Download citation
Download citation
link to html
In the title compound, di­aqua­bis­(1,10-phenanthroline-κ2N,N′)­zinc(II) fumarate tetrahydrate, [Zn(phen)2(H2O)2]L·4H2O, where phen is 1,10-phenanthroline (C12H8N2) and L2− = fumarate (C4H2O4), the zinc(II) cation is six-coordinated by two water mol­ecules and four N atoms from two phen mol­ecules. Each of the two independent L2− anions is located about an inversion centre and does not coordinate to zinc(II) cations, acting rather as a counter-ion. The water mol­ecules and L2− anions are linked through a complicated hydrogen-bonding network to form a three-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009619/tk6105sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009619/tk6105Isup2.hkl
Contains datablock I

CCDC reference: 214776

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.026
  • wR factor = 0.082
  • Data-to-parameter ratio = 14.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
DIFF_020 Alert A _diffrn_standards_interval_count and _diffrn_standards_interval_time are missing. Number of measurements between standards or time (min) between standards.
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Interest in the synthesis and characterization of complexes with mixed ligands (Cariati et al., 1983) arises as these offer the advantage that their structural and chemical properties may be significantly varied depending on the choice of ligands used (Robl, 1992). On the basis of reported X-ray structures, the anion derived from fumaric acid has been found to be a versatile ligand and the coordination mode can be tailored by introducing different neutral ligands to the complex (Young et al., 1998). In this paper, we present the preparation and crystal structure of an aquazinc complex of 1,10-phenanthroline containing fumarate as a non-coordinating species, (I).

The structure determination of (I) shows the coordination environment of the zinc(II) cation to be defined by two water molecules and four N atoms, derived from two phen molecules (Fig. 1 and Table 1). Charge balance is provided for by two independent fumarate anions, each located about a centre of inversion. Finally, there are four non-coordinating water molecules in the asymmetric unit.

The presence of an uncoordinated carboxylate group for the L2− anion is somewhat unexpected because the carboxylate group is generally thought of as being a better coordinating group than water for zinc(II). In the related compound [Cu2(C4H2O4)(C14H33N3)2](ClO4)2 (Charpin et al., 1987), the carboxylate O atoms coordinate to copper(II) to form a dimer. The average Zn—N distance of 2.1866 (16) Å is near to that of [ZnL1.5(H2O)2](NO3)2·2H2O, where L is 1,1'-(1,4-butanediyl)bis(imidazole) (Ma et al., 2000).

In (I), the L2− anions and water molecules are linked through hydrogen bonds to form a complicated three-dimensional structure (Table 2). It is noted that there are 12 H atoms available for hydrogen bonding in the asymmetric unit and each of these participate in such interactions. The water molecules play a role as both acceptors and donors, while the carboxylate O atoms only as acceptors.

Experimental top

A mixture of fumaric acid (0.116 g, 1 mmol) and ZnO (0.081 g, 1 mmol) in water (10 ml) was stirred at room temperature. Then 1,10-phenanthroline (0.198 g, 1 mmol) was added to the solution. Colourless crystals of (I) were obtained after several days; yield: 68% (based on Zn). Analysis calculated for C28H30N4O10Zn: C 51.86, H 4.63, N 8.64%; found: C 51.79, H 4.44, N 8.77%.

Refinement top

All H atoms on C atoms were generated geometrically and refined in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of water molecules were located from difference Fourier map and were refined with restrained O—H distances of 0.xx+/-0.01 Å.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990).

Figures top
[Figure 1] Fig. 1. View of the local coordination of ZnII with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (Sheldrick, 1990).
(I) top
Crystal data top
[Zn(C12H8N2)2(H2O)2](C4H2O4)·4H2OZ = 2
Mr = 647.93F(000) = 672
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.481 (2) ÅCell parameters from 7123 reflections
b = 10.597 (2) Åθ = 1.5–27.5°
c = 13.568 (3) ŵ = 0.92 mm1
α = 97.12 (3)°T = 293 K
β = 93.55 (3)°Block, colorless
γ = 105.38 (3)°0.50 × 0.32 × 0.10 mm
V = 1434.7 (6) Å3
Data collection top
Rigaku R-AXIS-RAPID
diffractometer
6500 independent reflections
Radiation source: rotating anode5423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 013
Tmin = 0.767, Tmax = 0.912k = 1313
13836 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
6500 reflections(Δ/σ)max = 0.001
436 parametersΔρmax = 0.51 e Å3
10 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Zn(C12H8N2)2(H2O)2](C4H2O4)·4H2Oγ = 105.38 (3)°
Mr = 647.93V = 1434.7 (6) Å3
Triclinic, P1Z = 2
a = 10.481 (2) ÅMo Kα radiation
b = 10.597 (2) ŵ = 0.92 mm1
c = 13.568 (3) ÅT = 293 K
α = 97.12 (3)°0.50 × 0.32 × 0.10 mm
β = 93.55 (3)°
Data collection top
Rigaku R-AXIS-RAPID
diffractometer
6500 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5423 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.912Rint = 0.021
13836 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02610 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.06Δρmax = 0.51 e Å3
6500 reflectionsΔρmin = 0.36 e Å3
436 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.740215 (19)0.419239 (18)0.744324 (13)0.01881 (7)
C10.97086 (17)0.12752 (16)0.60677 (12)0.0216 (3)
C21.00193 (17)0.01054 (16)0.54916 (12)0.0228 (3)
H21.02530.05070.58490.027*
C30.54292 (18)0.02698 (16)0.86601 (13)0.0235 (3)
C40.47368 (18)0.01899 (16)0.95322 (13)0.0243 (4)
H40.38890.07750.94110.029*
C1010.99317 (18)0.62464 (17)0.85969 (13)0.0261 (4)
H1011.02660.62510.79780.031*
C1021.07059 (19)0.70882 (18)0.94182 (15)0.0306 (4)
H1021.15260.76550.93400.037*
C1031.0245 (2)0.70689 (18)1.03350 (14)0.0315 (4)
H1031.07490.76251.08880.038*
C1040.90064 (19)0.62054 (18)1.04408 (13)0.0263 (4)
C1050.82702 (17)0.54245 (16)0.95724 (12)0.0209 (3)
C1060.8483 (2)0.6072 (2)1.13893 (14)0.0342 (4)
H1060.89630.65931.19650.041*
C1070.7306 (2)0.5199 (2)1.14527 (13)0.0350 (5)
H1070.70070.50951.20770.042*
C1080.65013 (19)0.44266 (18)1.05770 (13)0.0272 (4)
C1090.69740 (17)0.45544 (16)0.96346 (12)0.0212 (3)
C1100.5225 (2)0.35677 (19)1.05962 (15)0.0321 (4)
H1100.48790.34361.12020.039*
C1110.44977 (19)0.29309 (18)0.97235 (15)0.0311 (4)
H1110.36490.23710.97270.037*
C1120.50449 (18)0.31296 (17)0.88209 (14)0.0259 (4)
H1120.45390.26910.82300.031*
C2010.7425 (2)0.72052 (18)0.73107 (14)0.0320 (4)
H2010.82870.74400.76230.038*
C2020.6849 (2)0.8212 (2)0.71208 (15)0.0402 (5)
H2020.73270.90960.72940.048*
C2030.5581 (2)0.7881 (2)0.66795 (14)0.0397 (5)
H2030.51790.85400.65640.048*
C2040.4882 (2)0.6552 (2)0.63988 (13)0.0321 (4)
C2050.55409 (18)0.55977 (18)0.65993 (12)0.0236 (4)
C2060.3553 (2)0.6121 (3)0.59199 (15)0.0416 (5)
H2060.31090.67460.57970.050*
C2070.2934 (2)0.4828 (3)0.56446 (15)0.0425 (5)
H2070.20680.45750.53390.051*
C2080.35877 (19)0.3835 (2)0.58153 (13)0.0329 (4)
C2090.48906 (17)0.42196 (18)0.62991 (12)0.0247 (4)
C2100.2998 (2)0.2477 (2)0.55319 (15)0.0426 (5)
H2100.21410.21780.52090.051*
C2110.3685 (2)0.1596 (2)0.57315 (16)0.0449 (6)
H2110.32990.06930.55480.054*
C2120.4980 (2)0.20611 (19)0.62162 (14)0.0343 (4)
H2120.54400.14510.63470.041*
N10.87398 (14)0.54400 (14)0.86610 (10)0.0206 (3)
N20.62515 (14)0.39140 (13)0.87679 (10)0.0210 (3)
N30.67945 (15)0.59284 (14)0.70646 (10)0.0231 (3)
N40.55703 (15)0.33404 (14)0.64942 (10)0.0244 (3)
O10.95813 (14)0.12353 (13)0.69809 (9)0.0286 (3)
O20.95872 (15)0.22148 (13)0.56302 (10)0.0343 (3)
O30.66783 (13)0.07833 (13)0.87957 (9)0.0285 (3)
O40.47281 (13)0.01526 (13)0.78560 (9)0.0294 (3)
OW10.88141 (14)0.43684 (12)0.64255 (10)0.0288 (3)
OW20.76621 (13)0.23559 (12)0.75192 (10)0.0260 (3)
OW30.03549 (17)0.67433 (14)0.61186 (11)0.0406 (4)
OW40.21277 (19)0.85772 (18)0.75020 (14)0.0494 (4)
OW50.82287 (15)0.92593 (16)0.95644 (13)0.0407 (3)
OW60.04139 (16)0.98998 (17)0.84401 (11)0.0418 (4)
H320.039 (3)0.710 (2)0.5553 (14)0.050 (7)*
H210.729 (2)0.183 (2)0.7917 (16)0.050 (7)*
H220.8345 (19)0.204 (2)0.7301 (16)0.039 (6)*
H120.908 (3)0.368 (2)0.6194 (19)0.056 (8)*
H310.101 (2)0.727 (2)0.6501 (18)0.060 (8)*
H520.783 (3)0.979 (2)0.937 (2)0.058 (8)*
H610.026 (3)1.035 (3)0.796 (2)0.092 (11)*
H110.937 (2)0.5146 (19)0.6293 (19)0.057 (8)*
H510.853 (3)0.939 (3)1.0196 (15)0.085 (11)*
H620.033 (3)0.972 (4)0.875 (2)0.107 (13)*
H420.164 (3)0.897 (3)0.775 (2)0.052 (8)*
H410.290 (3)0.911 (3)0.757 (2)0.059 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01987 (11)0.01897 (10)0.01792 (10)0.00625 (7)0.00175 (7)0.00208 (7)
C10.0224 (8)0.0201 (8)0.0226 (8)0.0067 (6)0.0056 (6)0.0013 (7)
C20.0266 (9)0.0187 (8)0.0252 (8)0.0084 (7)0.0076 (7)0.0038 (7)
C30.0288 (9)0.0187 (8)0.0266 (9)0.0102 (7)0.0079 (7)0.0058 (7)
C40.0226 (9)0.0215 (8)0.0298 (9)0.0043 (7)0.0079 (7)0.0087 (7)
C1010.0240 (9)0.0277 (9)0.0271 (9)0.0057 (7)0.0009 (7)0.0100 (7)
C1020.0256 (9)0.0240 (9)0.0393 (10)0.0016 (7)0.0049 (8)0.0095 (8)
C1030.0354 (10)0.0239 (9)0.0318 (10)0.0085 (8)0.0125 (8)0.0020 (8)
C1040.0334 (10)0.0250 (8)0.0224 (8)0.0137 (7)0.0029 (7)0.0012 (7)
C1050.0267 (9)0.0196 (8)0.0188 (8)0.0109 (7)0.0013 (6)0.0031 (6)
C1060.0453 (12)0.0403 (11)0.0190 (8)0.0202 (9)0.0027 (8)0.0032 (8)
C1070.0500 (13)0.0452 (11)0.0181 (8)0.0258 (10)0.0082 (8)0.0056 (8)
C1080.0358 (10)0.0290 (9)0.0249 (9)0.0188 (8)0.0109 (7)0.0086 (7)
C1090.0274 (9)0.0200 (8)0.0206 (8)0.0131 (7)0.0057 (7)0.0034 (7)
C1100.0401 (11)0.0338 (10)0.0332 (10)0.0207 (8)0.0202 (8)0.0146 (8)
C1110.0294 (10)0.0230 (8)0.0465 (11)0.0103 (7)0.0184 (9)0.0117 (8)
C1120.0261 (9)0.0197 (8)0.0333 (9)0.0085 (7)0.0080 (7)0.0023 (7)
C2010.0413 (11)0.0253 (9)0.0298 (10)0.0121 (8)0.0000 (8)0.0007 (8)
C2020.0653 (15)0.0260 (10)0.0326 (10)0.0204 (10)0.0022 (10)0.0011 (8)
C2030.0638 (15)0.0397 (11)0.0287 (10)0.0358 (11)0.0076 (10)0.0058 (9)
C2040.0382 (11)0.0481 (12)0.0212 (8)0.0277 (9)0.0094 (8)0.0100 (8)
C2050.0255 (9)0.0336 (9)0.0164 (7)0.0146 (7)0.0051 (6)0.0055 (7)
C2060.0376 (12)0.0702 (16)0.0317 (10)0.0351 (12)0.0073 (9)0.0162 (11)
C2070.0240 (10)0.0801 (17)0.0311 (10)0.0229 (11)0.0033 (8)0.0176 (11)
C2080.0212 (9)0.0543 (12)0.0220 (9)0.0058 (8)0.0034 (7)0.0105 (9)
C2090.0216 (9)0.0369 (10)0.0167 (8)0.0081 (7)0.0041 (6)0.0065 (7)
C2100.0264 (10)0.0592 (14)0.0318 (10)0.0060 (9)0.0028 (8)0.0092 (10)
C2110.0433 (13)0.0390 (12)0.0366 (11)0.0139 (10)0.0029 (9)0.0042 (9)
C2120.0400 (11)0.0293 (9)0.0272 (9)0.0010 (8)0.0017 (8)0.0048 (8)
N10.0214 (7)0.0219 (7)0.0194 (7)0.0065 (5)0.0018 (5)0.0055 (6)
N20.0229 (7)0.0177 (6)0.0239 (7)0.0080 (5)0.0057 (6)0.0022 (6)
N30.0260 (8)0.0238 (7)0.0207 (7)0.0095 (6)0.0015 (6)0.0023 (6)
N40.0256 (8)0.0248 (7)0.0208 (7)0.0031 (6)0.0009 (6)0.0044 (6)
O10.0397 (8)0.0322 (7)0.0207 (6)0.0199 (6)0.0087 (5)0.0043 (5)
O20.0601 (10)0.0252 (6)0.0266 (7)0.0229 (6)0.0159 (6)0.0077 (5)
O30.0239 (7)0.0331 (7)0.0311 (7)0.0068 (5)0.0097 (5)0.0137 (6)
O40.0325 (7)0.0322 (7)0.0250 (6)0.0093 (5)0.0049 (5)0.0079 (5)
OW10.0356 (8)0.0213 (6)0.0330 (7)0.0096 (5)0.0177 (6)0.0067 (5)
OW20.0297 (7)0.0243 (6)0.0312 (7)0.0130 (5)0.0154 (5)0.0127 (5)
OW30.0518 (10)0.0319 (7)0.0301 (8)0.0051 (7)0.0019 (7)0.0118 (6)
OW40.0343 (9)0.0499 (10)0.0547 (10)0.0048 (8)0.0018 (8)0.0117 (8)
OW50.0314 (8)0.0430 (9)0.0489 (10)0.0105 (7)0.0006 (7)0.0134 (8)
OW60.0401 (9)0.0594 (10)0.0360 (8)0.0241 (8)0.0091 (7)0.0199 (7)
Geometric parameters (Å, º) top
Zn—OW12.0742 (14)C112—N21.328 (2)
Zn—OW22.0493 (13)C112—H1120.9300
Zn—N12.1522 (16)C201—N31.329 (2)
Zn—N22.2323 (15)C201—C2021.400 (3)
Zn—N32.2065 (15)C201—H2010.9300
Zn—N42.1554 (17)C202—C2031.360 (3)
C1—O21.251 (2)C202—H2020.9300
C1—O11.259 (2)C203—C2041.396 (3)
C1—C21.503 (2)C203—H2030.9300
C2—C2i1.321 (3)C204—C2051.410 (2)
C2—H20.9300C204—C2061.431 (3)
C3—O41.251 (2)C205—N31.359 (2)
C3—O31.269 (2)C205—C2091.433 (3)
C3—C41.492 (2)C206—C2071.345 (3)
C4—C4ii1.322 (4)C206—H2060.9300
C4—H40.9300C207—C2081.434 (3)
C101—N11.328 (2)C207—H2070.9300
C101—C1021.398 (3)C208—C2101.400 (3)
C101—H1010.9300C208—C2091.410 (3)
C102—C1031.362 (3)C209—N41.355 (2)
C102—H1020.9300C210—C2111.364 (4)
C103—C1041.404 (3)C210—H2100.9300
C103—H1030.9300C211—C2121.404 (3)
C104—C1051.406 (2)C211—H2110.9300
C104—C1061.438 (3)C212—N41.328 (2)
C105—N11.359 (2)C212—H2120.9300
C105—C1091.440 (2)OW1—H120.874 (17)
C106—C1071.346 (3)OW1—H110.919 (17)
C106—H1060.9300OW2—H210.861 (16)
C107—C1081.436 (3)OW2—H220.919 (16)
C107—H1070.9300OW3—H320.897 (16)
C108—C1101.409 (3)OW3—H310.852 (17)
C108—C1091.409 (2)OW4—H420.80 (3)
C109—N21.355 (2)OW4—H410.85 (3)
C110—C1111.362 (3)OW5—H520.838 (17)
C110—H1100.9300OW5—H510.877 (18)
C111—C1121.400 (3)OW6—H610.890 (18)
C111—H1110.9300OW6—H620.894 (19)
OW1—Zn—OW285.59 (6)N2—C112—H112118.4
OW1—Zn—N195.04 (6)C111—C112—H112118.4
OW1—Zn—N2166.71 (5)N3—C201—C202122.9 (2)
OW1—Zn—N393.27 (6)N3—C201—H201118.5
OW1—Zn—N4102.31 (6)C202—C201—H201118.5
OW2—Zn—N1103.74 (6)C203—C202—C201119.1 (2)
OW2—Zn—N286.94 (6)C203—C202—H202120.5
OW2—Zn—N3166.82 (5)C201—C202—H202120.5
OW2—Zn—N491.16 (6)C202—C203—C204120.12 (18)
N1—Zn—N276.09 (6)C202—C203—H203119.9
N1—Zn—N389.43 (6)C204—C203—H203119.9
N1—Zn—N4157.97 (6)C203—C204—C205117.32 (19)
N2—Zn—N396.48 (6)C203—C204—C206123.59 (19)
N2—Zn—N488.81 (6)C205—C204—C206119.1 (2)
N3—Zn—N476.23 (6)N3—C205—C204122.55 (18)
O2—C1—O1123.89 (15)N3—C205—C209117.56 (16)
O2—C1—C2119.60 (15)C204—C205—C209119.89 (17)
O1—C1—C2116.52 (15)C207—C206—C204121.2 (2)
C2i—C2—C1124.0 (2)C207—C206—H206119.4
C2i—C2—H2118.0C204—C206—H206119.4
C1—C2—H2118.0C206—C207—C208121.06 (19)
O4—C3—O3124.88 (16)C206—C207—H207119.5
O4—C3—C4117.41 (16)C208—C207—H207119.5
O3—C3—C4117.69 (16)C210—C208—C209117.2 (2)
C4ii—C4—C3123.5 (2)C210—C208—C207123.5 (2)
C4ii—C4—H4118.2C209—C208—C207119.4 (2)
C3—C4—H4118.2N4—C209—C208122.89 (18)
N1—C101—C102122.94 (17)N4—C209—C205117.77 (16)
N1—C101—H101118.5C208—C209—C205119.33 (17)
C102—C101—H101118.5C211—C210—C208119.71 (19)
C103—C102—C101119.27 (18)C211—C210—H210120.1
C103—C102—H102120.4C208—C210—H210120.1
C101—C102—H102120.4C210—C211—C212119.6 (2)
C102—C103—C104119.64 (17)C210—C211—H211120.2
C102—C103—H103120.2C212—C211—H211120.2
C104—C103—H103120.2N4—C212—C211122.3 (2)
C103—C104—C105117.51 (17)N4—C212—H212118.8
C103—C104—C106123.08 (17)C211—C212—H212118.8
C105—C104—C106119.40 (18)C101—N1—C105118.04 (15)
N1—C105—C104122.53 (16)C101—N1—Zn126.51 (12)
N1—C105—C109117.71 (15)C105—N1—Zn115.38 (11)
C104—C105—C109119.75 (16)C112—N2—C109117.78 (15)
C107—C106—C104120.68 (18)C112—N2—Zn129.07 (12)
C107—C106—H106119.7C109—N2—Zn112.79 (11)
C104—C106—H106119.7C201—N3—C205117.98 (16)
C106—C107—C108121.38 (17)C201—N3—Zn129.06 (13)
C106—C107—H107119.3C205—N3—Zn112.62 (12)
C108—C107—H107119.3C212—N4—C209118.31 (17)
C110—C108—C109117.08 (18)C212—N4—Zn126.62 (14)
C110—C108—C107123.62 (17)C209—N4—Zn114.31 (12)
C109—C108—C107119.25 (18)Zn—OW1—H12120.3 (18)
N2—C109—C108123.06 (17)Zn—OW1—H11126.1 (16)
N2—C109—C105117.59 (15)H12—OW1—H11112 (2)
C108—C109—C105119.34 (16)Zn—OW2—H21124.7 (17)
C111—C110—C108119.72 (17)Zn—OW2—H22127.6 (15)
C111—C110—H110120.1H21—OW2—H22105 (2)
C108—C110—H110120.1H32—OW3—H31103 (2)
C110—C111—C112119.15 (18)H42—OW4—H41107 (3)
C110—C111—H111120.4H52—OW5—H51117 (3)
C112—C111—H111120.4H61—OW6—H62105 (3)
N2—C112—C111123.19 (18)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H11···OW3iii0.92 (2)1.79 (2)2.702 (2)174 (2)
OW3—H32···O2iv0.90 (2)1.84 (2)2.736 (2)178 (2)
OW5—H51···OW6v0.88 (2)2.04 (2)2.898 (2)165 (2)
OW4—H41···O4vi0.85 (3)1.93 (3)2.770 (2)172 (3)
OW5—H52···O3vi0.84 (3)1.99 (3)2.817 (2)170 (2)
OW6—H61···O1vii0.89 (3)1.92 (3)2.796 (2)169 (3)
OW1—H12···O20.87 (3)1.87 (3)2.7399 (19)177 (3)
OW2—H22···O10.92 (2)1.78 (2)2.6877 (18)172 (2)
OW2—H21···O30.86 (2)1.76 (2)2.6202 (19)175 (2)
OW3—H31···OW40.85 (2)1.90 (2)2.739 (3)166 (2)
OW4—H42···OW60.80 (3)2.02 (3)2.826 (3)177 (3)
OW6—H62···OW5viii0.90 (3)1.92 (3)2.810 (2)171 (3)
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+2; (vi) x, y+1, z; (vii) x1, y+1, z; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C12H8N2)2(H2O)2](C4H2O4)·4H2O
Mr647.93
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.481 (2), 10.597 (2), 13.568 (3)
α, β, γ (°)97.12 (3), 93.55 (3), 105.38 (3)
V3)1434.7 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.50 × 0.32 × 0.10
Data collection
DiffractometerRigaku R-AXIS-RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.767, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
13836, 6500, 5423
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.082, 1.06
No. of reflections6500
No. of parameters436
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.36

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Selected geometric parameters (Å, º) top
Zn—OW12.0742 (14)Zn—N22.2323 (15)
Zn—OW22.0493 (13)Zn—N32.2065 (15)
Zn—N12.1522 (16)Zn—N42.1554 (17)
OW1—Zn—OW285.59 (6)OW2—Zn—N491.16 (6)
OW1—Zn—N195.04 (6)N1—Zn—N276.09 (6)
OW1—Zn—N2166.71 (5)N1—Zn—N389.43 (6)
OW1—Zn—N393.27 (6)N1—Zn—N4157.97 (6)
OW1—Zn—N4102.31 (6)N2—Zn—N396.48 (6)
OW2—Zn—N1103.74 (6)N2—Zn—N488.81 (6)
OW2—Zn—N286.94 (6)N3—Zn—N476.23 (6)
OW2—Zn—N3166.82 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H11···OW3i0.92 (2)1.79 (2)2.702 (2)174 (2)
OW3—H32···O2ii0.90 (2)1.84 (2)2.736 (2)178 (2)
OW5—H51···OW6iii0.88 (2)2.04 (2)2.898 (2)165 (2)
OW4—H41···O4iv0.85 (3)1.93 (3)2.770 (2)172 (3)
OW5—H52···O3iv0.84 (3)1.99 (3)2.817 (2)170 (2)
OW6—H61···O1v0.89 (3)1.92 (3)2.796 (2)169 (3)
OW1—H12···O20.87 (3)1.87 (3)2.7399 (19)177 (3)
OW2—H22···O10.92 (2)1.78 (2)2.6877 (18)172 (2)
OW2—H21···O30.86 (2)1.76 (2)2.6202 (19)175 (2)
OW3—H31···OW40.85 (2)1.90 (2)2.739 (3)166 (2)
OW4—H42···OW60.80 (3)2.02 (3)2.826 (3)177 (3)
OW6—H62···OW5vi0.90 (3)1.92 (3)2.810 (2)171 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+2; (iv) x, y+1, z; (v) x1, y+1, z; (vi) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds