Download citation
Download citation
link to html
In crystals of the title compound, C16H14N4O4, the mol­ecule is found in an extended near-planar conformation, stabilized by intramolecular attractive interactions and electron delocalization. This analysis establishes an otherwise ambiguous spectroscopic assignment of the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015574/tk6038sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015574/tk6038Isup2.hkl
Contains datablock I

CCDC reference: 175375

Key indicators

  • Single-crystal X-ray study
  • T = 168 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.052
  • wR factor = 0.088
  • Data-to-parameter ratio = 10.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

We have reported that brief photolysis or flash vacuum pyrolysis of the nitropyridylisoxazolone (1) gives a good yield of the indole (2) (Khalafy et al., 1999) arising from the intramolecular cyclization of the carbene intermediate. Subsequently, we found that reaction of the isoxazolone (1) with a weak base in ethanol gave the same compound (2), by a sequence that is mechanistically different, and clearly incompatible with a carbenoid intermediate (Khalafy & Prager, 2000). During an extension of the latter reaction to a number of arylamino analogues, we encountered substrates that led to the formation of two products, one of which was analogous to the indole (2), and the other to the isomeric ethyl 6-nitro-2-phenylaminoimidazo[1,2-a]pyridine-3-carboxylate, (3). After comparison of the spectroscopic properties of the indole and imidazopyridine compounds, we suspected that the structure of the product (2) had been misassigned and that the product of all three reactions of (1) was the imidazopyridine (3). This suspicion has been clearly confirmed by the crystal structure determination of (3).

In the crystal structure of the title compound, (3), the molecule is flat with all the non-H atoms within ±0.19 Å of a common plane (Fig. 1). This conformation is clearly stabilized by three attractive intramolecular contacts detailed in Table 2. This conformation is further stabilized by the electron delocalization that occurs. Seven C—N bonds in the molecule (omitting N2—C6) are of similar length, ranging from1.328 (3) to 1.405 (3) Å, with C2—N3 notably 1.353 (3) Å (Table 1). Therefore, the C2—N3 bond has significant double-bond character which in turn would lead to higher acidity for H3 and a stronger N3—H···O3 hydrogen bond (Table 2). The molecules are arranged in sheets throughout the structure parallel to (212) and about 3.3 Å apart. There is an angle of 3.07 (7)° between the planes of the nitro group (C6, N2, O1 and O2) and the imidazopyridine moiety. There are 26 distinct examples of this imidazopyridine moiety, substituted in a variety of ways, in the April, 2001 version of the Cambridge Structural Database (Allen & Kennard, 1993).

Experimental top

Ethyl 2-(5-nitropyridin-2-yl)-5-oxo-3-phenylamino-2,5-dihydroisoxazole-4-carboxylate (Khalafy et al., 1999) (0.020 g, 0.054 mmol) and potassium carbonate (0.037 g, 0.270 mmol) were refluxed in ethanol (2 ml) for 1 h. After 20 min the solution turned from orange to red. The solution was cooled, quenched with 1 M HCl (5 ml) and extracted with CH2Cl2 (3 × 25 ml). The combined extracts were washed with brine (1 × 20 ml), dried (MgSO4) and the solvent was removed in vacuo, yielding a red solid which was recrystallized from ethanol to give the title compound (3) as yellow needles (0.012 g, 67%): m.p. 473–475 K; νmax (film): 3330, 1667, 1619, 1604, 1576, 1344, 1310, 1212 cm-1; 1H NMR (CDCl3, 200 MHz): δ 9.87, bs, 1H; 8.93, bs, 1H; 8.15, dd, J = 9.6, 2.1 Hz, 1H; 7.72, d, J = 7.8 Hz, 2H; 7.52, d, J = 9.6 Hz, 1H; 7.38, t, J = 7.8 Hz, 2H; 7.07, t, J = 7.8 Hz, 1H; 4.56, q, J = 7.1 Hz, 2H; 1.55, t, J = 7.1 Hz, 3H,); 13C NMR (CDCl3, 50 MHz): δ 160.8, 147.0, 139.4, 137.0, 129.2, 126.9, 122.9, 122.4, 118.8, 114.0, 98.9, 61.1, 14.6 (one carbonyl unsighted); m/z: 326 (M, 100%), 280 (54), 234 (27), 206 (10), 130 (11), 104 (17), 103 (15), 77 (36), 51 (13), 44 (15).

Refinement top

All H atoms were observed in a difference map but were placed at calculated positions.

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: Xtal3.7 ADDREF SORTRF (Hall et al., 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: Xtal3.7 CRYLSQ; molecular graphics: Xtal3.7; software used to prepare material for publication: Xtal3.7 BONDLA CIFIO.

Figures top
[Figure 1] Fig. 1. View of the title molecule, (3), showing the atom labels. Displacement ellipsoids are at the 50% probability level.
Ethyl 6-nitro-2-phenylaminoimidazo[1,2-a]pyridine-3-carboxylate top
Crystal data top
C16H14N4O4Z = 2
Mr = 326.31F(000) = 340
Triclinic, P1Dx = 1.466 Mg m3
Hall symbol: -P 1Melting point = 200–202 K
a = 7.868 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.489 (4) ÅCell parameters from 2508 reflections
c = 12.281 (6) Åθ = 2.7–26.0°
α = 104.38 (1)°µ = 0.11 mm1
β = 92.30 (1)°T = 168 K
γ = 110.07 (1)°Plate, yellow
V = 739.2 (6) Å30.57 × 0.05 × 0.04 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.03
ω scansθmax = 26.3°, θmin = 2.7°
9625 measured reflectionsh = 99
2989 independent reflectionsk = 109
2173 reflections with F2 > σ(F2)l = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.052H-atom parameters not refined
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.04Fo2)2]1/2
S = 1.01(Δ/σ)max < 0.001
2173 reflectionsΔρmax = 0.35 e Å3
217 parametersΔρmin = 0.43 e Å3
Crystal data top
C16H14N4O4γ = 110.07 (1)°
Mr = 326.31V = 739.2 (6) Å3
Triclinic, P1Z = 2
a = 7.868 (4) ÅMo Kα radiation
b = 8.489 (4) ŵ = 0.11 mm1
c = 12.281 (6) ÅT = 168 K
α = 104.38 (1)°0.57 × 0.05 × 0.04 mm
β = 92.30 (1)°
Data collection top
Bruker P4
diffractometer
2173 reflections with F2 > σ(F2)
9625 measured reflectionsRint = 0.03
2989 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.088H-atom parameters not refined
S = 1.01Δρmax = 0.35 e Å3
2173 reflectionsΔρmin = 0.43 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2799 (2)0.2258 (2)0.41191 (14)0.0495 (8)
O20.1648 (2)0.5073 (2)0.44612 (13)0.0386 (8)
O30.3638 (2)0.87524 (19)0.11382 (12)0.0347 (7)
O40.1937 (2)0.83149 (18)0.25432 (12)0.0325 (7)
N10.1324 (2)0.3158 (2)0.00132 (14)0.0276 (8)
N20.1906 (2)0.3598 (3)0.38705 (16)0.0328 (9)
N30.3374 (2)0.5649 (2)0.05142 (15)0.0287 (8)
N40.0750 (2)0.4668 (2)0.16308 (14)0.0247 (8)
C20.2267 (3)0.4901 (3)0.01771 (18)0.0261 (9)
C30.1960 (3)0.5902 (3)0.11813 (17)0.0250 (9)
C50.0016 (3)0.4851 (3)0.26123 (18)0.0261 (9)
C60.1143 (3)0.3379 (3)0.28145 (18)0.0269 (10)
C70.1617 (3)0.1717 (3)0.20586 (19)0.0321 (10)
C80.0836 (3)0.1543 (3)0.1095 (2)0.0314 (10)
C90.0402 (3)0.3024 (3)0.08636 (18)0.0261 (9)
C100.2604 (3)0.7766 (3)0.15997 (19)0.0285 (10)
C110.2431 (3)1.0191 (3)0.2992 (2)0.0374 (11)
C120.1466 (3)1.0451 (3)0.4000 (2)0.0456 (12)
C130.3876 (3)0.4878 (3)0.15353 (17)0.0257 (9)
C140.5070 (3)0.6015 (3)0.20474 (19)0.0295 (10)
C150.5639 (3)0.5360 (3)0.3044 (2)0.0330 (10)
C160.5046 (3)0.3576 (3)0.35488 (19)0.0337 (11)
C170.3852 (3)0.2461 (3)0.30422 (19)0.0338 (10)
C180.3249 (3)0.3085 (3)0.20435 (18)0.0303 (10)
H30.387600.685000.027720.03600*
H50.030020.596640.313900.03300*
H70.247040.072520.221920.04000*
H80.112550.042010.057600.03900*
H140.549040.724090.170820.03700*
H150.645310.614100.339140.04100*
H160.545580.312970.423480.04200*
H170.343490.123600.338660.04200*
H180.241380.230010.170790.03800*
H11a0.371551.074610.320750.04700*
H11b0.205061.065410.243900.04700*
H12a0.174661.166530.432680.06800*
H12b0.185060.997410.454310.06800*
H12c0.018570.988220.377480.06800*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0620 (12)0.0368 (10)0.0485 (11)0.0099 (9)0.0334 (9)0.0174 (9)
O20.0455 (10)0.0331 (10)0.0364 (10)0.0150 (8)0.0169 (8)0.0055 (8)
O30.0396 (10)0.0262 (9)0.0362 (9)0.0078 (7)0.0163 (8)0.0097 (7)
O40.0392 (9)0.0210 (8)0.0334 (9)0.0080 (7)0.0174 (7)0.0033 (7)
N10.0281 (10)0.0262 (11)0.0285 (11)0.0087 (8)0.0094 (9)0.0083 (8)
N20.0319 (11)0.0343 (12)0.0331 (12)0.0113 (10)0.0136 (9)0.0107 (10)
N30.0328 (11)0.0212 (10)0.0290 (11)0.0064 (8)0.0124 (9)0.0055 (8)
N40.0242 (10)0.0233 (10)0.0262 (10)0.0077 (8)0.0087 (8)0.0066 (8)
C20.0244 (12)0.0260 (13)0.0285 (13)0.0093 (10)0.0048 (10)0.0081 (10)
C30.0253 (12)0.0251 (12)0.0255 (13)0.0087 (10)0.0089 (10)0.0086 (10)
C50.0289 (12)0.0268 (12)0.0230 (12)0.0117 (10)0.0083 (10)0.0047 (9)
C60.0282 (12)0.0310 (13)0.0246 (12)0.0133 (10)0.0098 (10)0.0086 (10)
C70.0326 (13)0.0261 (13)0.0372 (15)0.0076 (11)0.0151 (12)0.0111 (11)
C80.0349 (13)0.0204 (12)0.0350 (14)0.0072 (10)0.0105 (11)0.0043 (10)
C90.0256 (12)0.0261 (12)0.0268 (12)0.0107 (10)0.0058 (10)0.0059 (10)
C100.0268 (12)0.0297 (13)0.0287 (13)0.0101 (10)0.0053 (11)0.0077 (11)
C110.0424 (14)0.0220 (13)0.0424 (15)0.0070 (11)0.0164 (12)0.0046 (11)
C120.0554 (16)0.0311 (14)0.0392 (15)0.0077 (12)0.0198 (13)0.0001 (11)
C130.0255 (12)0.0294 (13)0.0253 (12)0.0130 (10)0.0058 (10)0.0088 (10)
C140.0304 (13)0.0259 (13)0.0324 (14)0.0095 (10)0.0099 (11)0.0089 (11)
C150.0329 (13)0.0332 (14)0.0339 (14)0.0097 (11)0.0141 (11)0.0131 (11)
C160.0366 (14)0.0381 (15)0.0280 (13)0.0155 (12)0.0125 (11)0.0078 (11)
C170.0390 (14)0.0295 (13)0.0287 (13)0.0098 (11)0.0071 (11)0.0041 (11)
C180.0314 (13)0.0283 (13)0.0292 (13)0.0074 (11)0.0104 (11)0.0088 (10)
Geometric parameters (Å, º) top
O1—N21.233 (3)C7—C81.355 (3)
O2—N21.224 (3)C8—H80.951
O3—C101.220 (3)C8—C91.403 (3)
O4—C101.336 (3)C11—H11b0.950
O4—C111.454 (3)C11—H11a0.950
N1—C91.329 (3)C11—C121.488 (4)
N1—C21.362 (3)C12—H12b0.950
N2—C61.448 (3)C12—H12c0.950
N3—H30.920C12—H12a0.950
N3—C21.353 (3)C13—C181.392 (3)
N3—C131.402 (3)C13—C141.392 (3)
N4—C51.355 (3)C14—H140.951
N4—C31.398 (3)C14—C151.373 (3)
N4—C91.405 (3)C15—H150.950
C2—C31.395 (3)C15—C161.386 (3)
C3—C101.431 (3)C16—H160.951
C5—H50.951C16—C171.376 (3)
C5—C61.358 (3)C17—H170.951
C6—C71.397 (3)C17—C181.381 (3)
C7—H70.951C18—H180.950
C10—O4—C11116.71 (18)O3—C10—C3123.7 (2)
C9—N1—C2105.10 (17)O4—C10—C3112.9 (2)
O2—N2—O1123.6 (2)H11b—C11—H11a109.5
O2—N2—C6119.27 (19)H11b—C11—O4110.27
O1—N2—C6117.08 (18)H11b—C11—C12110.3
H3—N3—C2114.99H11a—C11—O4110.3
H3—N3—C13115.01H11a—C11—C12110.3
C2—N3—C13130.00 (17)O4—C11—C12106.15 (18)
C5—N4—C3131.19 (17)H12b—C12—H12c109.5
C5—N4—C9122.07 (18)H12b—C12—H12a109.5
C3—N4—C9106.71 (17)H12b—C12—C11109.5
N3—C2—N1125.7 (2)H12c—C12—H12a109.5
N3—C2—C3121.48 (19)H12c—C12—C11109.5
N1—C2—C3112.8 (2)H12a—C12—C11109.4
C2—C3—N4103.88 (17)C18—C13—C14119.8 (2)
C2—C3—C10127.9 (2)C18—C13—N3123.9 (2)
N4—C3—C10128.0 (2)C14—C13—N3116.26 (18)
H5—C5—N4121.3H14—C14—C15120.1
H5—C5—C6121.3H14—C14—C13120.1
N4—C5—C6117.41 (18)C15—C14—C13119.8 (2)
C5—C6—C7123.2 (2)H15—C15—C14119.5
C5—C6—N2116.66 (18)H15—C15—C16119.6
C7—C6—N2120.1 (2)C14—C15—C16120.9 (2)
H7—C7—C8120.6H16—C16—C17120.5
H7—C7—C6120.6H16—C16—C15120.5
C8—C7—C6118.9 (2)C17—C16—C15118.9 (2)
H8—C8—C7120.1H17—C17—C16119.3
H8—C8—C9120.1H17—C17—C18119.3
C7—C8—C9119.83 (19)C16—C17—C18121.3 (2)
N1—C9—C8130.00 (19)H18—C18—C17120.4
N1—C9—N4111.50 (18)H18—C18—C13120.4
C8—C9—N4118.5 (2)C17—C18—C13119.2 (2)
O3—C10—O4123.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O30.922.122.835 (2)133
C5—H5···O40.952.282.832 (3)116
C18—H18···N10.952.332.967 (3)124

Experimental details

Crystal data
Chemical formulaC16H14N4O4
Mr326.31
Crystal system, space groupTriclinic, P1
Temperature (K)168
a, b, c (Å)7.868 (4), 8.489 (4), 12.281 (6)
α, β, γ (°)104.38 (1), 92.30 (1), 110.07 (1)
V3)739.2 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.57 × 0.05 × 0.04
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [F2 > σ(F2)] reflections
9625, 2989, 2173
Rint0.03
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.088, 1.01
No. of reflections2173
No. of parameters217
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.35, 0.43

Computer programs: XSCANS (Bruker, 1997), XSCANS, Xtal3.7 ADDREF SORTRF (Hall et al., 2000), SIR97 (Altomare et al., 1994), Xtal3.7 CRYLSQ, Xtal3.7 BONDLA CIFIO.

Selected bond lengths (Å) top
O1—N21.233 (3)N4—C31.398 (3)
O2—N21.224 (3)N4—C91.405 (3)
N1—C91.329 (3)C2—C31.395 (3)
N1—C21.362 (3)C3—C101.431 (3)
N2—C61.448 (3)C5—C61.358 (3)
N3—C21.353 (3)C6—C71.397 (3)
N3—C131.402 (3)C7—C81.355 (3)
N4—C51.355 (3)C8—C91.403 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O30.922.122.835 (2)133
C5—H5···O40.952.282.832 (3)116
C18—H18···N10.952.332.967 (3)124
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds