.0056 (6)
C90.0617 (7)0.0641 (9)0.0500 (6)0.0166 (6)0.0178 (5)0.0105 (6)
C100.0498 (5)0.0419 (7)0.0519 (6)0.0077 (5)0.0086 (5)0.0073 (5)
Geometric parameters (Å, º) top
O1—C11.1958 (15)C7—C81.3793 (18)
O2—C11.3377 (15)C8—C91.3726 (19)
O2—C21.4472 (15)C9—C101.3844 (19)
O3—C41.2156 (15)C2—H210.970
N1—C11.3888 (14)C2—H220.970
N1—C31.4600 (16)C3—H310.970
N1—C41.3822 (16)C3—H320.970
C2—C31.5044 (19)C6—H60.980
C4—C51.4835 (17)C7—H70.980
C5—C61.3845 (16)C8—H80.980
C5—C101.3882 (16)C9—H90.980
C6—C71.3783 (18)C10—H100.980
O1···O23.5838 (13)H21···H103.506
O1···O33.4904 (12)H22···O13.023
O1···C23.3652 (16)H22···C23.240
O1···C23.2459 (15)H22···C53.361
O1···C33.4669 (14)H22···C93.368
O1···C33.1563 (15)H22···C102.922
O2···O13.5838 (13)H22···H212.641
O2···O23.2785 (12)H22···H223.044
O2···O23.2785 (12)H22···H323.159
O2···O33.6000 (13)H22···H93.595
O2···N13.2962 (11)H22···H102.863
O2···C13.1657 (14)H31···O12.668
O2···C23.5469 (15)H31···C53.200
O2···C33.3241 (12)H31···C63.125
O3···O13.4904 (12)H31···C73.062
O3···O23.6000 (13)H31···C83.028
O3···C13.4050 (15)H31···C93.078
O3···C93.2764 (15)H31···C103.186
N1···O23.2962 (11)H31···H73.597
C1···O23.1657 (14)H31···H83.527
C1···O33.4050 (15)H31···H93.596
C2···O13.3652 (16)H31···H102.849
C2···O13.2459 (15)H32···O12.771
C2···O23.5469 (15)H32···O13.234
C3···O13.4669 (14)H32···O23.277
C3···O13.1563 (15)H32···O22.794
C3···O23.3241 (12)H32···C13.050
C7···C103.5295 (17)H32···H213.130
C9···O33.2764 (15)H32···H223.159
C10···C73.5295 (17)H32···H103.365
O1···H212.677H6···O32.737
O1···H213.093H6···C83.444
O1···H223.023H6···C83.530
O1···H312.668H6···C93.359
O1···H322.771H6···C103.485
O1···H323.234H6···H73.392
O1···H103.171H6···H83.430
O2···H213.401H6···H83.091
O2···H323.277H6···H92.741
O2···H322.794H6···H102.891
O3···H62.737H7···C53.118
O3···H83.475H7···C62.957
O3···H92.424H7···C73.013
O3···H103.528H7···C83.267
C1···H213.395H7···C93.163
C1···H323.050H7···C93.432
C2···H213.274H7···C103.046
C2···H223.240H7···C103.345
C3···H103.541H7···H313.597
C4···H83.547H7···H63.392
C4···H93.538H7···H73.438
C5···H223.361H7···H73.438
C5···H313.200H7···H83.222
C5···H73.118H7···H93.014
C6···H313.125H7···H102.795
C6···H72.957H8···O33.475
C6···H83.557H8···C43.547
C6···H103.083H8···C63.557
C7···H313.062H8···C93.222
C7···H73.013H8···H313.527
C7···H93.563H8···H63.430
C7···H103.012H8···H63.091
C8···H313.028H8···H73.222
C8···H63.444H8···H82.982
C8···H63.530H8···H83.311
C8···H73.267H8···H92.549
C8···H93.290H9···O32.424
C9···H223.368H9···C43.538
C9···H313.078H9···C73.563
C9···H63.359H9···C83.290
C9···H73.163H9···H223.595
C9···H73.432H9···H313.596
C9···H83.222H9···H62.741
C10···H222.922H9···H73.014
C10···H313.186H9···H82.549
C10···H63.485H10···O13.171
C10···H73.046H10···O33.528
C10···H73.345H10···C33.541
H21···O12.677H10···C63.083
H21···O13.093H10···C73.012
H21···O23.401H10···H213.506
H21···C13.395H10···H222.863
H21···C23.274H10···H312.849
H21···H213.115H10···H323.365
H21···H222.641H10···H62.891
H21···H323.130H10···H72.795
C1—O2—C2110.45 (9)O2—C2—H21110.6
C1—N1—C3110.92 (9)O2—C2—H22110.1
C1—N1—C4126.00 (9)C3—C2—H21110.9
C3—N1—C4120.51 (9)C3—C2—H22110.1
O1—C1—O2123.06 (10)H21—C2—H22109.5
O1—C1—N1128.25 (11)N1—C3—H31111.5
O2—C1—N1108.66 (9)N1—C3—H32111.5
O2—C2—C3105.64 (10)C2—C3—H31111.9
N1—C3—C2101.05 (9)C2—C3—H32111.2
O3—C4—N1118.74 (12)H31—C3—H32109.5
O3—C4—C5121.77 (11)C5—C6—H6119.5
N1—C4—C5119.36 (10)C7—C6—H6120.5
C4—C5—C6121.51 (10)C6—C7—H7120.0
C4—C5—C10118.58 (10)C8—C7—H7119.8
C6—C5—C10119.63 (11)C7—C8—H8120.2
C5—C6—C7120.04 (11)C9—C8—H8119.8
C6—C7—C8120.21 (11)C8—C9—H9119.7
C7—C8—C9120.02 (12)C10—C9—H9120.0
C8—C9—C10120.29 (12)C5—C10—H10119.7
C5—C10—C9119.75 (11)C9—C10—H10120.5
C1—O2—C2—C312.57 (12)O2—C2—C3—N117.14 (10)
C2—O2—C1—O1179.78 (11)O3—C4—C5—C6125.27 (12)
C2—O2—C1—N11.83 (12)O3—C4—C5—C1048.55 (13)
C1—N1—C3—C217.03 (11)N1—C4—C5—C650.48 (13)
C3—N1—C1—O1167.52 (11)N1—C4—C5—C10135.70 (10)
C3—N1—C1—O210.30 (12)C4—C5—C6—C7172.40 (9)
C1—N1—C4—O3153.89 (10)C4—C5—C10—C9174.91 (9)
C1—N1—C4—C530.23 (15)C6—C5—C10—C90.97 (15)
C4—N1—C1—O15.80 (19)C10—C5—C6—C71.36 (14)
C4—N1—C1—O2172.02 (9)C5—C6—C7—C82.46 (15)
C3—N1—C4—O36.23 (14)C6—C7—C8—C91.22 (16)
C3—N1—C4—C5169.65 (8)C7—C8—C9—C101.13 (16)
C4—N1—C3—C2179.90 (8)C8—C9—C10—C52.22 (16)

Experimental details

Crystal data
Chemical formulaC10H9NO3
Mr191.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.305 (7), 5.676 (4), 12.455 (6)
β (°) 107.784 (16)
V3)895.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.23 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.952, 0.984
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
8404, 2051, 1403
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.075, 1.04
No. of reflections2051
No. of parameters126
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.14

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku & Rigaku/MSC, 2004), SHELXS97 [reference is for SIR97; which was used?] (Altomare et al., 1999), CRYSTALS (Watkins et al., 1996), WinGX (Farrugia, 1999), CrystalStructure.

Selected geometric parameters (Å, º) top
O1—C11.1958 (15)C4—C51.4835 (17)
O2—C11.3377 (15)C5—C61.3845 (16)
O2—C21.4472 (15)C5—C101.3882 (16)
O3—C41.2156 (15)C6—C71.3783 (18)
N1—C11.3888 (14)C7—C81.3793 (18)
N1—C31.4600 (16)C8—C91.3726 (19)
N1—C41.3822 (16)C9—C101.3844 (19)
C2—C31.5044 (19)
C1—O2—C2110.45 (9)O2—C1—N1108.66 (9)
C1—N1—C3110.92 (9)O2—C2—C3105.64 (10)
C1—N1—C4126.00 (9)N1—C3—C2101.05 (9)
C3—N1—C4120.51 (9)O3—C4—N1118.74 (12)
O1—C1—O2123.06 (10)O3—C4—C5121.77 (11)
O1—C1—N1128.25 (11)N1—C4—C5119.36 (10)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds