Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, C16H20O5S, has been determined as part of an investigation into the synthesis of fused carbocyclic ring systems with functionality and containing a cyclo­butanol ring. The conformational arrangement of the phenyl ring permits the formation of an infinite chain of intermolecular O—H...O—S hydrogen bonds. The dioxolane ring is removed from and does not participate in the chain of intermolecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009735/tk6107sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009735/tk6107Isup2.hkl
Contains datablock I

CCDC reference: 214821

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.045
  • wR factor = 0.130
  • Data-to-parameter ratio = 17.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

We have recently shown that a novel cyclization reaction between the lithium enolates of simple unfunctionalized ketones and phenyl vinyl sulfoxide provides a simple and convenient route to the preparation of fused carbocyclic ring systems bearing a bridgehead hydroxy group (Loughlin & McCleary, 2003; Loughlin et al., 2002). In the current study, reaction of the lithium enolate of 1,4-cyclohexanedione mono-ethylene ketal (obtained from lithium diisopropylamide, LDA) with phenyl vinyl sulfoxide and subsequent oxidation with m-chloroperoxybenzoic acid (m-CPBA), generated the first representative of a functionalized bicyclo[4.2.0]octan-1-ol, the novel spiro compound, (I).

The spiro compound can be perceived as a synthetic precursor to a bicyclo[4.2.0]octan-3-one which is cognate of key structural components of, for example, benzocyclobutacarbazole antitumor agents (Graf-Christophe et al., 2000; Christophe et al., 1998), taxane precursors (Wender et al., 1997) and products arising from Norrish type II photoreactions (Osuka et al., 1987). Under the present reaction conditions, (I) was formed as the major bicyclo[4.2.0]octan-1-ol isomer in a 42:16:42 ratio of (I):(II):(III) from achiral 1,4-cyclohexanedione mono-ethylene ketal and phenyl vinyl sulfoxide with less than 5% of other products observed. Here we report the synthesis, isolation and structural characterization of the novel bicyclo[4.2.0]octan-1-ol (I).

The crystal structure determination (Fig. 1 and Table 1) shows that the relative stereochemistry about the bicyclo[4.2.0]alkanol ring in (I) is the same as that found for `parent' compound 8-(phenylsulfonyl)bicyclo[4.2.0]octan-1-ol, (IV) (Loughlin et al., 2002), with the C2–S bond cis to the bridgehead hydroxyl group and trans to the fused six-membered ring. As in the structure of (IV), this conformational structure is stabilized by three-centred `bifurcated' intra- and intermolecular hydrogen bonds between the hydroxyl proton and the sulfone O atoms (Fig. 2 and Table 2). These results indicate that the stereochemistry and molecular packing of this molecule is not significantly affected by the addition of the dioxane ring to the system.

Experimental top

1,4-Cyclohexanedione mono-ethylene ketal (0.5 g, 3.201 mmol) in THF (2 ml) was added to lithium diisopropylamide (1.4 M, 3.201 mmol, 2.30 ml) in THF (33 ml) at 273 K under nitrogen over 5 min and further reacted at 273 K for 1 h. Upon cooling to 263 K, rapid addition of phenyl vinyl sulfoxide (0.43 ml, 3.201 mmol) at 263 K, with the system shielded from light, a 10 min reaction time and workup as described elsewhere (Loughlin et al., 2002) gave the crude sulfoxide mixture (0.833 g). This was subsequently oxidized with m-CPBA (1 equivalent) in chloroform (30 ml). Work-up of the reaction mixture, as described elsewhere (Loughlin et al., 2002), was followed by silica chromatography (hexane–ethyl acetate, 70:30). A mixture of compounds (I)–(III) (485 mg, 47%) was obtained. An analytically pure sample of compound (I) was obtained by semi-preparative HPLC (hexane–ethyl acetate, 50:50, retention time 12.9 min, 3 ml min−1). Colourless crystals of (I) (m.p. 390.5–392.2 K) were isolated by slow evaporation of a hexane–ethyl acetate (50:50) solution of the compound. Analysis found: C 59.30, H 6.32, S 9.70%; calculated for C16H20O5S: C 59.24, H 6.21, S 9.88%. /nmax (KBr)/cm−1 3500 (OH), 1302 (SO2), 1142 (SO2). /dH (400 MHz, CDCl3, p.p.m.): 7.87–7.95 (2H, m, o-C6H5), 7.57–7.65 (1H, m, p-C6H5), 7.48–7.57 (2H, m, m-C6H5), 3.84–3.94 (4H, m, 2 × 4-H, 2 × 5-H), 3.52 (1H, ddd, J8',7' 9, J8',7' 3, J8',6' 1, 8'-H), 3.03–3.13 (1H, m, 1'-H), 2.32 (1H, ddd, J7',7' 10, J7',6' 10, J7',8' 3, 7'-H), 2.12 (1H, ddd, J7',7' 11, J7',6' 9, J7',8' 9, 7'-H), 1.91–1.98 (2H, m, 2 x 3'-H), 1.85 (1H, dd, J5',5' 15, J5',6' 7, 5'-H), 1.68–1.77 (1H, m, 2'-H), 1.49–1.58 (2H, m, 2'-H, 5'-H), OH not observed. δC (50 MHz, CDCl3) 139.8, (i-C6H5), 133.5, (p-C6H5), 129.2,(m-C6H5), 127.9, (o-C6H5), 108.4, (C-2,4'), 72.7, (C-1'), 67.3, (C-8'), 64.4, 63.9, (C-4, C-5), 43.8, (C-6'), 33.4, (C-2'), 32.8, (C-5'), 29.4, (C-3'), 20.4, (C-7'). ESMS+ 331 (MLi+, 100%), 347 (MNa+, 83%).

Refinement top

H atoms were located at calculated positions, with C—H set to 0.95 Å. The hydroxy H atom was located from a difference fourier map and the O—H bond length set to 0.85 Å. Uiso values for the H atoms were set at 1.2Ueq of the parent atom. Displacement parameters for atom C9 are indicative of potential disorder for this atom in the dioxane ring.

Computing details top

Data collection: MSC/AFC7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC7 Diffractometer Control; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-2001); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1980-2001) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows and PLATON.

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) plot showing the atomic numbering scheme for a molecule of (I). Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Hydrogen bonding scheme for (I).
Spiro[1,3-dioxolane-2,4'-[8]phenylsulfonylbicyclo[4.2.0]octan[1]ol] top
Crystal data top
C16H20O5SZ = 2
Mr = 324.39F(000) = 344
Triclinic, P1Dx = 1.397 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 5.736 (3) ÅCell parameters from 25 reflections
b = 11.468 (5) Åθ = 12.7–17.3°
c = 12.095 (4) ŵ = 0.23 mm1
α = 81.1 (6)°T = 295 K
β = 98.83 (3)°Needle, colorless
γ = 98.03 (3)°0.60 × 0.20 × 0.15 mm
V = 771.2 (13) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.052
Radiation source: Rigaku rotating anodeθmax = 27.5°, θmin = 2.7°
Graphite monochromatorh = 73
ω–2θ scansk = 1414
4163 measured reflectionsl = 1515
3537 independent reflections3 standard reflections every 150 reflections
2637 reflections with I > 2σ(I) intensity decay: 2.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters not refined
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.277P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3537 reflectionsΔρmax = 0.32 e Å3
200 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (4)
Crystal data top
C16H20O5Sγ = 98.03 (3)°
Mr = 324.39V = 771.2 (13) Å3
Triclinic, P1Z = 2
a = 5.736 (3) ÅMo Kα radiation
b = 11.468 (5) ŵ = 0.23 mm1
c = 12.095 (4) ÅT = 295 K
α = 81.1 (6)°0.60 × 0.20 × 0.15 mm
β = 98.83 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.052
4163 measured reflections3 standard reflections every 150 reflections
3537 independent reflections intensity decay: 2.4%
2637 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters not refined
S = 1.04Δρmax = 0.32 e Å3
3537 reflectionsΔρmin = 0.36 e Å3
200 parameters
Special details top

Experimental. The scan width was (1.52 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01674 (9)0.29284 (5)0.91948 (4)0.0378 (2)
O10.4467 (3)0.37639 (14)0.77535 (13)0.0466 (5)
O20.2349 (3)0.31440 (14)0.99390 (13)0.0493 (5)
O30.2047 (3)0.29189 (14)0.96337 (13)0.0481 (5)
O40.4356 (3)0.81126 (16)0.59492 (17)0.0668 (6)
O50.0640 (3)0.71478 (15)0.61102 (16)0.0589 (6)
C10.2590 (3)0.44782 (17)0.75260 (16)0.0360 (6)
C20.0156 (3)0.39943 (18)0.79641 (16)0.0363 (5)
C30.0048 (4)0.52578 (19)0.82465 (19)0.0438 (7)
C40.2753 (4)0.55535 (19)0.81835 (17)0.0402 (6)
C50.3759 (4)0.6774 (2)0.76570 (19)0.0470 (7)
C60.3114 (4)0.6999 (2)0.6389 (2)0.0483 (7)
C70.3682 (4)0.5985 (2)0.58419 (19)0.0490 (7)
C80.2178 (4)0.48350 (19)0.62439 (17)0.0429 (6)
C90.2719 (8)0.8767 (4)0.5255 (4)0.1437 (19)
C100.0381 (6)0.8080 (3)0.5209 (3)0.0752 (10)
C110.0095 (4)0.15429 (18)0.87099 (17)0.0397 (6)
C120.1990 (4)0.1071 (2)0.8101 (2)0.0500 (7)
C130.2082 (5)0.0041 (2)0.7770 (2)0.0598 (8)
C140.0150 (6)0.0669 (2)0.8057 (2)0.0631 (9)
C150.1915 (5)0.0195 (2)0.8662 (3)0.0626 (9)
C160.2051 (4)0.0924 (2)0.8987 (2)0.0498 (7)
H10.489800.364200.846500.0560*
H20.105100.377900.737600.0440*
H3A0.038600.527000.897100.0530*
H3B0.091800.572800.769400.0530*
H40.360000.537100.891500.0480*
H5A0.544200.684500.782700.0560*
H5B0.316800.735900.798000.0560*
H7A0.531800.589000.604400.0590*
H7B0.334300.616300.504400.0590*
H8A0.054900.493800.602400.0520*
H8B0.255700.421300.589200.0520*
H9A0.316100.894700.451700.1720*
H9B0.267100.948500.554800.1720*
H10A0.078600.855100.530900.0900*
H10B0.004800.777600.450900.0900*
H120.332600.150300.791500.0600*
H130.348400.037100.734400.0720*
H140.023700.143600.783800.0760*
H150.324000.063500.885400.0750*
H160.346900.125800.939700.0600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0324 (3)0.0436 (3)0.0369 (3)0.0054 (2)0.0012 (2)0.0068 (2)
O10.0325 (7)0.0541 (9)0.0545 (9)0.0136 (6)0.0040 (6)0.0060 (7)
O20.0446 (8)0.0573 (9)0.0422 (8)0.0056 (7)0.0097 (7)0.0110 (7)
O30.0409 (8)0.0570 (9)0.0501 (8)0.0085 (7)0.0170 (7)0.0058 (7)
O40.0596 (11)0.0510 (10)0.0783 (12)0.0146 (8)0.0047 (9)0.0030 (9)
O50.0446 (9)0.0491 (9)0.0736 (11)0.0055 (7)0.0040 (8)0.0085 (8)
C10.0269 (9)0.0408 (10)0.0400 (10)0.0047 (7)0.0008 (7)0.0088 (8)
C20.0285 (9)0.0444 (10)0.0354 (9)0.0051 (8)0.0003 (7)0.0074 (8)
C30.0402 (11)0.0434 (11)0.0501 (12)0.0112 (9)0.0076 (9)0.0068 (9)
C40.0377 (10)0.0441 (11)0.0377 (10)0.0035 (8)0.0028 (8)0.0112 (8)
C50.0443 (11)0.0435 (11)0.0508 (12)0.0007 (9)0.0026 (9)0.0132 (9)
C60.0391 (11)0.0426 (11)0.0564 (13)0.0060 (9)0.0008 (10)0.0023 (9)
C70.0429 (11)0.0570 (13)0.0442 (11)0.0029 (10)0.0057 (9)0.0061 (10)
C80.0417 (11)0.0474 (11)0.0387 (10)0.0002 (9)0.0024 (8)0.0104 (9)
C90.096 (3)0.107 (3)0.158 (4)0.043 (2)0.054 (3)0.079 (3)
C100.0748 (19)0.0597 (16)0.0745 (18)0.0024 (14)0.0149 (15)0.0123 (14)
C110.0376 (10)0.0393 (10)0.0409 (10)0.0022 (8)0.0048 (8)0.0038 (8)
C120.0418 (11)0.0529 (13)0.0528 (13)0.0021 (10)0.0006 (10)0.0096 (10)
C130.0625 (16)0.0557 (14)0.0586 (14)0.0077 (12)0.0042 (12)0.0168 (12)
C140.0768 (18)0.0446 (13)0.0717 (17)0.0037 (12)0.0209 (14)0.0118 (12)
C150.0601 (16)0.0482 (13)0.0820 (18)0.0150 (12)0.0142 (14)0.0043 (12)
C160.0419 (11)0.0476 (12)0.0592 (13)0.0086 (9)0.0031 (10)0.0055 (10)
Geometric parameters (Å, º) top
S1—O21.4401 (19)C13—C141.377 (4)
S1—O31.448 (2)C14—C151.382 (4)
S1—C21.774 (2)C15—C161.388 (3)
S1—C111.770 (2)C2—H20.9495
O1—C11.411 (3)C3—H3A0.9496
O4—C61.440 (3)C3—H3B0.9501
O4—C91.382 (5)C4—H40.9496
O5—C61.435 (3)C5—H5A0.9503
O5—C101.410 (4)C5—H5B0.9502
O1—H10.8534C7—H7A0.9498
C1—C21.568 (3)C7—H7B0.9504
C1—C81.532 (3)C8—H8A0.9501
C1—C41.552 (3)C8—H8B0.9502
C2—C31.551 (3)C9—H9A0.9495
C3—C41.552 (3)C9—H9B0.9508
C4—C51.520 (3)C10—H10A0.9490
C5—C61.512 (3)C10—H10B0.9499
C6—C71.519 (3)C12—H120.9497
C7—C81.527 (3)C13—H130.9505
C9—C101.455 (6)C14—H140.9498
C11—C161.381 (3)C15—H150.9502
C11—C121.392 (3)C16—H160.9498
C12—C131.386 (3)
S1···H1i3.1989H1···S12.9501
S1···H12.9501H1···S1ii3.1989
S1···H43.1950H1···O22.4278
O1···O23.022 (3)H1···O3ii2.2448
O1···O3ii2.928 (3)H1···H42.3776
O1···C2ii3.211 (3)H2···O1i2.6765
O2···C5iii3.388 (3)H2···C123.0884
O2···O13.022 (3)H2···H8A2.1749
O2···C43.218 (3)H3A···O32.7691
O3···O1i2.928 (3)H3A···O2iv2.8432
O5···C33.134 (3)H3A···H3Aiv2.4570
O1···H2ii2.6765H3B···O52.5046
O2···H162.5449H3B···C63.0711
O2···H42.7117H3B···C83.0494
O2···H5Aiii2.8038H4···S13.1950
O2···H12.4278H4···O22.7117
O2···H3Aiv2.8432H4···H12.3776
O3···H1i2.2448H5A···H7A2.5529
O3···H122.7820H5A···O2iii2.8038
O3···H3A2.7691H5B···H14viii2.5162
O4···H13v2.6588H7A···H5A2.5529
O5···H3B2.5046H7B···C103.0071
O5···H8A2.5454H8A···O52.5454
C2···O1i3.211 (3)H8A···C32.8310
C3···O53.134 (3)H8A···H22.1749
C4···O23.218 (3)H8A···C8vii2.9350
C5···O2iii3.388 (3)H8A···H8Avii2.4474
C11···C15vi3.596 (4)H8B···H10Bvii2.5923
C15···C11vi3.596 (4)H9A···C13vii2.8681
C3···H8A2.8310H9A···H13vii2.5834
C6···H3B3.0711H10B···H8Bvii2.5923
C8···H8Avii2.9350H12···O32.7820
C8···H3B3.0494H12···C16i3.0743
C10···H7B3.0071H13···O4ix2.6588
C12···H23.0884H13···H9Avii2.5834
C13···H9Avii2.8681H14···H5Bx2.5162
C16···H12ii3.0743H16···O22.5449
O2—S1—O3117.9 (6)C2—C3—H3A114.22
O2—S1—C2109.7 (6)C2—C3—H3B114.27
O2—S1—C11108.7 (6)C4—C3—H3A114.25
O3—S1—C2107.3 (6)C4—C3—H3B114.23
O3—S1—C11107.3 (6)H3A—C3—H3B109.39
C2—S1—C11105.1 (6)C1—C4—H4109.04
C6—O4—C9108.0 (6)C3—C4—H4109.07
C6—O5—C10108.6 (6)C5—C4—H4109.13
C1—O1—H1109.35C4—C5—H5A108.47
O1—C1—C2119.8 (6)C4—C5—H5B108.48
O1—C1—C8106.8 (6)C6—C5—H5A108.43
C2—C1—C488.8 (6)C6—C5—H5B108.46
C2—C1—C8109.6 (6)H5A—C5—H5B109.39
C4—C1—C8112.5 (6)C6—C7—H7A109.37
O1—C1—C4118.6 (6)C6—C7—H7B109.35
S1—C2—C1118.1 (6)C8—C7—H7A109.45
C1—C2—C387.9 (6)C8—C7—H7B109.43
S1—C2—C3111.1 (6)H7A—C7—H7B109.41
C2—C3—C489.4 (6)C1—C8—H8A108.50
C1—C4—C5119.0 (6)C1—C8—H8B108.48
C3—C4—C5120.5 (6)C7—C8—H8A108.52
C1—C4—C388.3 (6)C7—C8—H8B108.52
C4—C5—C6113.6 (6)H8A—C8—H8B109.51
O4—C6—C5109.7 (6)O4—C9—H9A109.61
O4—C6—C7110.9 (6)O4—C9—H9B109.51
O4—C6—O5105.1 (6)C10—C9—H9A109.49
O5—C6—C7110.4 (6)C10—C9—H9B109.32
C5—C6—C7110.7 (6)H9A—C9—H9B109.52
O5—C6—C5109.9 (6)O5—C10—H10A110.84
C6—C7—C8109.8 (6)O5—C10—H10B110.75
C1—C8—C7113.3 (6)C9—C10—H10A110.90
O4—C9—C10109.4 (7)C9—C10—H10B110.73
O5—C10—C9104.1 (7)H10A—C10—H10B109.42
S1—C11—C12118.9 (6)C11—C12—H12120.62
C12—C11—C16121.2 (6)C13—C12—H12120.56
S1—C11—C16119.8 (6)C12—C13—H13119.89
C11—C12—C13118.8 (6)C14—C13—H13119.90
C12—C13—C14120.2 (6)C13—C14—H14119.68
C13—C14—C15120.7 (6)C15—C14—H14119.66
C14—C15—C16119.9 (7)C14—C15—H15119.98
C11—C16—C15119.1 (6)C16—C15—H15120.08
S1—C2—H2112.44C11—C16—H16120.49
C1—C2—H2112.50C15—C16—H16120.38
C3—C2—H2112.47
O2—S1—C2—C132.2 (6)C8—C1—C4—C393.1 (6)
O2—S1—C2—C367.0 (6)C8—C1—C4—C531.2 (7)
O3—S1—C2—C1161.5 (6)O1—C1—C8—C789.3 (6)
O3—S1—C2—C362.2 (6)O1—C1—C4—C3141.3 (6)
C11—S1—C2—C184.5 (6)C4—C1—C8—C742.5 (6)
C11—S1—C2—C3176.2 (6)C2—C1—C8—C7139.6 (6)
O2—S1—C11—C12171.3 (6)S1—C2—C3—C4101.8 (6)
O2—S1—C11—C165.5 (6)C1—C2—C3—C417.6 (6)
O3—S1—C11—C1242.7 (6)C2—C3—C4—C5140.9 (6)
O3—S1—C11—C16134.1 (6)C2—C3—C4—C117.8 (6)
C2—S1—C11—C1271.3 (6)C1—C4—C5—C635.8 (7)
C2—S1—C11—C16111.9 (6)C3—C4—C5—C670.9 (7)
C9—O4—C6—C7107.4 (7)C4—C5—C6—O4173.5 (6)
C6—O4—C9—C101.3 (7)C4—C5—C6—C750.7 (7)
C9—O4—C6—O511.9 (7)C4—C5—C6—O571.5 (6)
C9—O4—C6—C5130.0 (7)O5—C6—C7—C859.0 (6)
C10—O5—C6—O421.2 (7)O4—C6—C7—C8175.0 (6)
C10—O5—C6—C5139.2 (6)C5—C6—C7—C863.0 (6)
C10—O5—C6—C798.4 (6)C6—C7—C8—C159.6 (6)
C6—O5—C10—C921.6 (7)O4—C9—C10—O514.1 (7)
C4—C1—C2—S195.3 (6)C12—C11—C16—C150.8 (7)
O1—C1—C2—C3140.3 (6)S1—C11—C16—C15175.9 (6)
C8—C1—C2—C395.9 (6)S1—C11—C12—C13176.8 (6)
C4—C1—C2—C317.6 (6)C16—C11—C12—C130.1 (7)
C8—C1—C2—S1151.2 (6)C11—C12—C13—C141.0 (7)
O1—C1—C2—S127.4 (6)C12—C13—C14—C151.0 (7)
O1—C1—C4—C594.4 (6)C13—C14—C15—C160.1 (7)
C2—C1—C4—C317.6 (6)C14—C15—C16—C110.8 (7)
C2—C1—C4—C5142.0 (6)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x, y+1, z+2; (v) x+1, y+1, z; (vi) x, y, z+2; (vii) x, y+1, z+1; (viii) x, y+1, z; (ix) x1, y1, z; (x) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.852.433.022 (3)127
O1—H1···O3ii0.852.252.928 (3)137
C3—H3B···O50.952.513.134 (3)124
C8—H8A···O50.952.552.884 (3)101
C16—H16···O20.952.552.926 (3)104
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H20O5S
Mr324.39
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.736 (3), 11.468 (5), 12.095 (4)
α, β, γ (°)81.1 (6), 98.83 (3), 98.03 (3)
V3)771.2 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.60 × 0.20 × 0.15
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4163, 3537, 2637
Rint0.052
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.04
No. of reflections3537
No. of parameters200
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.32, 0.36

Computer programs: MSC/AFC7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999), MSC/AFC7 Diffractometer Control, TEXSAN for Windows (Molecular Structure Corporation, 1997-2001), TEXSAN for Windows and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1980-2001) and ORTEP-3 (Farrugia, 1997), TEXSAN for Windows and PLATON.

Selected geometric parameters (Å, º) top
S1—O21.4401 (19)O4—C61.440 (3)
S1—O31.448 (2)O4—C91.382 (5)
S1—C21.774 (2)O5—C61.435 (3)
S1—C111.770 (2)O5—C101.410 (4)
O1—C11.411 (3)
O2—S1—O3117.9 (6)S1—C2—C1118.1 (6)
O2—S1—C2109.7 (6)S1—C2—C3111.1 (6)
O2—S1—C11108.7 (6)O4—C6—C5109.7 (6)
O3—S1—C2107.3 (6)O4—C6—C7110.9 (6)
O3—S1—C11107.3 (6)O4—C6—O5105.1 (6)
C2—S1—C11105.1 (6)O5—C6—C7110.4 (6)
C6—O4—C9108.0 (6)O5—C6—C5109.9 (6)
C6—O5—C10108.6 (6)O4—C9—C10109.4 (7)
O1—C1—C2119.8 (6)O5—C10—C9104.1 (7)
O1—C1—C8106.8 (6)S1—C11—C12118.9 (6)
O1—C1—C4118.6 (6)S1—C11—C16119.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.852.433.022 (3)127
O1—H1···O3i0.852.252.928 (3)137
Symmetry code: (i) x+1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds