organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-8-nitro-4-oxo-4H-chromene-3-carbaldehyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 7 April 2014; accepted 8 April 2014; online 12 April 2014)

In the title compound, C10H4ClNO5, the non-H atoms of the 6-chloro­chromone unit are coplanar (r.m.s. deviation = 0.017 Å) with the largest deviation from the mean plane [0.031 (2) Å] being found for the C=O C atom. The nitro group (NO2) is inclined to the chromone unit mean plane by 13.3 (2) °. The formyl group is also twisted with respect to the attached ring [C—C—C—O torsion angles = 10.8 (4) and −171.8 (2)°]. In the crystal, mol­ecules are linked via C-H⋯O hydrogen bonds forming slab-like networks lying parallel to (-301). The slabs are linked by ππ inter­actions involving the benzene rings of the chromone units [centroid–centroid distance = 3.770 (3) Å].

Related literature

For related structures, see: Ishikawa & Motohashi (2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]); Ishikawa (2014[Ishikawa, Y. (2014). Acta Cryst. E70, o514.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Wilcken et al. (2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]); Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]).

[Scheme 1]

Experimental

Crystal data
  • C10H4ClNO5

  • Mr = 253.60

  • Monoclinic, C 2/c

  • a = 18.585 (9) Å

  • b = 10.4918 (17) Å

  • c = 11.094 (3) Å

  • β = 119.23 (3)°

  • V = 1887.7 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 K

  • 0.38 × 0.22 × 0.18 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • 2588 measured reflections

  • 2173 independent reflections

  • 1903 reflections with F2 > 2σ(F2)

  • Rint = 0.019

  • 3 standard reflections every 150 reflections intensity decay: −0.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.05

  • 2173 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.95 2.53 3.463 (3) 169
C4—H2⋯O2ii 0.95 2.35 3.250 (3) 158
C6—H3⋯O5iii 0.95 2.27 3.191 (3) 164
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 1989[Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Structural commentary top

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supra­molecular chemistry (Auffinger et al., 2004; Metrangolo et al., 2005; Wilcken et al., 2013; Sirimulla et al., 2013). We have recently reported the crystal structures of a dichlorinated 3-formyl­chromone derivative 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and a monochlorinated 3-formyl­chromone derivative 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014). It was found that halogen bonding is observed between the formyl oxygen atom and the chlorine atom at 8-position (Fig. 1, left), and is not observed between any oxygen atom and the chlorine atom at 6-position. As part of our inter­est in this type of chemical bonding, we herein report the crystal structure of a monochlorinated 3-formyl­chromone derivative with a nitro group, 6-chloro-8-nitro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal structure of this compound with an electron-withdrawing group near the chlorine atom at 6-position. It was postulated that the size of a σ hole of the chlorine atom might be large enough to form halogen bond(s) by electron-withdrawing inductive effect of the nitro group (Wilcken et al., 2013).

The mean deviation of the least-square planes for the non-hydrogen atoms of the 6-chloro­chromone unit is 0.0228 Å, and the largest deviations is 0.054 (2) Å for C2 (Fig. 2). The nitro group is twisted from this plane as seen in the dihedral angle between the least-squares planes of 14.116 (10) Å. The formyl group is also twisted [C1–C2–C10–O5 = 10.8 (4)° and C3–C2–C10–O5 = -171.8 (2)°], as shown in Fig. 2.

In the crystal, the molecules are linked through stacking inter­action along the a axis [centroid–centroid distance between the benzene rings of the chromone units = 3.770 (3) Å], as shown in Fig. 3. The distances between the chlorine atom and the oxygen atoms of the nitro group [3.874 (2) Å], the formyl group [3.535 (3) and 3.666 (2) Å], and the α,β-unsaturated carbonyl group [3.595 (2) Å] are far from halogen bonding. A structure with halogen bonds can be envisaged for the title compound (Fig. 1, right), but it is not observed in the present crystal structure.

Synthesis and crystallization top

To a solution of 5'-chloro-2'-hy­droxy-3'-nitro­aceto­phenone (3.5 mmol) in N,N-di­methyl­formamide (10 ml) was added dropwise POCl3 (8.7 mmol) for 5 min at 0 °C. After the mixture was stirred for 14 h at room temperature, water (40 ml) was added. The precipitates were collected, washed with water and dried in vacuo. Recrystallization from ethyl acetate gave yellow crystals (yield: 25%). 1H NMR (400 MHz, DMSO-d6): δ = 8.40 (d, 1H, J = 2.4 Hz), 8.71 (d, 1H, J = 2.4 Hz), 9.06 (s, 1H), 10.08 (s, 1H). DART-MS calcd for [C10H4Cl1N1O5 + H+]: 253.978, found 254.005.

Refinement top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Related literature top

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 1989); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing view of the title compound.
[Figure 3] Fig. 3. An illustration of the structure of 6,8-dichloro-4-oxochromene-3-carbaldehyde with halogen bonds in the crystal (left) and a hypothetical model of the title compound with halogen bonds (right).
6-Chloro-8-nitro-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H4ClNO5F(000) = 1024.00
Mr = 253.60Dx = 1.785 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 18.585 (9) Åθ = 15.4–17.5°
b = 10.4918 (17) ŵ = 0.41 mm1
c = 11.094 (3) ÅT = 100 K
β = 119.23 (3)°Plate, yellow
V = 1887.7 (12) Å30.38 × 0.22 × 0.18 mm
Z = 8
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 1324
2588 measured reflectionsk = 013
2173 independent reflectionsl = 1412
1903 reflections with F2 > 2σ(F2)3 standard reflections every 150 reflections
Rint = 0.019 intensity decay: 0.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0464P)2 + 3.8081P]
where P = (Fo2 + 2Fc2)/3
2173 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.38 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H4ClNO5V = 1887.7 (12) Å3
Mr = 253.60Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.585 (9) ŵ = 0.41 mm1
b = 10.4918 (17) ÅT = 100 K
c = 11.094 (3) Å0.38 × 0.22 × 0.18 mm
β = 119.23 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.019
2588 measured reflections3 standard reflections every 150 reflections
2173 independent reflections intensity decay: 0.7%
1903 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
2173 reflectionsΔρmin = 0.38 e Å3
154 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44735 (3)0.12307 (4)0.37638 (4)0.02112 (14)
O10.32475 (8)0.53278 (12)0.03825 (12)0.0162 (3)
O20.44970 (8)0.63260 (12)0.36926 (13)0.0197 (3)
O30.30625 (11)0.16061 (14)0.15276 (15)0.0321 (4)
O40.25980 (8)0.35147 (13)0.21525 (13)0.0220 (3)
O50.34664 (10)0.91339 (13)0.07444 (15)0.0259 (4)
N10.30008 (9)0.27227 (15)0.12702 (15)0.0172 (3)
C10.33433 (11)0.65518 (17)0.00207 (18)0.0164 (4)
C20.37408 (11)0.69511 (16)0.13480 (18)0.0151 (4)
C30.41012 (11)0.60278 (16)0.24645 (17)0.0146 (4)
C40.42517 (10)0.37048 (16)0.29954 (17)0.0143 (4)
C50.41278 (10)0.24532 (16)0.25645 (17)0.0152 (4)
C60.37215 (10)0.21418 (17)0.11583 (18)0.0157 (4)
C70.34310 (10)0.31087 (17)0.01960 (17)0.0144 (4)
C80.39566 (10)0.46805 (16)0.20106 (17)0.0132 (4)
C90.35390 (10)0.43954 (16)0.06022 (17)0.0136 (4)
C100.38301 (12)0.83413 (18)0.16297 (19)0.0191 (4)
H10.31140.71850.06790.0197*
H20.45350.39030.39530.0172*
H30.36470.12760.08720.0188*
H40.41890.86220.25460.0229*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0291 (3)0.0136 (3)0.0160 (3)0.00127 (17)0.00746 (18)0.00454 (15)
O10.0234 (7)0.0120 (6)0.0106 (6)0.0016 (5)0.0061 (5)0.0011 (5)
O20.0231 (7)0.0158 (7)0.0127 (6)0.0004 (5)0.0029 (6)0.0029 (5)
O30.0562 (11)0.0153 (7)0.0186 (7)0.0017 (7)0.0133 (7)0.0070 (6)
O40.0250 (7)0.0227 (7)0.0114 (6)0.0001 (6)0.0035 (6)0.0006 (5)
O50.0394 (9)0.0143 (7)0.0239 (7)0.0011 (6)0.0154 (7)0.0019 (6)
N10.0220 (8)0.0170 (8)0.0125 (7)0.0043 (6)0.0083 (6)0.0037 (6)
C10.0212 (9)0.0119 (8)0.0159 (9)0.0026 (7)0.0089 (7)0.0024 (7)
C20.0179 (8)0.0120 (8)0.0148 (8)0.0005 (7)0.0075 (7)0.0002 (7)
C30.0158 (8)0.0137 (8)0.0128 (8)0.0005 (7)0.0059 (7)0.0011 (7)
C40.0156 (8)0.0140 (9)0.0114 (8)0.0000 (7)0.0050 (7)0.0004 (7)
C50.0173 (8)0.0134 (8)0.0133 (8)0.0016 (7)0.0063 (7)0.0028 (7)
C60.0190 (8)0.0127 (8)0.0162 (8)0.0022 (7)0.0092 (7)0.0024 (7)
C70.0167 (8)0.0158 (8)0.0100 (8)0.0027 (7)0.0059 (7)0.0035 (7)
C80.0146 (8)0.0125 (8)0.0118 (8)0.0003 (6)0.0059 (7)0.0005 (6)
C90.0158 (8)0.0128 (8)0.0116 (8)0.0010 (6)0.0062 (7)0.0013 (6)
C100.0250 (10)0.0136 (9)0.0187 (9)0.0025 (7)0.0107 (8)0.0013 (7)
Geometric parameters (Å, º) top
Cl1—C51.7301 (18)C3—C81.480 (3)
O1—C11.343 (3)C4—C51.378 (3)
O1—C91.366 (2)C4—C81.399 (3)
O2—C31.231 (2)C5—C61.400 (3)
O3—N11.224 (3)C6—C71.377 (3)
O4—N11.2220 (19)C7—C91.406 (3)
O5—C101.210 (3)C8—C91.396 (3)
N1—C71.476 (3)C1—H10.950
C1—C21.352 (3)C4—H20.950
C2—C31.453 (3)C6—H30.950
C2—C101.484 (3)C10—H40.950
O1···O42.5723 (18)C6···N1iii3.266 (4)
O1···N12.865 (2)C6···C5v3.544 (4)
O1···C32.853 (3)C6···C7iii3.530 (3)
O2···C13.566 (3)C7···O2vi3.207 (3)
O2···C42.833 (3)C7···N1iii3.516 (4)
O2···C102.911 (3)C7···C6iii3.530 (3)
O3···C62.670 (3)C7···C7iii3.511 (4)
O3···C93.590 (3)C8···C4v3.487 (4)
O4···C63.526 (3)C8···C8v3.479 (4)
O4···C92.834 (3)C9···O2vi3.452 (3)
O5···C12.803 (3)C10···O3iv3.011 (4)
C1···C82.751 (3)C10···N1iv3.544 (4)
C2···C92.777 (3)C10···C1viii3.529 (4)
C4···C72.781 (3)Cl1···H22.8102
C5···C92.786 (3)Cl1···H32.8003
C6···C82.789 (3)O2···H22.5550
Cl1···Cl1i3.5748 (10)O2···H42.6525
Cl1···O2ii3.5947 (15)O3···H32.3584
Cl1···O4iii3.371 (3)O5···H12.4692
Cl1···O5iv3.535 (3)N1···H32.5702
Cl1···C6v3.448 (3)C1···H43.2764
O1···O2vi3.433 (3)C3···H13.2794
O1···O3vii3.365 (2)C3···H22.6539
O1···O5viii3.062 (3)C3···H42.7252
O1···C4vi3.321 (3)C4···H33.2742
O2···Cl1ii3.5947 (15)C6···H23.2764
O2···O1iv3.433 (3)C9···H13.1800
O2···O3iv3.352 (3)C9···H23.2847
O2···O4iv3.183 (3)C9···H33.2837
O2···N1iv2.974 (3)C10···H12.5450
O2···C1v3.551 (3)H1···H43.4766
O2···C2v3.362 (4)Cl1···H1iv3.3241
O2···C3v3.435 (4)Cl1···H3v3.3146
O2···C4ii3.250 (3)Cl1···H4x2.9832
O2···C7iv3.207 (3)O1···H2vi2.9400
O2···C9iv3.452 (3)O2···H2ii2.3513
O3···O1ix3.365 (2)O3···H1ix2.8519
O3···O2vi3.352 (3)O3···H4vi2.7560
O3···O4ix3.524 (2)O4···H1ix2.5249
O3···O5x3.435 (3)O4···H3iii3.2607
O3···O5vi3.542 (3)O5···H1viii3.2161
O3···C1ix3.458 (3)O5···H3xi2.2666
O3···C2vi3.512 (4)N1···H1ix3.0357
O3···C10vi3.011 (4)N1···H3iii3.4641
O4···Cl1iii3.371 (3)N1···H4vi3.3795
O4···O2vi3.183 (3)C1···H1viii3.4007
O4···O3vii3.524 (2)C1···H2vi3.0167
O4···O5ix3.538 (3)C2···H1viii3.2806
O4···C1ix3.463 (3)C3···H2ii3.5197
O4···C2vi3.312 (4)C4···H1iv3.2457
O4···C3vi3.062 (4)C5···H1iv3.3272
O4···C5iii3.177 (3)C7···H2v3.5199
O4···C6iii3.217 (3)C7···H3iii3.5024
O5···Cl1vi3.535 (3)C8···H2v3.5485
O5···O1viii3.062 (3)C9···H2v3.4053
O5···O3xi3.435 (3)C10···H1viii3.2794
O5···O3iv3.542 (3)C10···H3xi3.1660
O5···O4vii3.538 (3)C10···H4v3.3452
O5···C1viii3.124 (4)H1···Cl1vi3.3241
O5···C6xi3.191 (3)H1···O3vii2.8519
N1···O2vi2.974 (3)H1···O4vii2.5249
N1···C2vi3.541 (4)H1···O5viii3.2161
N1···C3vi3.267 (4)H1···N1vii3.0357
N1···C5iii3.492 (3)H1···C1viii3.4007
N1···C6iii3.266 (4)H1···C2viii3.2806
N1···C7iii3.516 (4)H1···C4vi3.2457
N1···C10vi3.544 (4)H1···C5vi3.3272
C1···O2v3.551 (3)H1···C10viii3.2794
C1···O3vii3.458 (3)H1···H1viii3.3600
C1···O4vii3.463 (3)H1···H2vi3.0810
C1···O5viii3.124 (4)H2···O1iv2.9400
C1···C4vi3.417 (4)H2···O2ii2.3513
C1···C10viii3.529 (4)H2···C1iv3.0167
C2···O2v3.362 (4)H2···C3ii3.5197
C2···O3iv3.512 (4)H2···C7v3.5199
C2···O4iv3.312 (4)H2···C8v3.5485
C2···N1iv3.541 (4)H2···C9v3.4053
C3···O2v3.435 (4)H2···H1iv3.0810
C3···O4iv3.062 (4)H2···H2ii3.1238
C3···N1iv3.267 (4)H3···Cl1v3.3146
C3···C3v3.303 (4)H3···O4iii3.2607
C4···O1iv3.321 (3)H3···O5x2.2666
C4···O2ii3.250 (3)H3···N1iii3.4641
C4···C1iv3.417 (4)H3···C7iii3.5024
C4···C4v3.454 (4)H3···C10x3.1660
C4···C8v3.487 (4)H3···H4x3.2237
C5···O4iii3.177 (3)H4···Cl1xi2.9832
C5···N1iii3.492 (3)H4···O3iv2.7560
C5···C5v3.314 (4)H4···N1iv3.3795
C5···C6v3.544 (4)H4···C10v3.3452
C6···Cl1v3.448 (3)H4···H3xi3.2237
C6···O4iii3.217 (3)H4···H4v3.0665
C6···O5x3.191 (3)
C1—O1—C9118.83 (14)N1—C7—C9122.16 (15)
O3—N1—O4123.66 (15)C6—C7—C9121.20 (16)
O3—N1—C7117.23 (14)C3—C8—C4119.75 (15)
O4—N1—C7119.10 (16)C3—C8—C9119.65 (15)
O1—C1—C2124.91 (16)C4—C8—C9120.59 (16)
C1—C2—C3120.08 (16)O1—C9—C7119.50 (15)
C1—C2—C10118.65 (16)O1—C9—C8121.89 (15)
C3—C2—C10121.21 (15)C7—C9—C8118.60 (15)
O2—C3—C2123.47 (16)O5—C10—C2122.94 (16)
O2—C3—C8122.01 (15)O1—C1—H1117.543
C2—C3—C8114.53 (14)C2—C1—H1117.546
C5—C4—C8119.41 (16)C5—C4—H2120.299
Cl1—C5—C4120.22 (13)C8—C4—H2120.290
Cl1—C5—C6118.66 (14)C5—C6—H3120.469
C4—C5—C6121.12 (16)C7—C6—H3120.471
C5—C6—C7119.06 (17)O5—C10—H4118.529
N1—C7—C6116.64 (16)C2—C10—H4118.529
C1—O1—C9—C7178.93 (17)C5—C4—C8—C3178.83 (17)
C1—O1—C9—C82.2 (3)C5—C4—C8—C90.1 (3)
C9—O1—C1—C22.8 (3)C8—C4—C5—Cl1179.02 (16)
C9—O1—C1—H1177.2C8—C4—C5—C60.9 (3)
O3—N1—C7—C612.8 (3)H2—C4—C5—Cl11.0
O3—N1—C7—C9167.45 (19)H2—C4—C5—C6179.1
O4—N1—C7—C6166.20 (17)H2—C4—C8—C31.2
O4—N1—C7—C913.5 (3)H2—C4—C8—C9179.9
O1—C1—C2—C30.2 (4)Cl1—C5—C6—C7178.84 (13)
O1—C1—C2—C10177.18 (18)Cl1—C5—C6—H31.1
H1—C1—C2—C3179.8C4—C5—C6—C71.0 (3)
H1—C1—C2—C102.8C4—C5—C6—H3179.0
C1—C2—C3—O2177.3 (2)C5—C6—C7—N1179.42 (17)
C1—C2—C3—C82.7 (3)C5—C6—C7—C90.3 (3)
C1—C2—C10—O510.8 (4)H3—C6—C7—N10.6
C1—C2—C10—H4169.2H3—C6—C7—C9179.7
C3—C2—C10—O5171.8 (2)N1—C7—C9—O10.8 (3)
C3—C2—C10—H48.2N1—C7—C9—C8179.69 (17)
C10—C2—C3—O20.1 (4)C6—C7—C9—O1179.53 (18)
C10—C2—C3—C8179.99 (19)C6—C7—C9—C80.6 (3)
O2—C3—C8—C42.1 (4)C3—C8—C9—O10.8 (3)
O2—C3—C8—C9176.81 (19)C3—C8—C9—C7178.10 (17)
C2—C3—C8—C4177.99 (18)C4—C8—C9—O1179.68 (18)
C2—C3—C8—C93.1 (3)C4—C8—C9—C70.8 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z; (iv) x, y+1, z+1/2; (v) x+1, y, z+1/2; (vi) x, y+1, z1/2; (vii) x+1/2, y+1/2, z1/2; (viii) x+1/2, y+3/2, z; (ix) x+1/2, y1/2, z1/2; (x) x, y1, z; (xi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4vii0.952.533.463 (3)169
C4—H2···O2ii0.952.353.250 (3)158
C6—H3···O5x0.952.273.191 (3)164
Symmetry codes: (ii) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z1/2; (x) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.952.533.463 (3)169
C4—H2···O2ii0.952.353.250 (3)158
C6—H3···O5iii0.952.273.191 (3)164
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Acknowledgements

We acknowledge the University of Shizuoka for instrumental support.

References

First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIshikawa, Y. (2014). Acta Cryst. E70, o514.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds