Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, N-methyl­taurine, C3H9NO3S, was isolated from the marine sponge Xestospongia pacifica from Swain Reefs, Queensland. The crystal structure displays extensive N—H...O hydrogen bonding interactions between the amine H atoms and sulfonyl O atoms in the zwitterionic mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680300895X/tk6103sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680300895X/tk6103Isup2.hkl
Contains datablock I

CCDC reference: 214642

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • R factor = 0.031
  • wR factor = 0.085
  • Data-to-parameter ratio = 11.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 820 Count of symmetry unique reflns 820 Completeness (_total/calc) 100.00% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

Molecules of 2-(methylamino)ethanesulfonic acid, (I), crystallize in the zwitterionic form with the carboxyl proton transferred to the N atom (Fig. 1 and Table 1). The bond lengths and angles of the molecules are in accord with conventional values (Allan et al., 1987) and related structures (Görbitz et al., 2000).

In the crystal structure, the molecules are linked via a number of N–H···O hydrogen bonds to form a three-dimensional network (Table 2).

In a recent study, N-methyltaurine is reported to be a major osmolyte in a specimen of the tubeworm Lamellibrachia sp. (Yin et al., 2000). Osmolytes are small organic molecules that regulate cell volume by countering osmotic pressure exerted by sea water and it seems reasonable to assume that N-methyltaurine performs a similar role in Xestospongia pacifica.

Experimental top

Compound (I) was isolated from the methanol extract of the marine sponge Xestospongia pacifica from Swain Reefs, Queensland. The extract was subjected to repeated gel-permeation chromatography on Sephadex LH-20 in methanol. Crystals of (I) were obtained on slow evaporation of the methanol from the parent fraction; m.p. 520 K (with decomposition). δH (400 MHz, DMSO-d6, p.p.m.): 4.1 (2H, brs, NH2), 3.16 (3H, s, N–CH3), 3.14 (2H, t, J2,1 = 6.4 Hz, H2), 2.77 (2H, t, J1,2 = 6.4 Hz, H1), (ESMS+): 161.8 (MNa+), (ESMS–) 137.8 (M—H).

Refinement top

H atoms were constrained as riding atoms, fixed to their parent C atoms at a C–H distance of 0.95 Å. Uiso(H) values were set to 1.2Ueq for the parent atom.

Computing details top

Data collection: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC7 Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997-2001); program(s) used to solve structure: TEXSAN; program(s) used to refine structure: TEXSAN and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1980-2001) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN and PLATON.

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) plot showing the atomic numbering scheme for the molecule in the asymmetric unit of (I). Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
2-(methylamino)ethanesulfonic acid top
Crystal data top
C3H9NO3SF(000) = 296
Mr = 139.18Dx = 1.557 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.061 (3) Åθ = 12.9–17.3°
b = 11.931 (3) ŵ = 0.46 mm1
c = 5.4924 (15) ÅT = 295 K
V = 593.8 (3) Å3Prismatic, colorless
Z = 40.40 × 0.40 × 0.15 mm
Data collection top
Rigaku AFC-7R
diffractometer
793 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.052
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
ω–2θ scansh = 115
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.836, Tmax = 0.934l = 37
1011 measured reflections3 standard reflections every 150 reflections
820 independent reflections intensity decay: 0.3%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.18P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.27 e Å3
820 reflectionsΔρmin = 0.24 e Å3
74 parametersExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
0 restraintsExtinction coefficient: 0.154 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (13)
Crystal data top
C3H9NO3SV = 593.8 (3) Å3
Mr = 139.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.061 (3) ŵ = 0.46 mm1
b = 11.931 (3) ÅT = 295 K
c = 5.4924 (15) Å0.40 × 0.40 × 0.15 mm
Data collection top
Rigaku AFC-7R
diffractometer
793 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.052
Tmin = 0.836, Tmax = 0.9343 standard reflections every 150 reflections
1011 measured reflections intensity decay: 0.3%
820 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.27 e Å3
S = 1.06Δρmin = 0.24 e Å3
820 reflectionsAbsolute structure: Flack (1983)
74 parametersAbsolute structure parameter: 0.09 (13)
0 restraints
Special details top

Experimental. The scan width was (1.79 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43693 (6)0.14685 (4)0.65892 (11)0.0246 (2)
O10.4695 (2)0.02903 (14)0.7028 (3)0.0352 (5)
O20.4186 (2)0.16966 (15)0.3985 (3)0.0345 (5)
O30.5385 (2)0.22346 (18)0.7776 (4)0.0434 (6)
N10.0013 (2)0.12425 (16)0.8055 (4)0.0283 (6)
C10.2625 (3)0.17323 (19)0.7963 (4)0.0280 (6)
C20.1429 (2)0.10053 (18)0.6876 (4)0.0254 (6)
C30.1270 (3)0.0623 (2)0.6983 (5)0.0370 (8)
H10.269200.158300.966000.0340*
H20.237300.249900.772800.0340*
H30.167400.023800.710700.0310*
H40.135300.115600.517800.0310*
H50.005200.106700.955700.0340*
H60.018800.194100.793800.0340*
H70.214700.078700.786300.0450*
H80.139100.083800.533000.0450*
H90.108000.016100.706300.0450*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0246 (3)0.0251 (3)0.0241 (3)0.0024 (2)0.0023 (2)0.0027 (2)
O10.0403 (10)0.0305 (8)0.0347 (10)0.0088 (7)0.0035 (8)0.0033 (7)
O20.0455 (11)0.0326 (8)0.0253 (8)0.0011 (8)0.0048 (8)0.0053 (7)
O30.0315 (9)0.0519 (11)0.0469 (11)0.0144 (9)0.0029 (9)0.0189 (10)
N10.0245 (9)0.0322 (10)0.0283 (11)0.0004 (8)0.0018 (9)0.0025 (9)
C10.0254 (10)0.0283 (10)0.0302 (11)0.0007 (9)0.0052 (9)0.0081 (9)
C20.0242 (9)0.0264 (9)0.0256 (11)0.0001 (8)0.0023 (10)0.0030 (9)
C30.0262 (11)0.0404 (13)0.0444 (16)0.0051 (10)0.0047 (12)0.0019 (13)
Geometric parameters (Å, º) top
S1—O11.4564 (18)C1—C21.511 (3)
S1—O21.4654 (18)C1—H10.9509
S1—O31.452 (2)C1—H20.9516
S1—C11.779 (3)C2—H30.9505
N1—C21.485 (3)C2—H40.9523
N1—C31.480 (3)C3—H70.9505
N1—H50.8532C3—H80.9498
N1—H60.8508C3—H90.9521
S1···H6i3.1535C2···O1iii3.243 (3)
O1···C2ii3.243 (3)C2···O1ii3.381 (3)
O1···N1iii2.862 (3)C3···O1iii3.260 (3)
O1···C2iii3.381 (3)C3···O1ii3.302 (3)
O1···C3iii3.302 (3)C3···O2vii3.268 (3)
O1···C3ii3.260 (3)H1···O2ix2.7375
O2···C3i3.268 (3)H1···H52.4707
O2···N1i2.798 (3)H1···O3viii2.8884
O3···N1iv2.945 (3)H2···H62.4169
O3···C1iv3.334 (3)H3···O12.7384
O1···H32.7384H3···H92.5405
O1···H8ii2.7318H3···O2ii2.6455
O1···H4ii2.6216H4···O22.7267
O1···H5iii2.1253H4···H82.5165
O2···H1v2.7375H4···O1iii2.6216
O2···H9iii2.7233H4···O3vii2.6625
O2···H6i2.0198H5···H12.4707
O2···H42.7267H5···O1ii2.1253
O2···H3iii2.6455H5···O3viii2.5185
O3···H7vi2.8260H6···H22.4169
O3···H1iv2.8884H6···S1vii3.1535
O3···H4i2.6625H6···O2vii2.0198
O3···H5iv2.5185H6···O3viii2.6036
O3···H6iv2.6036H7···O3x2.8260
N1···O1ii2.862 (3)H8···H42.5165
N1···O2vii2.798 (3)H8···O1iii2.7318
N1···O3viii2.945 (3)H9···H32.5405
C1···O3viii3.334 (3)H9···O2ii2.7233
O1—S1—O2111.33 (10)S1—C1—H2109.00
O1—S1—O3113.89 (11)C2—C1—H1109.00
O1—S1—C1106.29 (11)C2—C1—H2109.03
O2—S1—O3113.15 (12)H1—C1—H2109.17
O2—S1—C1106.28 (11)N1—C2—H3109.31
O3—S1—C1105.15 (11)N1—C2—H4109.11
C2—N1—C3114.10 (19)C1—C2—H3109.43
C2—N1—H6108.52C1—C2—H4109.29
C3—N1—H5108.38H3—C2—H4109.24
C2—N1—H5108.30N1—C3—H7109.77
H5—N1—H6109.05N1—C3—H8109.53
C3—N1—H6108.41N1—C3—H9109.46
S1—C1—C2111.59 (15)H7—C3—H8109.51
N1—C2—C1110.44 (18)H7—C3—H9109.27
S1—C1—H1109.01H8—C3—H9109.29
O1—S1—C1—C259.98 (18)C3—N1—C2—C1175.97 (19)
O2—S1—C1—C258.72 (18)S1—C1—C2—N1180.00 (15)
O3—S1—C1—C2178.94 (16)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y, z1/2; (iv) x+1/2, y+1/2, z+2; (v) x, y, z1; (vi) x+1, y, z; (vii) x1/2, y+1/2, z+1; (viii) x1/2, y+1/2, z+2; (ix) x, y, z+1; (x) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O1ii0.852.132.862 (3)144
N1—H5···O3viii0.852.522.945 (3)112
N1—H6···O2vii0.852.022.798 (3)152
Symmetry codes: (ii) x+1/2, y, z+1/2; (vii) x1/2, y+1/2, z+1; (viii) x1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC3H9NO3S
Mr139.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)9.061 (3), 11.931 (3), 5.4924 (15)
V3)593.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.40 × 0.40 × 0.15
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.836, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
1011, 820, 793
Rint0.052
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.06
No. of reflections820
No. of parameters74
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24
Absolute structureFlack (1983)
Absolute structure parameter0.09 (13)

Computer programs: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999), MSC/AFC7 Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1997-2001), TEXSAN and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1980-2001) and ORTEP-3 (Farrugia, 1997), TEXSAN and PLATON.

Selected geometric parameters (Å, º) top
S1—O11.4564 (18)S1—C11.779 (3)
S1—O21.4654 (18)N1—C21.485 (3)
S1—O31.452 (2)N1—C31.480 (3)
O1—S1—O2111.33 (10)O3—S1—C1105.15 (11)
O1—S1—O3113.89 (11)C2—N1—C3114.10 (19)
O1—S1—C1106.29 (11)S1—C1—C2111.59 (15)
O2—S1—O3113.15 (12)N1—C2—C1110.44 (18)
O2—S1—C1106.28 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O1i0.852.132.862 (3)144
N1—H5···O3ii0.852.522.945 (3)112
N1—H6···O2iii0.852.022.798 (3)152
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y+1/2, z+2; (iii) x1/2, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds