Download citation
Download citation
link to html
Bis-(3R,4S,8S,9R)-cinchonidinium (2R,3R)-tartrate dihydrate, 2C19H23N2O2+·C4H4O62-·2H2O, is a hydrated salt of cinchonidine, in which the two protonated quinuclidinic nitro­gen groups interact with the ionized carboxyl­ate group of the tartrate; the latter has twofold symmetry. The water mol­ecule interacts with the hydroxyl group of the cation and the O atoms of the carboxyl­ate residues to afford a three-dimensional network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803000850/tk6089sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803000850/tk6089Isup2.hkl
Contains datablock I

CCDC reference: 204698

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.045
  • wR factor = 0.130
  • Data-to-parameter ratio = 7.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
ABSTM_02 Alert B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 Tmin and Tmax reported: 0.498 0.876 Tmin' and Tmax expected: 0.964 0.980 RR' = 0.578 Please check that your absorption correction is appropriate. PLAT_731 Alert B Bond Calc 0.86(5), Rep 0.870(10) .... 5.00 su-Ratio O1W -H1W1 1.555 1.555 PLAT_735 Alert B D-H Calc 0.86(5), Rep 0.870(10) .... 5.00 su-Ratio O1W -H1W1 1.555 1.555
Yellow Alert Alert Level C:
PLAT_731 Alert C Bond Calc 0.84(4), Rep 0.850(10) .... 4.00 su-Ratio O4 -H4O 1.555 1.555 PLAT_731 Alert C Bond Calc 0.87(4), Rep 0.860(10) .... 4.00 su-Ratio O1W -H1W2 1.555 1.555 PLAT_731 Alert C Bond Calc 0.86(3), Rep 0.870(10) .... 3.00 su-Ratio N1 -H1N 1.555 1.555 PLAT_732 Alert C Angle Calc 106(5), Rep 106(2) .... 2.50 su-Ratio H1W1 -O1W -H1W2 1.555 1.555 1.555 PLAT_735 Alert C D-H Calc 0.85(3), Rep 0.840(10) .... 3.00 su-Ratio O1 -H1O 1.555 1.555 PLAT_735 Alert C D-H Calc 0.86(3), Rep 0.870(10) .... 3.00 su-Ratio N1 -H1N 1.555 1.555 PLAT_735 Alert C D-H Calc 0.84(4), Rep 0.850(10) .... 4.00 su-Ratio O4 -H4O 1.555 1.555 PLAT_735 Alert C D-H Calc 0.87(4), Rep 0.860(10) .... 4.00 su-Ratio O1W -H1W2 1.555 1.555 PLAT_736 Alert C H...A Calc 1.84(3), Rep 1.830(10) .... 3.00 su-Ratio H1N -O2 1.555 1.545 General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.118 Tmax scaled 0.980 Tmin scaled 0.557 REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.00 From the CIF: _reflns_number_total 2094 Count of symmetry unique reflns 2104 Completeness (_total/calc) 99.52% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
3 Alert Level B = Potential problem
9 Alert Level C = Please check

Comment top

Chincona alkaloids are widely used for the resolution of racemic acids and tartaric acid is commonly employed for the separation of optically active bases (Eliel, 1996; Collet, 1999). Amongst these alkaloids, (3R,4S,8R,9S)-cinchonan-9-ol owes its physiological activity to the stereochemistry of the chiral atoms C8 and C9 and also to the amino group (on the C8 atom) and the hydroxyl group (on the C9 atom) to form hydrogen bonds with receptors. This alkaloid when treated with one molar equivalent of L-tartaric acid affords cinchoninium L-bitartrate tetrahydrate (Puliti et al., 2001); the bitartrate anions are linked by a carboxyl–hydroxyl hydrogen bond into a chain running along the b axis of the monoclinic unit cell. When the stereochemistry of the alkaloid is altered to 8S,9R, as in (3R,4S,8S,9R)-cinchonan-9-ol, the synthesis furnishes the title diammonium tartrate, (I), as a dihydrate (see Scheme, Fig. 1 and Table 1). The asymmetric unit comprises the cinchonidinium cation, a lattice water molecule and half the tartrate dianion, that lies on a twofold axis.

The carboxylic acid group of the tartrate anion shows almost equivalent bond lengths consistent with deprotonation. The carboxyl O2 atom is strongly hydrogen bonded to the aliphatic ammonium group [N···O = 2.694 (3) Å] and the O4 atom is linked to the hydroxyl group within the same anion [O···O = 2.616 (3) Å]. The lattice water molecule interacts with the hydroxyl group of the cation and two O atoms of carboxylate groups derived from two different anions to afford a three-dimensional network motif. Hydrogen-bonding contacts are summarized in Table 2. The crystal packing is somewhat less compact than that of cinchoninium L-bitartrate tetrahydrate, as noted from the densities of the two salts, which are 1.308 and 1.332 Mg m−3 for di- and tetrahydrates, respectively (Puliti et al., 2001).

Experimental top

Cinchonidine (2.94 g, 10 mmol) and L-tartaric acid (0.75 g, 5 mmol) were dissolved in a small volume of 50:50 ethanol–water; the solution was kept at about 333 K for 10 h. The dihydrate separated from the solution in 80% yield. Found (calculated) for C42H54N4O10: C 64.8 (65.1), H 7.1 (7.0), N 7.0% (7.2%). IR (KBr pellet): CO2 (asymmetric) 1593, 1509; CO2 (symmetric) 1457, 1419, 1391 cm−1.

Refinement top

The H atoms bonded to the N and O atoms were located and refined subject to N—H = O—H = 0.85±0.01 Å; for the water H atoms, the H···H distance was set to 1.39±0.01 Å. The C-bound H atoms were included in the riding-model approximation. The Uiso values of all H atoms were set at 1.2 times those of their parent atoms. The absolute structure was determined on the basis of the known configuration of L-tartrate.

Computing details top

Data collection: CAD-4 VAX/PC (Enraf-Nonius, 1988); cell refinement: CAD-4 VAX/PC; data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of (I), with ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
(I) top
Crystal data top
2C19H23N2O+·C4H4O62·2H2OF(000) = 828
Mr = 774.89Dx = 1.308 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 19.960 (3) ÅCell parameters from 25 reflections
b = 6.625 (2) Åθ = 15.1–19.2°
c = 15.530 (2) ŵ = 0.09 mm1
β = 106.68 (1)°T = 296 K
V = 1967.2 (7) Å3Block, colorless
Z = 20.38 × 0.30 × 0.22 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1703 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 26.0°, θmin = 1.4°
ω–2θ scansh = 2424
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
k = 80
Tmin = 0.498, Tmax = 0.876l = 1919
4178 measured reflections2 standard reflections every 60 min
2094 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.1359P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2094 reflectionsΔρmax = 0.22 e Å3
268 parametersΔρmin = 0.17 e Å3
7 restraintsAbsolute structure: The calculation of the Flack parameter was suppressed by the use of the MERG 4 instruction in SHELXL97
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0
Crystal data top
2C19H23N2O+·C4H4O62·2H2OV = 1967.2 (7) Å3
Mr = 774.89Z = 2
Monoclinic, C2Mo Kα radiation
a = 19.960 (3) ŵ = 0.09 mm1
b = 6.625 (2) ÅT = 296 K
c = 15.530 (2) Å0.38 × 0.30 × 0.22 mm
β = 106.68 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1703 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Rint = 0.045
Tmin = 0.498, Tmax = 0.8762 standard reflections every 60 min
4178 measured reflections intensity decay: 4%
2094 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130Δρmax = 0.22 e Å3
S = 1.11Δρmin = 0.17 e Å3
2094 reflectionsAbsolute structure: The calculation of the Flack parameter was suppressed by the use of the MERG 4 instruction in SHELXL97
268 parametersAbsolute structure parameter: 0
7 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7922 (1)0.5001 (4)0.2810 (2)0.0533 (6)
O20.8693 (1)0.9863 (4)0.4509 (2)0.0513 (6)
O30.8796 (1)1.2929 (5)0.5111 (2)0.0637 (7)
O41.0114 (1)1.2489 (5)0.6007 (1)0.0616 (8)
O1W0.9137 (2)0.6346 (6)0.3968 (3)0.097 (1)
N10.7418 (1)0.1056 (5)0.3504 (1)0.0399 (6)
N20.8394 (2)0.2624 (9)0.0033 (2)0.077 (1)
C10.8650 (2)0.1144 (8)0.0583 (2)0.061 (1)
C20.9005 (2)0.050 (1)0.0336 (3)0.082 (2)
C30.9278 (2)0.202 (1)0.0925 (4)0.088 (2)
C40.9216 (2)0.1971 (9)0.1799 (3)0.071 (1)
C50.8881 (2)0.0391 (6)0.2064 (2)0.0535 (9)
C60.8584 (2)0.1200 (7)0.1475 (2)0.0478 (8)
C70.8221 (1)0.2872 (6)0.1703 (2)0.0432 (8)
C80.7973 (2)0.4341 (7)0.1073 (2)0.056 (1)
C90.8069 (2)0.4119 (9)0.0210 (2)0.070 (1)
C100.8084 (1)0.3008 (5)0.2614 (2)0.0384 (7)
C110.7469 (1)0.1606 (5)0.2585 (2)0.0367 (7)
C120.6755 (1)0.2438 (6)0.2035 (2)0.0464 (8)
C130.6214 (2)0.1976 (6)0.2525 (2)0.0469 (8)
C140.7135 (2)0.2716 (7)0.3954 (2)0.0524 (9)
C150.6391 (2)0.3218 (8)0.3399 (2)0.065 (1)
C160.6954 (2)0.0770 (6)0.3405 (2)0.0476 (8)
C170.6222 (2)0.0257 (6)0.2769 (2)0.0451 (8)
C180.6014 (2)0.1598 (7)0.1960 (2)0.062 (1)
C190.5421 (3)0.249 (1)0.1680 (4)0.117 (2)
C200.9040 (2)1.1285 (6)0.4975 (2)0.0413 (7)
C210.9827 (1)1.0962 (6)0.5379 (2)0.0392 (7)
H1O0.830 (1)0.561 (6)0.308 (2)0.064*
H4O0.982 (2)1.341 (5)0.599 (3)0.074*
H1W10.897 (3)0.735 (5)0.419 (4)0.117*
H1W20.911 (3)0.531 (5)0.430 (3)0.117*
H1N0.783 (1)0.069 (6)0.381 (2)0.048*
H20.90530.05460.02420.099*
H30.95070.30940.07440.106*
H40.94020.30090.21990.085*
H50.88490.03650.26490.064*
H80.77450.54680.12090.068*
H90.78850.51160.02140.084*
H100.84980.25440.30810.046*
H110.75490.03510.22950.044*
H12a0.67860.38850.19600.056*
H12b0.66170.18190.14450.056*
H130.57480.23490.21440.056*
H14a0.74280.39040.40090.063*
H14b0.71360.22950.45520.063*
H15a0.63520.46480.32590.078*
H15b0.60650.28960.37370.078*
H16a0.69130.11720.39880.057*
H16b0.71560.18850.31600.057*
H170.58810.04540.31070.054*
H180.63360.17950.16380.075*
H19a0.50860.23270.19860.140*
H19b0.53250.33060.11710.140*
H210.99060.96510.56830.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.054 (1)0.049 (1)0.053 (1)0.004 (1)0.011 (1)0.007 (1)
O20.034 (1)0.056 (1)0.054 (1)0.004 (1)0.002 (1)0.006 (1)
O30.046 (1)0.085 (2)0.059 (1)0.011 (2)0.014 (1)0.016 (2)
O40.048 (1)0.095 (2)0.041 (1)0.007 (2)0.012 (1)0.024 (2)
O1W0.098 (2)0.055 (2)0.110 (3)0.002 (2)0.016 (2)0.010 (2)
N10.029 (1)0.061 (2)0.028 (1)0.000 (1)0.005 (1)0.004 (1)
N20.061 (2)0.138 (4)0.034 (1)0.027 (3)0.015 (1)0.005 (2)
C10.044 (2)0.097 (3)0.041 (2)0.024 (2)0.013 (1)0.018 (2)
C20.059 (2)0.130 (5)0.062 (2)0.030 (3)0.025 (2)0.049 (3)
C30.061 (2)0.103 (4)0.106 (3)0.018 (3)0.033 (2)0.055 (4)
C40.046 (2)0.079 (3)0.087 (3)0.005 (2)0.019 (2)0.018 (3)
C50.043 (2)0.062 (2)0.056 (2)0.006 (2)0.016 (1)0.007 (2)
C60.036 (1)0.070 (2)0.037 (1)0.015 (2)0.011 (1)0.008 (2)
C70.034 (1)0.059 (2)0.033 (1)0.014 (2)0.005 (1)0.001 (2)
C80.051 (2)0.071 (3)0.044 (2)0.011 (2)0.009 (1)0.012 (2)
C90.059 (2)0.107 (4)0.040 (2)0.019 (3)0.010 (2)0.019 (2)
C100.035 (1)0.044 (2)0.032 (1)0.002 (1)0.004 (1)0.001 (1)
C110.034 (1)0.049 (2)0.026 (1)0.001 (1)0.007 (1)0.002 (1)
C120.037 (1)0.059 (2)0.035 (1)0.005 (2)0.003 (1)0.007 (2)
C130.031 (1)0.067 (2)0.038 (1)0.006 (2)0.002 (1)0.005 (2)
C140.043 (2)0.080 (3)0.033 (1)0.001 (2)0.009 (1)0.012 (2)
C150.049 (2)0.084 (3)0.057 (2)0.012 (2)0.006 (2)0.022 (2)
C160.038 (2)0.065 (2)0.041 (1)0.005 (2)0.012 (1)0.011 (2)
C170.032 (1)0.070 (2)0.035 (1)0.007 (2)0.012 (1)0.003 (2)
C180.059 (2)0.068 (3)0.052 (2)0.009 (2)0.003 (2)0.004 (2)
C190.078 (3)0.115 (5)0.137 (4)0.029 (4)0.002 (3)0.052 (5)
C200.034 (1)0.060 (2)0.032 (1)0.003 (2)0.012 (1)0.007 (2)
C210.033 (1)0.052 (2)0.030 (1)0.002 (2)0.006 (1)0.002 (1)
Geometric parameters (Å, º) top
O1—C101.413 (4)C21—C21i1.526 (5)
O2—C201.267 (4)O1—H1O0.84 (1)
O3—C201.236 (5)O4—H4O0.85 (1)
O4—C211.407 (4)O1W—H1W10.87 (1)
N1—C141.497 (5)O1W—H1W20.86 (1)
N1—C111.505 (3)N1—H1N0.87 (1)
N1—C161.505 (5)C2—H20.9300
N2—C91.298 (7)C3—H30.9300
N2—C11.363 (6)C4—H40.9300
C1—C21.409 (7)C5—H50.9300
C1—C61.429 (4)C8—H80.9300
C2—C31.366 (8)C9—H90.9300
C3—C41.399 (6)C10—H100.9800
C4—C51.366 (6)C11—H110.9800
C5—C61.410 (5)C12—H12a0.9700
C6—C71.423 (5)C12—H12b0.9700
C7—C81.369 (5)C13—H130.9800
C7—C101.519 (4)C14—H14a0.9700
C8—C91.414 (5)C14—H14b0.9700
C10—C111.528 (4)C15—H15a0.9700
C11—C121.539 (4)C15—H15b0.9700
C12—C131.518 (4)C16—H16a0.9700
C13—C171.527 (6)C16—H16b0.9700
C13—C151.539 (5)C17—H170.9800
C14—C151.525 (4)C18—H180.9300
C16—C171.548 (4)C19—H19a0.9300
C17—C181.497 (5)C19—H19b0.9300
C18—C191.284 (6)C21—H210.9800
C20—C211.530 (4)
C14—N1—C11113.7 (3)C2—C3—H3119.9
C14—N1—C16109.6 (2)C4—C3—H3119.9
C11—N1—C16107.8 (2)C5—C4—H4120.1
C9—N2—C1117.6 (3)C3—C4—H4120.1
N2—C1—C2118.8 (4)C4—C5—H5119.0
N2—C1—C6122.7 (4)C6—C5—H5119.0
C2—C1—C6118.5 (4)C7—C8—H8120.5
C3—C2—C1121.6 (4)C9—C8—H8120.5
C2—C3—C4120.1 (5)N2—C9—H9117.6
C5—C4—C3119.8 (5)C8—C9—H9117.6
C4—C5—C6121.9 (3)O1—C10—H10109.3
C5—C6—C7124.7 (3)C7—C10—H10109.3
C5—C6—C1118.0 (4)C11—C10—H10109.3
C7—C6—C1117.2 (4)N1—C11—H11107.1
C8—C7—C6118.7 (3)C10—C11—H11107.1
C8—C7—C10119.9 (3)C12—C11—H11107.1
C6—C7—C10121.3 (3)C13—C12—H12a109.8
C7—C8—C9119.0 (4)C11—C12—H12a109.8
N2—C9—C8124.7 (4)C13—C12—H12b109.8
O1—C10—C7111.7 (3)C11—C12—H12b109.8
O1—C10—C11110.0 (2)H12a—C12—H12b108.3
C7—C10—C11107.1 (2)C12—C13—H13109.6
N1—C11—C10113.1 (2)C17—C13—H13109.6
N1—C11—C12107.9 (2)C15—C13—H13109.6
C10—C11—C12114.0 (3)N1—C14—H14a109.8
C13—C12—C11109.2 (2)C15—C14—H14a109.8
C12—C13—C17111.2 (3)N1—C14—H14b109.8
C12—C13—C15108.5 (3)C15—C14—H14b109.8
C17—C13—C15108.4 (3)H14a—C14—H14b108.2
N1—C14—C15109.5 (3)C14—C15—H15a109.9
C14—C15—C13108.7 (3)C13—C15—H15a109.9
N1—C16—C17109.2 (3)C14—C15—H15b109.9
C18—C17—C13112.7 (3)C13—C15—H15b109.9
C18—C17—C16112.9 (3)H15a—C15—H15b108.3
C13—C17—C16108.2 (3)N1—C16—H16a109.8
C19—C18—C17124.4 (4)C17—C16—H16a109.8
O3—C20—O2125.1 (3)N1—C16—H16b109.8
O3—C20—C21117.5 (3)C17—C16—H16b109.8
O2—C20—C21117.4 (3)H16a—C16—H16b108.3
O4—C21—C21i110.5 (2)C18—C17—H17107.6
O4—C21—C20110.4 (3)C13—C17—H17107.6
C21i—C21—C20108.8 (3)C16—C17—H17107.6
C10—O1—H1O109 (3)C19—C18—H18117.8
C21—O4—H4O110 (3)C17—C18—H18117.8
H1W1—O1W—H1W2106 (2)C18—C19—H19a120.0
C14—N1—H1N112 (2)C18—C19—H19b120.0
C11—N1—H1N106 (2)H19a—C19—H19b120.0
C16—N1—H1N107 (3)O4—C21—H21109.0
C3—C2—H2119.2C21i—C21—H21109.0
C1—C2—H2119.2C20—C21—H21109.0
C9—N2—C1—C2179.9 (4)C16—N1—C11—C1270.1 (3)
C9—N2—C1—C61.0 (5)O1—C10—C11—N177.0 (3)
N2—C1—C2—C3179.5 (4)C7—C10—C11—N1161.4 (3)
C6—C1—C2—C30.4 (6)O1—C10—C11—C1246.8 (3)
C1—C2—C3—C40.5 (6)C7—C10—C11—C1274.8 (3)
C2—C3—C4—C50.1 (6)N1—C11—C12—C1312.7 (4)
C3—C4—C5—C60.9 (6)C10—C11—C12—C13139.2 (3)
C4—C5—C6—C7179.2 (3)C11—C12—C13—C1751.7 (4)
C4—C5—C6—C11.0 (5)C11—C12—C13—C1567.4 (4)
N2—C1—C6—C5178.7 (3)C11—N1—C14—C1562.2 (4)
C2—C1—C6—C50.4 (5)C16—N1—C14—C1558.4 (4)
N2—C1—C6—C71.1 (5)N1—C14—C15—C135.1 (5)
C2—C1—C6—C7179.8 (3)C12—C13—C15—C1456.8 (4)
C5—C6—C7—C8178.4 (3)C17—C13—C15—C1464.1 (4)
C1—C6—C7—C81.4 (4)C14—N1—C16—C1764.2 (3)
C5—C6—C7—C104.0 (5)C11—N1—C16—C1760.0 (3)
C1—C6—C7—C10176.2 (3)C12—C13—C17—C1864.2 (3)
C6—C7—C8—C91.7 (5)C15—C13—C17—C18176.6 (3)
C10—C7—C8—C9176.0 (3)C12—C13—C17—C1661.3 (3)
C1—N2—C9—C81.2 (6)C15—C13—C17—C1657.9 (3)
C7—C8—C9—N21.7 (6)N1—C16—C17—C18121.1 (3)
C8—C7—C10—O120.8 (4)N1—C16—C17—C134.3 (3)
C6—C7—C10—O1161.6 (3)C13—C17—C18—C19105.5 (6)
C8—C7—C10—C1199.8 (3)C16—C17—C18—C19131.6 (5)
C6—C7—C10—C1177.8 (3)O3—C20—C21—O412.7 (4)
C14—N1—C11—C1075.5 (3)O2—C20—C21—O4169.1 (3)
C16—N1—C11—C10162.8 (3)O3—C20—C21—C21i108.7 (2)
C14—N1—C11—C1251.5 (3)O2—C20—C21—C21i69.5 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1W0.84 (1)1.91 (2)2.722 (4)162 (4)
N1—H1N···O2ii0.87 (1)1.83 (1)2.694 (3)177 (3)
O4—H4O···O30.85 (1)2.12 (4)2.616 (3)117 (4)
O1W—H1W1···O20.87 (1)1.86 (2)2.712 (5)167 (5)
O1W—H1W2···O3ii0.86 (1)2.23 (2)3.071 (5)166 (5)
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula2C19H23N2O+·C4H4O62·2H2O
Mr774.89
Crystal system, space groupMonoclinic, C2
Temperature (K)296
a, b, c (Å)19.960 (3), 6.625 (2), 15.530 (2)
β (°) 106.68 (1)
V3)1967.2 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.30 × 0.22
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scan (North et al., 1968)
Tmin, Tmax0.498, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
4178, 2094, 1703
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.11
No. of reflections2094
No. of parameters268
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.17
Absolute structureThe calculation of the Flack parameter was suppressed by the use of the MERG 4 instruction in SHELXL97
Absolute structure parameter0

Computer programs: CAD-4 VAX/PC (Enraf-Nonius, 1988), CAD-4 VAX/PC, XCAD4 (Harms, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C101.413 (4)C6—C71.423 (5)
O2—C201.267 (4)C7—C81.369 (5)
O3—C201.236 (5)C7—C101.519 (4)
O4—C211.407 (4)C8—C91.414 (5)
N1—C141.497 (5)C10—C111.528 (4)
N1—C111.505 (3)C11—C121.539 (4)
N1—C161.505 (5)C12—C131.518 (4)
N2—C91.298 (7)C13—C171.527 (6)
N2—C11.363 (6)C13—C151.539 (5)
C1—C21.409 (7)C14—C151.525 (4)
C1—C61.429 (4)C16—C171.548 (4)
C2—C31.366 (8)C17—C181.497 (5)
C3—C41.399 (6)C18—C191.284 (6)
C4—C51.366 (6)C20—C211.530 (4)
C5—C61.410 (5)C21—C21i1.526 (5)
C14—N1—C11113.7 (3)C7—C10—C11107.1 (2)
C14—N1—C16109.6 (2)N1—C11—C10113.1 (2)
C11—N1—C16107.8 (2)N1—C11—C12107.9 (2)
C9—N2—C1117.6 (3)C10—C11—C12114.0 (3)
N2—C1—C2118.8 (4)C13—C12—C11109.2 (2)
N2—C1—C6122.7 (4)C12—C13—C17111.2 (3)
C2—C1—C6118.5 (4)C12—C13—C15108.5 (3)
C3—C2—C1121.6 (4)C17—C13—C15108.4 (3)
C2—C3—C4120.1 (5)N1—C14—C15109.5 (3)
C5—C4—C3119.8 (5)C14—C15—C13108.7 (3)
C4—C5—C6121.9 (3)N1—C16—C17109.2 (3)
C5—C6—C7124.7 (3)C18—C17—C13112.7 (3)
C5—C6—C1118.0 (4)C18—C17—C16112.9 (3)
C7—C6—C1117.2 (4)C13—C17—C16108.2 (3)
C8—C7—C6118.7 (3)C19—C18—C17124.4 (4)
C8—C7—C10119.9 (3)O3—C20—O2125.1 (3)
C6—C7—C10121.3 (3)O3—C20—C21117.5 (3)
C7—C8—C9119.0 (4)O2—C20—C21117.4 (3)
N2—C9—C8124.7 (4)O4—C21—C21i110.5 (2)
O1—C10—C7111.7 (3)O4—C21—C20110.4 (3)
O1—C10—C11110.0 (2)C21i—C21—C20108.8 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1W0.84 (1)1.91 (2)2.722 (4)162 (4)
N1—H1N···O2ii0.87 (1)1.83 (1)2.694 (3)177 (3)
O4—H4O···O30.85 (1)2.12 (4)2.616 (3)117 (4)
O1W—H1W1···O20.87 (1)1.86 (2)2.712 (5)167 (5)
O1W—H1W2···O3ii0.86 (1)2.23 (2)3.071 (5)166 (5)
Symmetry code: (ii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds