Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Ti(C21H26N2O2S)Cl2], crystallizes as a centrosymmetric dimer, with an eight-membered ring derived from the monomer sub-units by the formation of two Ti—(N,O)—S—O head-to-tail sequences around a crystallographic inversion centre. The titanium atoms each have a distorted octahedral geometry through the nitro­gen and one oxy­gen of the sulfon­amido group [Ti1—O1, Ti—N1 2.280 (3), 2.091 (3) Å], one oxy­gen from the adjacent sulfon­amide [Ti—O2 2.170 (3) Å], a di­methyl­amido nitro­gen and two chlorides.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802015787/tk6076sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802015787/tk6076Isup2.hkl
Contains datablock I

CCDC reference: 140435

Key indicators

  • Single-crystal X-ray study
  • T = 170 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.052
  • wR factor = 0.140
  • Data-to-parameter ratio = 17.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
ABSTM_02 Alert B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 Tmin and Tmax reported: 0.393 0.892 Tmin' and Tmax expected: 0.771 0.892 RR' = 0.510 Please check that your absorption correction is appropriate.
Author response: The ratio given is that given in summary after the SADABS run; It seems possible that the smallest dimension is inaccurate, but the crystal is no longer available to be re-measured.

0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

The title compound, which is related to previously reported structures (Lensink, 1998, Lensink et al., 2001), crystallizes as a centrosymmetric dimer with an eight-membered ring derived from the monomer sub-units by the formation of two Ti—(N,O)—S—O head-to-tail sequences around a crystallographic inversion centre (Fig. 1; Table 1). There are no significant intermolecular contacts in the crystal structure. The titanium atoms have a distorted octahedral geometry through the nitrogen and one oxygen of the sulfonamido group [Ti1—O1, Ti—N1 2.280 (3), 2.091 (3) Å], one oxygen from the adjacent sulfonamide [Ti—O2 2.170 (3) Å], a dimethylamido nitrogen and two chlorides. A similar ring structure has been reported for the yttrium compound, Bis((µ2-trans-1,2-bis(2,4,6-tri-isopropylbenzene-sulfonamidato)cyclo hexane-N,N',O,O',O'')-bis(methylsilyl)-amido-yttrium(III)) (Goerlitzer et al., 1998).

The Ti—N2 bond distance of 1.860 (4) Å is consistent with N(pπ\)–M(dπ\) interaction expected for a dimethylamide, and the Ti—Cl bond distances and relative geometries are similar to those found in dichloro-(4-methyl-2-(trimethylsilylamino)pyridine-N,N')-dimethyl amino-dimethylamido-titanium (Fuhrmann et al., 1996). The S—O bond distances [1.471 (3), 1.477 (3) Å] reflect the equivalent dative binding of the O atoms to the titanium centres (Lensink et al., 2001). By comparison with the free 3-[3-indenyl]propyl group in N-(3-(3-indenyl)propyl)benzylammonium bromide (Groux et al., 1995), it appears that the total geometry of the group is unaffected by its link to the complex, with the only significant difference being close to the nitrogen N1, with an N1—C8—C9—C10 torsion angle here of 74.8 (5)° compared with −54.4 (3)°.

Experimental top

A solution of C9H7(CH2)3N(H)SO2C6H4CH3 (0.13 g, 0.40 mmol) in benzene-d6 (2 ml) was added dropwise to a solution of Ti(NMe2)4 (89 mg, 0.40 mmol) dissolved in benzene-d6 (3 ml), turning the mixture from yellow to orange. The mixture was refluxed over a period of 4 days. Subsequently Me3SiCl (108 mg, 0.99 mmol) was slowly added. The mixture was stirred for 20 h, resulting in a dark-brown solution. Recrystallization from a CH2Cl2/pentane mixture resulted in crystals suitable for X-ray analysis. Yield: 20 mg (10%).

Refinement top

All H atoms except those on methyl carbons were constrained to an isotropic thermal parameter 1.2 times that of the equivalent U of their parent atom. Atom C20 was disordered over two sites (a/b), with final occupancies 0.78 (1)/0.22 (1) and a common U of 0.069 Å2.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of [Ti(C21H26N2O2S)Cl2] (Farrugia, 1997). Displacement ellipsoids are drawn at the 30% probability level. H atoms have arbitrary radii.
(I) top
Crystal data top
[Ti(C21H26NO2S)Cl2]Z = 2
Mr = 489.30F(000) = 508
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.688 (3) ÅCell parameters from 6100 reflections
b = 10.122 (5) Åθ = 2.6–25.8°
c = 16.212 (7) ŵ = 0.71 mm1
α = 94.808 (6)°T = 170 K
β = 100.973 (5)°Block, orange-brown
γ = 109.200 (5)°0.36 × 0.20 × 0.16 mm
V = 1154.9 (9) Å3
Data collection top
Make? CCD area-detector
diffractometer
4641 independent reflections
Radiation source: fine-focus sealed tube2627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 8.192 pixels mm-1θmax = 26.4°, θmin = 2.3°
ϕ and ω scansh = 94
Absorption correction: multi-scan
(Blessing, 1995)
k = 1212
Tmin = 0.393, Tmax = 0.892l = 2020
14834 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0747P)2]
where P = (Fo2 + 2Fc2)/3
4641 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Ti(C21H26NO2S)Cl2]γ = 109.200 (5)°
Mr = 489.30V = 1154.9 (9) Å3
Triclinic, P1Z = 2
a = 7.688 (3) ÅMo Kα radiation
b = 10.122 (5) ŵ = 0.71 mm1
c = 16.212 (7) ÅT = 170 K
α = 94.808 (6)°0.36 × 0.20 × 0.16 mm
β = 100.973 (5)°
Data collection top
Make? CCD area-detector
diffractometer
4641 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2627 reflections with I > 2σ(I)
Tmin = 0.393, Tmax = 0.892Rint = 0.078
14834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 0.94Δρmax = 0.73 e Å3
4641 reflectionsΔρmin = 0.54 e Å3
264 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection and analyzing duplicate reflections. The standard 1.0 mm diameter collimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.94332 (10)0.28639 (7)0.38452 (4)0.0292 (2)
Cl10.95819 (16)0.25997 (11)0.24397 (6)0.0419 (3)
Cl21.17818 (16)0.19587 (12)0.43266 (7)0.0456 (3)
S11.02898 (14)0.58169 (10)0.40401 (6)0.0286 (3)
O11.1662 (4)0.5083 (3)0.40947 (16)0.0305 (6)
O20.9501 (4)0.3195 (3)0.51925 (16)0.0347 (7)
N10.8382 (4)0.4523 (3)0.37891 (19)0.0299 (8)
N20.7201 (5)0.1317 (4)0.3684 (2)0.0420 (9)
C11.0635 (5)0.6921 (4)0.3245 (2)0.0273 (9)
C21.1104 (6)0.6447 (4)0.2518 (2)0.0336 (10)
H21.13050.55690.24620.040*
C31.1275 (6)0.7269 (4)0.1875 (3)0.0359 (10)
H31.15960.69450.13780.043*
C41.0986 (5)0.8563 (4)0.1941 (3)0.0347 (10)
C51.0513 (6)0.9014 (4)0.2677 (3)0.0388 (11)
H51.03030.98880.27330.047*
C61.0344 (6)0.8202 (4)0.3331 (2)0.0344 (10)
H61.00310.85240.38310.041*
C71.1197 (7)0.9453 (5)0.1235 (3)0.0502 (13)
H7A1.15290.89670.07730.060*
H7B1.21991.03760.14570.060*
H7C1.00000.95910.10170.060*
C80.6535 (6)0.4668 (5)0.3838 (3)0.0403 (11)
H8A0.67710.56380.41200.048*
H8B0.59200.39940.41940.048*
C90.5186 (6)0.4390 (5)0.2963 (3)0.0453 (12)
H9A0.51680.35110.26380.054*
H9B0.38910.42240.30450.054*
C100.5674 (7)0.5560 (5)0.2441 (3)0.0502 (13)
H10A0.69850.57500.23760.060*
H10B0.56480.64310.27570.060*
C110.4381 (6)0.5267 (5)0.1564 (3)0.0411 (11)
C120.2972 (6)0.4079 (5)0.1174 (3)0.0423 (11)
H120.25610.32520.14270.051*
C130.2098 (6)0.4207 (5)0.0272 (3)0.0454 (12)
H13A0.22440.35150.01540.054*
H13B0.07390.40690.01990.054*
C140.3240 (6)0.5704 (5)0.0205 (3)0.0416 (11)
C150.4566 (6)0.6325 (5)0.0976 (3)0.0397 (11)
C160.5788 (7)0.7745 (5)0.1090 (3)0.0539 (13)
H160.66880.81820.16120.065*
C170.5625 (8)0.8490 (6)0.0404 (4)0.0618 (15)
H170.64280.94500.04610.074*
C180.4307 (8)0.7844 (7)0.0357 (4)0.0680 (16)
H180.42440.83630.08160.082*
C190.3092 (7)0.6469 (6)0.0457 (3)0.0555 (14)
H190.21640.60500.09720.067*
C20A0.6843 (11)0.0315 (9)0.4275 (5)0.069 (2)*0.785 (11)
H20A0.59030.04540.45710.083*0.785 (11)
H20B0.80230.04650.46910.083*0.785 (11)
H20C0.63610.06530.39620.083*0.785 (11)
C20B0.612 (4)0.092 (3)0.4359 (17)0.069 (2)*0.215 (11)
H20D0.56070.16570.45020.083*0.215 (11)
H20E0.69620.08300.48680.083*0.215 (11)
H20F0.50720.00150.41470.083*0.215 (11)
C210.5616 (8)0.0853 (6)0.2922 (3)0.0774 (18)
H21A0.53780.01320.26880.093*
H21B0.59430.14600.24930.093*
H21C0.44750.09220.30780.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0380 (4)0.0287 (4)0.0230 (4)0.0135 (3)0.0078 (3)0.0065 (3)
Cl10.0590 (7)0.0422 (7)0.0272 (6)0.0186 (6)0.0149 (5)0.0062 (5)
Cl20.0586 (7)0.0432 (7)0.0424 (7)0.0318 (6)0.0050 (5)0.0057 (5)
S10.0387 (6)0.0300 (5)0.0220 (5)0.0166 (5)0.0088 (4)0.0085 (4)
O10.0380 (16)0.0301 (15)0.0287 (15)0.0188 (13)0.0071 (12)0.0075 (12)
O20.0565 (18)0.0312 (16)0.0216 (14)0.0199 (14)0.0125 (13)0.0060 (12)
N10.0385 (19)0.0332 (19)0.0256 (18)0.0181 (16)0.0134 (15)0.0097 (15)
N20.043 (2)0.043 (2)0.038 (2)0.0087 (18)0.0145 (17)0.0120 (17)
C10.034 (2)0.032 (2)0.022 (2)0.0150 (19)0.0093 (17)0.0110 (17)
C20.043 (2)0.032 (2)0.033 (2)0.019 (2)0.0133 (19)0.0092 (19)
C30.038 (2)0.047 (3)0.026 (2)0.016 (2)0.0125 (18)0.009 (2)
C40.034 (2)0.037 (2)0.034 (2)0.011 (2)0.0099 (19)0.0121 (19)
C50.054 (3)0.028 (2)0.035 (3)0.016 (2)0.008 (2)0.0090 (19)
C60.049 (3)0.032 (2)0.026 (2)0.019 (2)0.0091 (19)0.0040 (18)
C70.070 (3)0.041 (3)0.038 (3)0.013 (3)0.017 (2)0.015 (2)
C80.039 (2)0.051 (3)0.041 (3)0.024 (2)0.012 (2)0.015 (2)
C90.045 (3)0.050 (3)0.045 (3)0.021 (2)0.007 (2)0.015 (2)
C100.052 (3)0.058 (3)0.044 (3)0.025 (3)0.006 (2)0.016 (2)
C110.044 (3)0.050 (3)0.037 (3)0.025 (2)0.012 (2)0.010 (2)
C120.044 (3)0.051 (3)0.044 (3)0.025 (2)0.020 (2)0.017 (2)
C130.042 (3)0.059 (3)0.037 (3)0.023 (2)0.009 (2)0.001 (2)
C140.046 (3)0.064 (3)0.033 (2)0.038 (3)0.020 (2)0.013 (2)
C150.038 (2)0.048 (3)0.044 (3)0.025 (2)0.015 (2)0.016 (2)
C160.052 (3)0.063 (3)0.053 (3)0.029 (3)0.009 (2)0.011 (3)
C170.072 (4)0.052 (3)0.079 (4)0.032 (3)0.030 (3)0.032 (3)
C180.087 (4)0.092 (5)0.058 (4)0.062 (4)0.029 (3)0.034 (3)
C190.065 (3)0.075 (4)0.043 (3)0.040 (3)0.019 (3)0.021 (3)
C210.064 (4)0.070 (4)0.069 (4)0.003 (3)0.001 (3)0.001 (3)
Geometric parameters (Å, º) top
Ti1—N21.860 (4)C9—C101.502 (6)
Ti1—N12.091 (3)C9—H9A0.9900
Ti1—O22.170 (3)C9—H9B0.9900
Ti1—O12.280 (3)C10—C111.515 (6)
Ti1—Cl12.3010 (16)C10—H10A0.9900
Ti1—Cl22.3196 (14)C10—H10B0.9900
S1—O11.471 (3)C11—C121.331 (6)
S1—O2i1.477 (3)C11—C151.482 (6)
S1—N11.566 (3)C12—C131.523 (6)
S1—C11.776 (4)C12—H120.9500
O2—S1i1.477 (3)C13—C141.506 (6)
N1—C81.491 (5)C13—H13A0.9900
N2—C20A1.450 (7)C13—H13B0.9900
N2—C211.479 (6)C14—C191.383 (6)
N2—C20B1.50 (3)C14—C151.400 (6)
C1—C61.387 (5)C15—C161.408 (6)
C1—C21.389 (5)C16—C171.404 (6)
C2—C31.387 (5)C16—H160.9500
C2—H20.9500C17—C181.389 (7)
C3—C41.397 (6)C17—H170.9500
C3—H30.9500C18—C191.373 (7)
C4—C51.395 (6)C18—H180.9500
C4—C71.516 (5)C19—H190.9500
C5—C61.395 (5)C20A—H20A0.9800
C5—H50.9500C20A—H20B0.9800
C6—H60.9500C20A—H20C0.9800
C7—H7A0.9800C20B—H20D0.9800
C7—H7B0.9800C20B—H20E0.9800
C7—H7C0.9800C20B—H20F0.9800
C8—C91.533 (6)C21—H21A0.9800
C8—H8A0.9900C21—H21B0.9800
C8—H8B0.9900C21—H21C0.9800
N2—Ti1—N1100.84 (15)C9—C8—H8B109.0
N2—Ti1—O289.40 (13)H8A—C8—H8B107.8
N1—Ti1—O284.76 (11)C10—C9—C8115.0 (4)
N2—Ti1—O1164.90 (14)C10—C9—H9A108.5
N1—Ti1—O164.48 (12)C8—C9—H9A108.5
O2—Ti1—O185.83 (10)C10—C9—H9B108.5
N2—Ti1—Cl194.28 (12)C8—C9—H9B108.5
N1—Ti1—Cl195.94 (9)H9A—C9—H9B107.5
O2—Ti1—Cl1176.05 (8)C9—C10—C11115.1 (4)
O1—Ti1—Cl190.96 (7)C9—C10—H10A108.5
N2—Ti1—Cl2103.80 (12)C11—C10—H10A108.5
N1—Ti1—Cl2151.82 (10)C9—C10—H10B108.5
O2—Ti1—Cl282.06 (8)C11—C10—H10B108.5
O1—Ti1—Cl289.73 (8)H10A—C10—H10B107.5
Cl1—Ti1—Cl295.64 (5)C12—C11—C15108.3 (4)
O1—S1—O2i116.01 (16)C12—C11—C10128.7 (4)
O1—S1—N1100.58 (17)C15—C11—C10122.9 (4)
O2i—S1—N1114.78 (17)C11—C12—C13111.9 (4)
O1—S1—C1108.32 (17)C11—C12—H12124.1
O2i—S1—C1103.70 (18)C13—C12—H12124.1
N1—S1—C1113.70 (17)C14—C13—C12102.1 (3)
S1—O1—Ti194.92 (13)C14—C13—H13A111.4
S1i—O2—Ti1148.35 (16)C12—C13—H13A111.4
C8—N1—S1122.1 (3)C14—C13—H13B111.4
C8—N1—Ti1134.6 (3)C12—C13—H13B111.4
S1—N1—Ti199.79 (16)H13A—C13—H13B109.2
C20A—N2—C21109.9 (4)C19—C14—C15120.9 (5)
C21—N2—C20B99.8 (11)C19—C14—C13130.2 (4)
C20A—N2—Ti1123.8 (4)C15—C14—C13108.8 (4)
C21—N2—Ti1126.1 (3)C14—C15—C16120.4 (4)
C20B—N2—Ti1124.2 (11)C14—C15—C11108.9 (4)
C6—C1—C2120.6 (4)C16—C15—C11130.7 (4)
C6—C1—S1120.4 (3)C17—C16—C15117.5 (5)
C2—C1—S1118.9 (3)C17—C16—H16121.3
C3—C2—C1119.2 (4)C15—C16—H16121.3
C3—C2—H2120.4C18—C17—C16120.9 (5)
C1—C2—H2120.4C18—C17—H17119.5
C2—C3—C4121.5 (4)C16—C17—H17119.5
C2—C3—H3119.2C19—C18—C17121.3 (5)
C4—C3—H3119.2C19—C18—H18119.4
C5—C4—C3118.1 (4)C17—C18—H18119.4
C5—C4—C7121.1 (4)C18—C19—C14119.0 (5)
C3—C4—C7120.7 (4)C18—C19—H19120.5
C6—C5—C4121.0 (4)C14—C19—H19120.5
C6—C5—H5119.5N2—C20A—H20A109.5
C4—C5—H5119.5N2—C20A—H20B109.5
C1—C6—C5119.5 (4)N2—C20A—H20C109.5
C1—C6—H6120.3N2—C20B—H20D109.5
C5—C6—H6120.3N2—C20B—H20E109.5
C4—C7—H7A109.5H20D—C20B—H20E109.5
C4—C7—H7B109.5N2—C20B—H20F109.5
H7A—C7—H7B109.5H20D—C20B—H20F109.5
C4—C7—H7C109.5H20E—C20B—H20F109.5
H7A—C7—H7C109.5N2—C21—H21A109.5
H7B—C7—H7C109.5N2—C21—H21B109.5
N1—C8—C9112.9 (4)H21A—C21—H21B109.5
N1—C8—H8A109.0N2—C21—H21C109.5
C9—C8—H8A109.0H21A—C21—H21C109.5
N1—C8—H8B109.0H21B—C21—H21C109.5
O2i—S1—O1—Ti1120.47 (14)O1—S1—C1—C6146.5 (3)
N1—S1—O1—Ti13.98 (15)O2i—S1—C1—C622.7 (4)
C1—S1—O1—Ti1123.49 (15)N1—S1—C1—C6102.6 (3)
N2—Ti1—O1—S111.0 (5)Ti1—S1—C1—C6155.6 (3)
N1—Ti1—O1—S13.24 (12)O1—S1—C1—C236.9 (3)
O2—Ti1—O1—S182.93 (13)O2i—S1—C1—C2160.7 (3)
Cl1—Ti1—O1—S199.37 (11)N1—S1—C1—C274.0 (3)
Cl2—Ti1—O1—S1164.99 (11)Ti1—S1—C1—C221.0 (4)
N2—Ti1—O2—S1i130.9 (3)C6—C1—C2—C30.1 (6)
N1—Ti1—O2—S1i29.9 (3)S1—C1—C2—C3176.5 (3)
O1—Ti1—O2—S1i34.8 (3)C1—C2—C3—C40.0 (6)
Cl2—Ti1—O2—S1i125.1 (3)C2—C3—C4—C50.1 (6)
O1—S1—N1—C8166.1 (3)C2—C3—C4—C7179.5 (4)
O2i—S1—N1—C840.9 (3)C3—C4—C5—C60.4 (6)
C1—S1—N1—C878.3 (3)C7—C4—C5—C6179.2 (4)
Ti1—S1—N1—C8161.8 (4)C2—C1—C6—C50.4 (6)
O1—S1—N1—Ti14.39 (17)S1—C1—C6—C5176.2 (3)
O2i—S1—N1—Ti1120.90 (15)C4—C5—C6—C10.5 (6)
C1—S1—N1—Ti1119.93 (17)S1—N1—C8—C9113.5 (4)
N2—Ti1—N1—C815.0 (4)Ti1—N1—C8—C992.2 (4)
O2—Ti1—N1—C873.4 (3)N1—C8—C9—C1074.8 (5)
O1—Ti1—N1—C8161.2 (4)C8—C9—C10—C11178.0 (4)
Cl1—Ti1—N1—C8110.5 (3)C9—C10—C11—C125.7 (7)
Cl2—Ti1—N1—C8135.7 (3)C9—C10—C11—C15176.2 (4)
N2—Ti1—N1—S1173.17 (16)C15—C11—C12—C131.5 (5)
O2—Ti1—N1—S184.79 (15)C10—C11—C12—C13176.8 (4)
O1—Ti1—N1—S13.08 (12)C11—C12—C13—C140.8 (5)
Cl1—Ti1—N1—S191.30 (13)C12—C13—C14—C19178.1 (5)
Cl2—Ti1—N1—S122.5 (3)C12—C13—C14—C150.4 (5)
N1—Ti1—N2—C20A123.6 (5)C19—C14—C15—C160.4 (7)
O2—Ti1—N2—C20A39.1 (5)C13—C14—C15—C16178.4 (4)
O1—Ti1—N2—C20A110.5 (7)C19—C14—C15—C11179.2 (4)
Cl1—Ti1—N2—C20A139.5 (5)C13—C14—C15—C111.3 (5)
Cl2—Ti1—N2—C20A42.6 (5)C12—C11—C15—C141.8 (5)
N1—Ti1—N2—C2161.9 (4)C10—C11—C15—C14176.6 (4)
O2—Ti1—N2—C21146.4 (4)C12—C11—C15—C16177.8 (5)
O1—Ti1—N2—C2175.0 (7)C10—C11—C15—C163.8 (8)
Cl1—Ti1—N2—C2135.0 (4)C14—C15—C16—C170.5 (7)
Cl2—Ti1—N2—C21131.9 (4)C11—C15—C16—C17180.0 (5)
N1—Ti1—N2—C20B76.8 (16)C15—C16—C17—C180.1 (8)
O2—Ti1—N2—C20B7.7 (16)C16—C17—C18—C191.5 (8)
O1—Ti1—N2—C20B63.7 (16)C17—C18—C19—C142.4 (8)
Cl1—Ti1—N2—C20B173.7 (16)C15—C14—C19—C181.9 (7)
Cl2—Ti1—N2—C20B89.4 (16)C13—C14—C19—C18179.3 (4)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ti(C21H26NO2S)Cl2]
Mr489.30
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)7.688 (3), 10.122 (5), 16.212 (7)
α, β, γ (°)94.808 (6), 100.973 (5), 109.200 (5)
V3)1154.9 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.36 × 0.20 × 0.16
Data collection
DiffractometerMake? CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.393, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
14834, 4641, 2627
Rint0.078
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 0.94
No. of reflections4641
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.54

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ti1—N21.860 (4)Ti1—Cl22.3196 (14)
Ti1—N12.091 (3)S1—O11.471 (3)
Ti1—O22.170 (3)S1—O2i1.477 (3)
Ti1—O12.280 (3)S1—N11.566 (3)
Ti1—Cl12.3010 (16)S1—C11.776 (4)
N2—Ti1—N1100.84 (15)C8—N1—Ti1134.6 (3)
Cl1—Ti1—Cl295.64 (5)S1—N1—Ti199.79 (16)
C8—N1—S1122.1 (3)
Symmetry code: (i) x+2, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds