Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [AuBr(dppmO)]·CH3CN [dppmO = Ph2P(CH2)P(O)Ph2], the dppmO ligand coordinates through the P donor to give a linear two-coordinate P—Au—Br gold(I) complex. The Au—Br and Au—P bond lengths are 2.241 (2) and 2.4069 (19) Å, respectively. The P—Au—Br and P=O groups lie almost parallel to each other [O—P...P—Au = 8.3 (2)°], while the intramolecular Au...O distance is 3.274 (4) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017732/tk6130sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017732/tk6130Isup2.hkl
Contains datablock I

CCDC reference: 222814

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.030
  • wR factor = 0.079
  • Data-to-parameter ratio = 20.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.65 Ratio PLAT244_ALERT_4_C Low Solvent U(eq) as Compared to Neighbors .... C3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Mixed bidentate phosphine–phosphine oxide ligands of general formula R2P–Y–P(O)R2, where Y is an organic spacer group, represent an important class of bidentate chelating ligands incorporating both soft (P) and hard (O) donor atoms (Grushin, 2001). Transition metal complexes of these ligands show a variety of structural forms (e.g. Coyle et al., 1998; Saravanabharathi et al., 2002; Faller & Parr, 2000) with evidence for both bidentate and monodentate coordination of the ligand to the metal atom.

We report here the structure of the acetonitrile solvate of the 1:1 complex of Ph2P(CH2)P(O)Ph2 with gold(I) bromide, [(dppmO)AuBr]·CH3CN, (I). The structure comprises discrete molecules of [(dppmO)AuBr] and acetonitrile separated by normal van der Waals distances (Fig. 1). The dppmO ligand coordinates to the gold through the P atom to yield a linear two-coordinate P—Au—Br geometry, with Au—P = 2.241 (2) Å, Au—Br = 2.4069 (19) Å and P—Au—Br = 178.53 (4)°. These parameters are similar to those recorded for other two-coordinate R3PAuBr complexes (Bott et al., 2000). The PO bond length of 1.490 (3) Å is also in accord with values recorded for other phosphine oxides (See et al., 1998).

The P—Au—Br and PO groups lie almost parallel with the torsion angle O—P···P—Au 8.3 (2)°. For comparison, in the structure of the benzene solvate of the dioxide, dppmO2 (Antipin et al., 1980), the PO bonds are almost antiparallel, whereas in the structures of adducts of dppmO2 with sodium halides (Hewertson et al., 1970; Ding et al., 2000) coordination of the O atoms to the sodium cation results in parallel PO bonds and an Na···O distance of 2.457 (1) Å. An intermediate situation is observed for the structure of the 2:1 gold chloride complex with dppm, [(AuCl)2(dppm)] (Schmidbaur et al., 1977), where the Au—P···P—Au torsion angle is 67 (1)°, with an Au···Au distance of 3.351 (2) Å, the latter suggestive of a significant aurophilic interaction. In the present complex, the intramolecular Au···O distance of 3.274 (4) Å is slightly longer than the Au···O distances for the [(tmpp)AuX] complexes [X = Cl, Br, I; tmpp = tris(2,4,6-trimethoxyphenyl)phosphine)] (Baker et al., 1995), which are in the range 2.92 (2)–3.15 (1) Å. This result, together with the absence of any significant distortion from linearity of the P–Au–Br bond, indicates the presence of only weak, if any, bonding interactions between the Au and O atoms and that the conformational structure of the complex is best ascribed as an outcome of crystal-packing considerations.

Experimental top

[NBu4][AuBr2] (50 mg, 0.072 mmol) and diphenylphosphinomethane mono-oxide (dppmO, 33.4 mg, 0.083 mmol) were dissolved in acetonitrile (10 ml) to give a clear solution. Slow evaporation of the solvent yielded well formed colorless crystals of (I); m.p. 506–507 K. The crystals slowly lost solvent over a period of weeks. Analysis found: C 46.0, H 3.5 N 1.7%; calculated for C27H25AuBrNOP2: C 45.15, H 3.51, N 1.95%.νmax (KBr)/cm−1: 1179 (PO str). δH (400 MHz, CDCl3, p.p.m.): 3.53 [2H, dd, CH2, 2JP(Au)CH = 12 Hz, 2JP(O)CH = 12 Hz], 7.36–7.47 (8H, m, m-C6H5), 7.42–7.55 (4H, m, p-C6H5), 7.66–7.75 (8H, m, o-C6H5). δC (100 MHz, CDCl3, p.p.m.): 31.4 [dd, CH2, 1JCP(O) = 59 Hz, 1JCP(Au) = 26 Hz], 129.4 [d, m-C6H5(PAu), 3JCP(Au) = 12 Hz], 129.4 [d, m-C6H5(PO), 3JCP(Au) = 12 Hz], 129.7 [dd, i-C6H5(PAu), 1JCP(Au) = 61 Hz, 3JCP(O) = 4 Hz], 131.2 [d, o-C6H5(PAu), 2JCP(Au) = 10 Hz], 131.9 [dd, i-C6H5(PO), 1JCP(O) = 105 Hz, 3JCP(Au) = 3 Hz], 132.3 [d, p-C6H5(PAu), 4JCP(Au) = 3 Hz], 132.9 [d, p-C6H5(PO), 4JCP(O) = 3 Hz], 133.7 [d, o-C6H5(PO), 2JCP(Au) = 15 Hz], δP (162 MHz, CDCl3, p.p.m.): 25.0 [1P, s, P(O)]; 20.0 [1P, s,P(Au)].

Refinement top

H atoms were constrained in the riding model approximation, fixed to their parent C atoms at a C—H distance of 0.95 Å, and Uiso(H) values were set to 1.2Ueq of the parent atom.

Computing details top

Data collection: MSC/AFC7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC7 Diffractometer Control Software for Windows; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-2001); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows and PLATON (Spek, 1980-2001).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
Bromo[(diphenylphosphino-κP)(diphenylphosphinoyl)methane]gold(I) acetonitrile solvate top
Crystal data top
[AuBr(C25H22OP2)]·CH3CNF(000) = 1384
Mr = 718.29Dx = 1.811 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.657 (3) Åθ = 12.5–17.4°
b = 22.436 (17) ŵ = 7.24 mm1
c = 11.209 (4) ÅT = 295 K
β = 115.98 (2)°Prismatic, colorless
V = 2635 (2) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
4561 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.027
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
ω scansh = 1315
Absorption correction: ψ scan
(North, Phillips & Matthews, 1968)
k = 029
Tmin = 0.135, Tmax = 0.235l = 145
6598 measured reflections3 standard reflections every 150 reflections
6045 independent reflections intensity decay: 5.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters not refined
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0339P)2 + 2.0179P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6045 reflectionsΔρmax = 1.05 e Å3
299 parametersΔρmin = 1.07 e Å3
0 restraintsExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00103 (10)
Crystal data top
[AuBr(C25H22OP2)]·CH3CNV = 2635 (2) Å3
Mr = 718.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.657 (3) ŵ = 7.24 mm1
b = 22.436 (17) ÅT = 295 K
c = 11.209 (4) Å0.30 × 0.30 × 0.20 mm
β = 115.98 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
4561 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North, Phillips & Matthews, 1968)
Rint = 0.027
Tmin = 0.135, Tmax = 0.2353 standard reflections every 150 reflections
6598 measured reflections intensity decay: 5.0%
6045 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters not refined
S = 1.02Δρmax = 1.05 e Å3
6045 reflectionsΔρmin = 1.07 e Å3
299 parameters
Special details top

Experimental. The scan width was (1.10 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.51548 (2)0.15206 (1)0.36269 (2)0.0379 (1)
Br10.45026 (7)0.13005 (3)0.13186 (5)0.0628 (2)
P10.57349 (10)0.17046 (5)0.57799 (11)0.0278 (3)
P20.80322 (10)0.24324 (5)0.59582 (10)0.0255 (3)
O10.7611 (3)0.24140 (15)0.4497 (3)0.0369 (10)
C10.6725 (4)0.23675 (19)0.6413 (4)0.0260 (11)
C1110.4400 (4)0.1847 (2)0.6170 (4)0.0304 (11)
C1120.3166 (5)0.1779 (3)0.5204 (5)0.0482 (18)
C1130.2152 (5)0.1850 (3)0.5522 (7)0.064 (2)
C1140.2365 (5)0.1990 (3)0.6787 (6)0.054 (2)
C1150.3591 (5)0.2072 (3)0.7753 (6)0.0520 (19)
C1160.4601 (4)0.2002 (2)0.7445 (5)0.0436 (16)
C1210.6556 (4)0.10800 (19)0.6854 (4)0.0288 (12)
C1220.6357 (5)0.0516 (2)0.6289 (5)0.0438 (17)
C1230.6863 (6)0.0022 (2)0.7077 (6)0.057 (2)
C1240.7597 (6)0.0085 (3)0.8415 (6)0.059 (2)
C1250.7827 (5)0.0641 (3)0.8966 (5)0.0548 (17)
C1260.7316 (5)0.1145 (2)0.8200 (5)0.0387 (16)
C2110.8857 (4)0.31148 (19)0.6707 (4)0.0299 (12)
C2120.9970 (4)0.3232 (2)0.6555 (5)0.0405 (17)
C2131.0645 (5)0.3748 (3)0.7077 (6)0.0489 (17)
C2141.0242 (5)0.4150 (3)0.7737 (5)0.0549 (19)
C2150.9150 (6)0.4041 (3)0.7871 (6)0.0544 (19)
C2160.8458 (5)0.3522 (2)0.7367 (5)0.0443 (17)
C2210.9130 (4)0.1838 (2)0.6805 (4)0.0309 (12)
C2220.9135 (5)0.1336 (2)0.6098 (6)0.0458 (17)
C2230.9950 (6)0.0868 (3)0.6725 (8)0.066 (2)
C2241.0770 (6)0.0912 (3)0.8036 (7)0.069 (3)
C2251.0785 (6)0.1409 (3)0.8750 (6)0.065 (2)
C2260.9966 (5)0.1877 (3)0.8146 (5)0.0428 (16)
N10.2404 (10)0.0100 (5)0.5836 (9)0.131 (4)
C20.4154 (8)0.0355 (4)0.8112 (10)0.101 (4)
C30.3168 (9)0.0220 (4)0.6819 (10)0.083 (3)
H110.619400.270800.608300.0310*
H120.707400.236100.735500.0310*
H1120.301100.168400.432100.0580*
H1130.130300.180200.485500.0760*
H1140.166500.202900.700100.0650*
H1150.373800.217700.862900.0620*
H1160.544600.206100.811200.0520*
H1220.587100.047100.535800.0520*
H1230.670200.036400.669100.0680*
H1240.794300.025700.895600.0700*
H1250.834800.068300.989200.0650*
H1260.748400.153000.859500.0470*
H2121.025500.295700.609700.0480*
H2131.140000.382700.697800.0590*
H2141.072000.450300.810000.0660*
H2150.886300.432200.831200.0650*
H2160.770800.344800.747700.0530*
H2220.858000.131200.517700.0550*
H2230.993600.051800.624400.0790*
H2241.134100.059300.846000.0840*
H2251.136000.143200.966500.0780*
H2260.997400.222200.864000.0510*
H210.383500.030400.875400.1210*
H220.485700.009400.831100.1210*
H230.442500.075600.813200.1210*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0416 (1)0.0435 (1)0.0264 (1)0.0076 (1)0.0129 (1)0.0052 (1)
Br10.0873 (4)0.0667 (4)0.0301 (3)0.0218 (3)0.0217 (3)0.0120 (3)
P10.0266 (5)0.0317 (6)0.0241 (5)0.0024 (4)0.0102 (4)0.0028 (4)
P20.0277 (5)0.0290 (6)0.0204 (5)0.0016 (4)0.0110 (4)0.0001 (4)
O10.0457 (18)0.047 (2)0.0189 (14)0.0025 (15)0.0150 (13)0.0015 (14)
C10.0263 (19)0.028 (2)0.0225 (19)0.0009 (16)0.0095 (16)0.0008 (17)
C1110.0278 (19)0.030 (2)0.033 (2)0.0042 (17)0.0130 (17)0.0003 (18)
C1120.033 (2)0.071 (4)0.037 (3)0.002 (2)0.012 (2)0.001 (3)
C1130.032 (3)0.087 (5)0.070 (4)0.001 (3)0.019 (3)0.002 (4)
C1140.044 (3)0.060 (4)0.071 (4)0.004 (3)0.037 (3)0.006 (3)
C1150.053 (3)0.060 (4)0.057 (3)0.005 (3)0.037 (3)0.013 (3)
C1160.037 (2)0.056 (3)0.040 (3)0.007 (2)0.019 (2)0.015 (2)
C1210.029 (2)0.027 (2)0.032 (2)0.0006 (17)0.0149 (17)0.0007 (18)
C1220.048 (3)0.034 (3)0.042 (3)0.000 (2)0.013 (2)0.008 (2)
C1230.067 (4)0.033 (3)0.063 (4)0.007 (3)0.021 (3)0.005 (3)
C1240.069 (4)0.041 (3)0.059 (4)0.016 (3)0.022 (3)0.010 (3)
C1250.062 (3)0.051 (3)0.041 (3)0.004 (3)0.013 (3)0.005 (3)
C1260.047 (3)0.033 (3)0.028 (2)0.000 (2)0.009 (2)0.0035 (19)
C2110.035 (2)0.029 (2)0.025 (2)0.0051 (18)0.0124 (17)0.0002 (17)
C2120.044 (3)0.043 (3)0.036 (3)0.007 (2)0.019 (2)0.003 (2)
C2130.045 (3)0.048 (3)0.054 (3)0.017 (2)0.022 (2)0.002 (3)
C2140.066 (4)0.046 (3)0.043 (3)0.025 (3)0.015 (3)0.008 (3)
C2150.079 (4)0.044 (3)0.047 (3)0.010 (3)0.034 (3)0.013 (3)
C2160.052 (3)0.043 (3)0.047 (3)0.010 (2)0.030 (2)0.008 (2)
C2210.029 (2)0.035 (2)0.032 (2)0.0008 (18)0.0164 (18)0.0022 (19)
C2220.049 (3)0.041 (3)0.050 (3)0.007 (2)0.024 (2)0.002 (2)
C2230.078 (4)0.040 (3)0.091 (5)0.019 (3)0.048 (4)0.009 (3)
C2240.068 (4)0.071 (5)0.082 (5)0.041 (4)0.045 (4)0.039 (4)
C2250.053 (3)0.093 (5)0.046 (3)0.027 (3)0.019 (3)0.028 (3)
C2260.045 (3)0.055 (3)0.030 (2)0.008 (2)0.018 (2)0.006 (2)
N10.145 (8)0.152 (9)0.099 (6)0.007 (7)0.055 (6)0.015 (6)
C20.092 (6)0.098 (7)0.115 (7)0.002 (5)0.048 (6)0.009 (6)
C30.101 (6)0.072 (5)0.098 (6)0.003 (5)0.064 (5)0.000 (5)
Geometric parameters (Å, º) top
Au1—Br12.4069 (19)C213—C2141.373 (9)
Au1—P12.241 (2)C214—C2151.368 (10)
P1—C11.825 (5)C114—H1140.9500
P1—C1111.820 (5)C115—H1150.9495
P1—C1211.822 (5)C215—C2161.388 (8)
P2—O11.490 (3)C116—H1160.9495
P2—C11.812 (5)C221—C2261.390 (7)
P2—C2111.807 (5)C221—C2221.379 (7)
P2—C2211.804 (5)C222—C2231.383 (9)
N1—C31.105 (14)C122—H1220.9498
C1—H110.9503C223—C2241.361 (11)
C1—H120.9509C123—H1230.9494
C111—C1161.387 (7)C224—C2251.368 (10)
C111—C1121.379 (7)C124—H1240.9513
C112—C1131.385 (9)C225—C2261.381 (9)
C113—C1141.365 (9)C125—H1250.9502
C114—C1151.376 (9)C126—H1260.9511
C115—C1161.373 (8)C2—H210.9506
C121—C1221.388 (6)C2—H230.9505
C121—C1261.383 (7)C2—H220.9508
C122—C1231.378 (7)C212—H2120.9508
C123—C1241.370 (9)C213—H2130.9507
C124—C1251.365 (9)C214—H2140.9511
C125—C1261.387 (8)C215—H2150.9480
C2—C31.433 (14)C216—H2160.9495
C211—C2161.378 (7)C222—H2220.9498
C211—C2121.405 (7)C223—H2230.9486
C212—C2131.378 (8)C224—H2240.9508
C112—H1120.9492C225—H2250.9495
C113—H1130.9496C226—H2260.9494
Au1···O13.274 (4)C221···H2123.0926
Au1···C123i4.063 (6)C222···H114vi3.0862
Au1···C115ii3.562 (7)C225···H114vi2.9313
Au1···C116ii3.523 (5)C226···H114vi2.8130
Au1···H1222.9305H11···Br1iv3.0597
Au1···H123i3.2969H11···H2162.4283
Au1···H2223.6197H11···C2163.0073
Au1···H1122.9475H12···C1262.8611
Au1···H115ii3.3570H12···C1163.0371
Au1···H116ii3.2784H12···H1262.2482
Br1···H22i3.2011H12···C2163.0609
Br1···H11ii3.0597H12···H1162.4870
O1···Au13.274 (4)H12···O1iv2.2571
O1···C1ii3.183 (6)H12···H2162.5346
O1···H2222.6862H22···Br1i3.2011
O1···H12ii2.2571H23···C1153.0792
O1···H116ii2.5950H23···C1162.9306
O1···H126ii2.5547H112···Au12.9475
N1···H215iii2.7159H112···C213vii2.9657
C1···O1iv3.183 (6)H113···C214vii3.0258
C1···H1262.8982H114···C222viii3.0862
C1···H1162.9682H114···C221viii2.8975
C1···H2162.7230H114···H212viii2.5698
C3···H215iii3.0629H114···C225viii2.9313
C115···Au1iv3.562 (7)H114···C226viii2.8130
C116···C1263.476 (8)H115···Au1iv3.3571
C116···Au1iv3.523 (5)H116···H122.4870
C121···C2223.510 (9)H116···H1262.4959
C121···C2213.470 (7)H116···Au1iv3.2784
C123···Au1i4.063 (6)H116···C1262.9659
C126···C2263.522 (9)H116···C12.9682
C126···C2213.497 (8)H116···O1iv2.5950
C126···C1163.476 (8)H122···Au12.9305
C212···C2263.526 (8)H123···Au1i3.2969
C115···H233.0792H124···H213ix2.5707
C116···H232.9306H125···C214iv3.0027
C116···H123.0371H125···C213iv3.0087
C221···C1263.497 (8)H126···C12.8982
C221···C1213.470 (7)H126···H122.2482
C222···C1213.510 (9)H126···H1162.4959
C126···H1162.9659H126···O1iv2.5547
C226···C2123.526 (8)H212···H114vi2.5698
C126···H122.8611H212···C2213.0926
C226···C1263.522 (9)H213···H124x2.5707
C211···H2262.8161H215···C3xi3.0629
C213···H112v2.9657H215···N1xi2.7159
C213···H125ii3.0087H216···H112.4283
C214···H125ii3.0027H216···H122.5346
C214···H113v3.0258H216···C12.7230
C215···H222iv3.0421H222···C215ii3.0421
C216···H123.0609H222···Au13.6197
C216···H113.0073H222···O12.6862
C221···H114vi2.8975H226···C2112.8161
Br1—Au1—P1178.53 (4)C114—C115—H115120.11
Au1—P1—C1114.21 (15)C116—C115—H115120.14
Au1—P1—C111113.87 (14)C111—C116—H116119.66
Au1—P1—C121113.16 (14)C211—C216—C215120.1 (6)
C1—P1—C111103.0 (2)C115—C116—H116119.60
C1—P1—C121108.1 (2)P2—C221—C222118.8 (4)
C111—P1—C121103.5 (2)C222—C221—C226119.7 (5)
O1—P2—C1113.2 (2)P2—C221—C226121.5 (4)
O1—P2—C211112.7 (2)C221—C222—C223120.2 (6)
O1—P2—C221112.0 (2)C121—C122—H122119.88
C1—P2—C211106.2 (2)C123—C122—H122120.03
C1—P2—C221106.4 (2)C222—C223—C224119.6 (6)
C211—P2—C221105.8 (2)C124—C123—H123119.80
P1—C1—P2115.0 (2)C122—C123—H123119.85
P2—C1—H11108.09C125—C124—H124120.28
P1—C1—H11108.10C223—C224—C225120.9 (7)
P1—C1—H12108.02C123—C124—H124120.11
P2—C1—H12108.07C124—C125—H125119.32
H11—C1—H12109.48C126—C125—H125119.42
P1—C111—C112120.0 (4)C224—C225—C226120.3 (6)
P1—C111—C116121.0 (4)C221—C226—C225119.3 (6)
C112—C111—C116119.0 (5)C125—C126—H126120.49
C111—C112—C113120.0 (5)C121—C126—H126120.44
C112—C113—C114120.4 (6)C3—C2—H22109.52
C113—C114—C115120.1 (6)C3—C2—H23109.57
C114—C115—C116119.7 (6)H21—C2—H23109.41
C111—C116—C115120.7 (5)H22—C2—H23109.51
P1—C121—C126122.7 (3)H21—C2—H22109.33
P1—C121—C122117.7 (3)C3—C2—H21109.50
C122—C121—C126119.5 (4)C211—C212—H212120.23
C121—C122—C123120.1 (5)C213—C212—H212120.33
C122—C123—C124120.3 (5)C212—C213—H213119.52
C123—C124—C125119.6 (6)C214—C213—H213119.54
C124—C125—C126121.3 (5)C213—C214—H214120.18
C121—C126—C125119.1 (4)C215—C214—H214120.06
N1—C3—C2177.9 (11)C216—C215—H215119.69
P2—C211—C216125.1 (4)C214—C215—H215119.76
C212—C211—C216119.2 (4)C211—C216—H216120.01
P2—C211—C212115.7 (3)C215—C216—H216119.86
C111—C112—H112120.02C223—C222—H222119.89
C113—C112—H112120.00C221—C222—H222119.92
C211—C212—C213119.4 (5)C222—C223—H223120.17
C212—C213—C214120.9 (6)C224—C223—H223120.19
C114—C113—H113119.78C223—C224—H224119.47
C112—C113—H113119.79C225—C224—H224119.63
C113—C114—H114119.87C224—C225—H225119.88
C213—C214—C215119.8 (6)C226—C225—H225119.85
C115—C114—H114120.00C221—C226—H226120.33
C214—C215—C216120.5 (6)C225—C226—H226120.40
Au1—P1—C1—P246.7 (3)H112—C112—C113—H1130.21
C111—P1—C1—P2170.7 (2)C111—C112—C113—H113179.86
C121—P1—C1—P280.2 (3)H112—C112—C113—C114179.62
Au1—P1—C111—C1126.2 (5)H113—C113—C114—H1141.59
Au1—P1—C111—C116176.3 (3)H113—C113—C114—C115178.70
C1—P1—C111—C112130.5 (4)C212—C213—C214—C2150.6 (9)
C1—P1—C111—C11652.0 (4)C112—C113—C114—H114178.58
C121—P1—C111—C112117.0 (4)H114—C114—C115—C116178.55
C121—P1—C111—C11660.5 (4)C113—C114—C115—H115178.78
Au1—P1—C121—C12222.2 (5)C213—C214—C215—C2161.2 (9)
Au1—P1—C121—C126160.4 (4)H114—C114—C115—H1151.52
C1—P1—C121—C122149.7 (4)C114—C115—C116—H116179.65
C1—P1—C121—C12632.9 (5)H115—C115—C116—C111179.81
C111—P1—C121—C122101.5 (4)H115—C115—C116—H1160.29
C111—P1—C121—C12675.9 (5)C214—C215—C216—C2111.0 (8)
O1—P2—C1—P156.1 (3)C126—C121—C122—H122176.85
C211—P2—C1—P1179.7 (2)P1—C121—C126—H1264.83
C221—P2—C1—P167.3 (3)P1—C121—C122—H1225.71
O1—P2—C211—C21259.8 (4)P2—C221—C222—C223178.8 (5)
O1—P2—C211—C216118.5 (4)C226—C221—C222—C2231.3 (9)
C1—P2—C211—C212175.7 (3)P2—C221—C226—C225179.8 (5)
C1—P2—C211—C2166.0 (4)C222—C221—C226—C2250.3 (9)
C221—P2—C211—C21262.9 (4)C122—C121—C126—H126177.86
C221—P2—C211—C216118.9 (4)C221—C222—C223—C2241.7 (11)
O1—P2—C221—C22222.1 (5)C121—C122—C123—H123177.98
O1—P2—C221—C226157.7 (4)H122—C122—C123—C124178.03
C1—P2—C221—C222102.1 (5)H122—C122—C123—H1231.99
C1—P2—C221—C22678.1 (5)H123—C123—C124—C125179.96
C211—P2—C221—C222145.3 (4)H123—C123—C124—H1240.12
C211—P2—C221—C22634.6 (5)C222—C223—C224—C2251.1 (12)
P2—C211—C212—C213178.9 (4)C122—C123—C124—H124179.86
P1—C111—C112—H1124.22C223—C224—C225—C2260.2 (11)
C116—C111—C112—H112178.24H124—C124—C125—H1251.09
P1—C111—C116—H1164.26C123—C124—C125—H125178.98
C216—C211—C212—C2130.5 (7)H124—C124—C125—C126178.98
P2—C211—C216—C215178.1 (4)C224—C225—C226—C2210.2 (10)
C212—C211—C216—C2150.1 (7)C124—C125—C126—H126179.92
C112—C111—C116—H116178.23H125—C125—C126—C121179.82
C211—C212—C213—C2140.3 (8)H125—C125—C126—H1260.02
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x1, y+1/2, z1/2; (viii) x1, y, z; (ix) x+2, y1/2, z+3/2; (x) x+2, y+1/2, z+3/2; (xi) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H12···O1iv0.952.263.183 (6)164
C116—H116···O1iv0.952.603.500 (7)159
C126—H126···O1iv0.952.553.499 (6)172
Symmetry code: (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[AuBr(C25H22OP2)]·CH3CN
Mr718.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.657 (3), 22.436 (17), 11.209 (4)
β (°) 115.98 (2)
V3)2635 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.24
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North, Phillips & Matthews, 1968)
Tmin, Tmax0.135, 0.235
No. of measured, independent and
observed [I > 2σ(I)] reflections
6598, 6045, 4561
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.02
No. of reflections6045
No. of parameters299
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.05, 1.07

Computer programs: MSC/AFC7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999), MSC/AFC7 Diffractometer Control Software for Windows, TEXSAN for Windows (Molecular Structure Corporation, 1997-2001), TEXSAN for Windows and SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), TEXSAN for Windows and PLATON (Spek, 1980-2001).

Selected geometric parameters (Å, º) top
Au1—Br12.4069 (19)P2—O11.490 (3)
Au1—P12.241 (2)P2—C11.812 (5)
P1—C11.825 (5)P2—C2111.807 (5)
P1—C1111.820 (5)P2—C2211.804 (5)
P1—C1211.822 (5)N1—C31.105 (14)
Br1—Au1—P1178.53 (4)C211—P2—C221105.8 (2)
Au1—P1—C1114.21 (15)P1—C1—P2115.0 (2)
Au1—P1—C111113.87 (14)P1—C111—C112120.0 (4)
Au1—P1—C121113.16 (14)P1—C111—C116121.0 (4)
C1—P1—C111103.0 (2)P1—C121—C126122.7 (3)
C1—P1—C121108.1 (2)P1—C121—C122117.7 (3)
C111—P1—C121103.5 (2)N1—C3—C2177.9 (11)
O1—P2—C1113.2 (2)P2—C211—C216125.1 (4)
O1—P2—C211112.7 (2)P2—C211—C212115.7 (3)
O1—P2—C221112.0 (2)P2—C221—C222118.8 (4)
C1—P2—C211106.2 (2)P2—C221—C226121.5 (4)
C1—P2—C221106.4 (2)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds