metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m176-m177

Bis{μ-cis-1,3-bis­­[(di-tert-butyl­phosphan­yl)­­oxy]cyclo­hexane-κ2P:P′}bis­­[carbonylnickel(0)] including an unknown solvent molecule

aCentre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden
*Correspondence e-mail: ola.wendt@chem.lu.se

(Received 4 April 2014; accepted 8 April 2014; online 12 April 2014)

The title compound, [Ni2(C22H46P2O2)2(CO)2], is located about a centre of inversion with the Ni0 atom within a distorted trigonal–planar geometry. The cyclo­hexyl rings are in the usual chair conformation with the 1,3-cis substituents equatorially oriented. No specific inter­molecular inter­actions are noted in the crystal packing. A region of disordered electron density, most probably a disordered deuterobenzene solvent molecule, was treated using the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. Its formula mass and unit-cell characteristics were not taken into account during refinement.

Related literature

For similar 16-atom macrocyclic dimers with NiII, see: Johnson & Wendt (2011[Johnson, M. T. & Wendt, O. F. (2011). Inorg. Chim. Acta, 367, 222-224.]); Castonguay et al. (2008[Castonguay, A., Beauchamp, A. L. & Zargarian, D. (2008). Organometallics, 27, 5723-5731.]); Pandarus et al. (2008[Pandarus, V., Castonguay, A. & Zargarian, D. (2008). Dalton Trans. pp. 4756-4761.]). For 16-atom macrocyclic dimers of PdII and PtII with cis-1,3-bis-(di-alkyl­phosphinito)cyclo­hexane ligands, see: Sjövall et al. (2001[Sjövall, S., Andersson, C. & Wendt, O. F. (2001). Inorg. Chim. Acta, 325, 182-186.]) and Olsson et al. (2007[Olsson, D., Arunachalampillai, A. & Wendt, O. F. (2007). Dalton Trans. pp. 5427-5433.]), respectively. For other examples of Ni0 atoms adopting a close to trigonal–planar geometry, see: Rosenthal et al. (1990[Rosenthal, U., Oehme, G., Gorls, H., Burlakov, V. V., Polyakov, A. V., Yanovsky, A. I. & Struchkov, Y. T. (1990). J. Organomet. Chem. 389, 409-416.]); Maciejewski et al. (2004[Maciejewski, H., Sydor, A. & Kubicki, M. (2004). J. Organomet. Chem. 689, 3075-3081.]); Brun et al. (2013[Brun, S., Torres, O., Pla-Quintana, A., Roglans, A., Goddard, R. & Porschke, K. R. (2013). Organometallics, 32, 1710-1720.]). For an example of a carbon monoxide-induced reductive elimination from a PNP pincer-supported NiII hydride complex to form a tetra­hedral Ni0 dicarbonyl species (PNP = [N(2-PR2-C6H3)2]), see: Liang et al. (2012[Liang, L. C., Hung, Y. T., Huang, Y. L., Chien, P. S., Lee, P. Y. & Chen, W. C. (2012). Organometallics, 31, 700-708.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C22H46O2P2)2(CO)2]

  • Mr = 982.50

  • Monoclinic, C 2/c

  • a = 31.7851 (9) Å

  • b = 8.5449 (2) Å

  • c = 21.3311 (5) Å

  • β = 90.995 (2)°

  • V = 5792.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 120 K

  • 0.20 × 0.15 × 0.05 mm

Data collection
  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.883, Tmax = 1.000

  • 27324 measured reflections

  • 6958 independent reflections

  • 4948 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.125

  • S = 1.09

  • 6958 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2001[CrystalMaker (2001). CrystalMaker. CrystalMaker Software Ltd, Biscester, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Structural commentary top

The title compound is formed through a carbon monoxide induced dimerization of a previously synthesized POCOP pincer NiII hydride complex. The course of the reaction is likely to proceed via a reductive elimination of a C—H bond between the metallated carbon and the hydride ligand. In the absence of carbon monoxide the POCOP pincer NiII hydride complex is stable towards reductive elimination in solution, even at 80 °C and upon addition of 1 eq. di­phenyl­acetyl­ene. Tricoordinate nickel(0) species are coordinately unsaturated, and the steric bulk of the tert-butyl substituents on the phospho­rus atoms is likely to have a crucial stabilizing impact on the title compound. It decomposes over a period of hours upon exposure to air.

The title compound has a low solubility in C6D6 and attempts to obtain 1H– and 13C-NMR spectra has been unsatisfactory. Dissolving the red crystals of the title compound in CDCl3 results in a yellow/green solution and decomposition to several compounds, as indicated by 31P-NMR spectroscopy; none was successfully isolated or characterized.

Synthesis and crystallization top

A C6D6 solution of the compound trans-[NiH{cis-1,3-Bis-(di-tert-butyl­phosphinito) cyclo­hexane}] (10.0 mg, 0.021 mmol) was degassed with repeated freeze-pump-thaw cycles, before addition of CO (3 atm, 0.2 mmol, 10 eq.). Upon standing at room temperature the solution turned gradually darker, and within 48 h deep-red crystals of bis­[µ-[cis-1,3-bis­[(di-tert-butyl)­phosphinito]cyclo­hexane]-κ2-P,P']- bis­[carbonyl­nickel(0)] were formed. These were used directly in the X-ray diffraction experiment, but were dried in high-vacuum prior to the elemental analysis. Yield: 8.7 mg (82%). 31P{1H} NMR: (202.3 MHz, C6D6) δ: 177.8 (s). Anal. Calcd for C46H92Ni2O6P4 (982.52): C 56.23, H 9.44. Found: C 56.02, H 9.47.

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms with C—H distances of 0.96–0.98 Å, and with Uiso(H) = 1.2–1.5 Ueq. The asymmetric unit contains half a molecule of the title complex and half a molecule of benzene but this could not be modelled successfully. Solvent contributions were therefore removed from the diffraction data with PLATON using the SQUEEZE procedure (Spek, 2009). SQUEEZE estimated the electron count in the void volume of 680 Å3 to be 140 which is in reasonable agreement with a total number of four benzene molecules in the unit cell.

Related literature top

For similar 16-atom macrocyclic dimers with NiII, see: Johnson & Wendt (2011); Castonguay et al. (2008); Pandarus et al. (2008). For 16-atom macrocyclic dimers of PdII and PtII with cis-1,3-bis-(di-alkylphosphinito)cyclohexane ligands, see: Sjövall et al. (2001) and Olsson et al. (2007), respectively. For other examples of Ni0 centres adopting a close to trigonal–planar geometry, see: Rosenthal et al. (1990); Maciejewski et al. (2004); Brun et al. (2013). For an example of a carbon monoxide-induced reductive elimination from a PNP pincer-supported NiII hydride complex to form a tetrahedral Ni0 dicarbonyl species (PNP = [N(2-PR2-C6H3)2]-), see: Liang et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the centrosymmetric title compound with atom labels and 30% probability displacement ellipsoids. Unlabelled atoms are related by the symmetry operation: 3/2-x, 1/2-y, -z. H-atoms are omitted for clarity.
Bis{µ-cis-1,3-bis[(di-tert-butylphosphanyl)oxy]cyclohexane-κ2P:P'}bis[carbonylnickel(0)] top
Crystal data top
[Ni2(C22H46O2P2)2(CO)2]F(000) = 2128
Mr = 982.50Dx = 1.127 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6436 reflections
a = 31.7851 (9) Åθ = 2.5–29.1°
b = 8.5449 (2) ŵ = 0.80 mm1
c = 21.3311 (5) ÅT = 120 K
β = 90.995 (2)°Plates, red
V = 5792.7 (3) Å30.2 × 0.15 × 0.05 mm
Z = 4
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
6958 independent reflections
Radiation source: Enhance (Mo) X-ray Source4948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 16.1829 pixels mm-1θmax = 29.1°, θmin = 2.5°
ω scansh = 4235
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1111
Tmin = 0.883, Tmax = 1.000l = 2626
27324 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
6958 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ni2(C22H46O2P2)2(CO)2]V = 5792.7 (3) Å3
Mr = 982.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 31.7851 (9) ŵ = 0.80 mm1
b = 8.5449 (2) ÅT = 120 K
c = 21.3311 (5) Å0.2 × 0.15 × 0.05 mm
β = 90.995 (2)°
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
6958 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4948 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 1.000Rint = 0.073
27324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.09Δρmax = 0.61 e Å3
6958 reflectionsΔρmin = 0.46 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.882994 (11)0.29002 (4)0.082823 (15)0.01812 (11)
P10.83832 (2)0.33932 (7)0.15811 (3)0.01714 (16)
O10.78777 (6)0.29472 (19)0.16116 (8)0.0207 (4)
C10.78065 (8)0.2143 (3)0.11259 (12)0.0203 (6)
H1A0.78140.10120.10890.024*
H1B0.79170.24230.15320.024*
P20.88701 (2)0.22270 (7)0.01654 (3)0.01594 (15)
O20.85052 (6)0.2342 (2)0.07197 (8)0.0218 (4)
C20.73525 (8)0.2701 (3)0.10868 (12)0.0196 (6)
H20.72310.23090.06980.023*
O30.96746 (7)0.3500 (3)0.13009 (11)0.0510 (6)
C30.73284 (9)0.4468 (3)0.10912 (13)0.0264 (6)
H3A0.70380.47910.10420.032*
H3B0.74230.48570.14920.032*
C40.75974 (9)0.5172 (3)0.05680 (14)0.0280 (7)
H4A0.74870.48600.01660.034*
H4B0.75870.63040.05940.034*
C50.80545 (9)0.4621 (3)0.06177 (13)0.0249 (6)
H5A0.81720.50170.10030.030*
H5B0.82190.50410.02690.030*
C60.80822 (8)0.2861 (3)0.06116 (12)0.0194 (6)
H60.79910.24720.02040.023*
C70.93363 (11)0.3218 (3)0.11184 (14)0.0321 (7)
C110.83370 (9)0.5570 (3)0.16926 (12)0.0226 (6)
C120.80724 (11)0.6148 (3)0.11321 (14)0.0341 (7)
H12A0.77980.56810.11440.051*
H12B0.82070.58580.07500.051*
H12C0.80460.72660.11520.051*
C130.81175 (10)0.6059 (3)0.22944 (13)0.0326 (7)
H13A0.78450.55790.23080.049*
H13B0.80870.71770.23020.049*
H13C0.82830.57290.26510.049*
C140.87701 (10)0.6353 (3)0.16623 (15)0.0342 (7)
H14A0.89420.60120.20110.051*
H14B0.87370.74690.16790.051*
H14C0.89030.60690.12780.051*
C150.85457 (9)0.2395 (3)0.23398 (12)0.0226 (6)
C160.86514 (10)0.0712 (3)0.21485 (13)0.0303 (7)
H16A0.88700.07250.18440.045*
H16B0.84050.02210.19710.045*
H16C0.87450.01350.25110.045*
C170.89435 (10)0.3151 (3)0.26297 (13)0.0287 (7)
H17A0.88830.42090.27480.043*
H17B0.91640.31460.23280.043*
H17C0.90320.25670.29940.043*
C180.81986 (10)0.2332 (3)0.28269 (13)0.0317 (7)
H18A0.81280.33760.29540.048*
H18B0.82960.17470.31850.048*
H18C0.79540.18330.26480.048*
C210.92859 (9)0.3402 (3)0.05827 (13)0.0227 (6)
C220.92236 (10)0.5106 (3)0.03761 (16)0.0352 (8)
H22A0.92510.51750.00720.053*
H22B0.89480.54550.05050.053*
H22C0.94330.57550.05660.053*
C230.92422 (10)0.3335 (3)0.12995 (14)0.0329 (7)
H23A0.89620.36360.14240.049*
H23B0.92960.22880.14400.049*
H23C0.94410.40390.14830.049*
C240.97330 (9)0.2906 (3)0.03876 (14)0.0277 (6)
H24A0.97620.29450.00610.042*
H24B0.99330.36040.05720.042*
H24C0.97840.18580.05300.042*
C250.89841 (9)0.0076 (3)0.02237 (12)0.0212 (6)
C260.93066 (10)0.0421 (3)0.02756 (13)0.0306 (7)
H26A0.95720.00720.01950.046*
H26B0.93400.15370.02650.046*
H26C0.92110.01100.06820.046*
C270.85646 (10)0.0734 (3)0.00816 (14)0.0317 (7)
H27A0.83570.04410.03930.047*
H27B0.84720.04180.03250.047*
H27C0.86030.18480.00880.047*
C280.91206 (10)0.0450 (3)0.08764 (13)0.0287 (7)
H28A0.89120.01390.11820.043*
H28B0.91500.15680.08820.043*
H28C0.93850.00280.09730.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0181 (2)0.01832 (18)0.01790 (19)0.00151 (13)0.00099 (14)0.00328 (12)
P10.0194 (4)0.0159 (3)0.0160 (3)0.0014 (3)0.0019 (3)0.0026 (2)
O10.0177 (10)0.0275 (10)0.0168 (9)0.0013 (8)0.0016 (8)0.0021 (7)
C10.0189 (15)0.0226 (13)0.0195 (13)0.0009 (11)0.0016 (11)0.0035 (10)
P20.0155 (4)0.0157 (3)0.0166 (3)0.0024 (3)0.0002 (3)0.0007 (2)
O20.0164 (10)0.0310 (10)0.0179 (9)0.0043 (8)0.0004 (8)0.0011 (7)
C20.0185 (15)0.0272 (14)0.0130 (12)0.0007 (11)0.0015 (11)0.0003 (10)
O30.0249 (14)0.0843 (18)0.0434 (15)0.0081 (13)0.0078 (11)0.0117 (12)
C30.0228 (16)0.0263 (14)0.0299 (16)0.0042 (12)0.0022 (13)0.0033 (11)
C40.0252 (17)0.0259 (14)0.0328 (16)0.0066 (12)0.0059 (13)0.0069 (11)
C50.0227 (16)0.0273 (14)0.0246 (14)0.0012 (12)0.0034 (12)0.0039 (11)
C60.0168 (15)0.0271 (14)0.0141 (12)0.0027 (11)0.0002 (11)0.0019 (10)
C70.0313 (19)0.0401 (17)0.0249 (16)0.0002 (14)0.0007 (14)0.0080 (12)
C110.0256 (16)0.0165 (12)0.0257 (14)0.0024 (11)0.0002 (12)0.0032 (10)
C120.047 (2)0.0236 (15)0.0315 (17)0.0094 (14)0.0019 (15)0.0035 (12)
C130.042 (2)0.0256 (15)0.0302 (16)0.0111 (14)0.0045 (14)0.0059 (12)
C140.0341 (19)0.0184 (13)0.050 (2)0.0020 (13)0.0053 (15)0.0072 (12)
C150.0227 (16)0.0261 (14)0.0188 (13)0.0022 (12)0.0047 (11)0.0017 (10)
C160.0355 (19)0.0226 (14)0.0325 (16)0.0049 (13)0.0088 (14)0.0020 (11)
C170.0278 (18)0.0333 (16)0.0247 (15)0.0007 (13)0.0099 (13)0.0024 (11)
C180.0328 (19)0.0401 (17)0.0221 (15)0.0033 (14)0.0012 (13)0.0046 (12)
C210.0180 (15)0.0223 (13)0.0278 (15)0.0008 (11)0.0010 (12)0.0032 (11)
C220.0286 (18)0.0213 (14)0.056 (2)0.0025 (13)0.0063 (15)0.0081 (13)
C230.0265 (18)0.0400 (17)0.0326 (17)0.0019 (14)0.0078 (14)0.0152 (13)
C240.0205 (16)0.0283 (15)0.0343 (16)0.0002 (12)0.0023 (13)0.0002 (11)
C250.0267 (16)0.0163 (12)0.0204 (13)0.0015 (11)0.0003 (12)0.0013 (10)
C260.042 (2)0.0225 (14)0.0273 (15)0.0094 (13)0.0057 (14)0.0014 (11)
C270.039 (2)0.0168 (13)0.0390 (18)0.0041 (13)0.0057 (15)0.0002 (12)
C280.042 (2)0.0203 (13)0.0242 (15)0.0059 (13)0.0012 (13)0.0048 (11)
Geometric parameters (Å, º) top
Ni1—C71.736 (3)C14—H14B0.9600
Ni1—P22.2021 (7)C14—H14C0.9600
Ni1—P12.2028 (7)C15—C181.530 (4)
P1—O11.654 (2)C15—C161.534 (4)
P1—C111.882 (2)C15—C171.540 (4)
P1—C151.893 (3)C16—H16A0.9600
O1—C2i1.438 (3)C16—H16B0.9600
C1—C61.521 (4)C16—H16C0.9600
C1—C21.523 (4)C17—H17A0.9600
C1—H1A0.9700C17—H17B0.9600
C1—H1B0.9700C17—H17C0.9600
P2—O21.6448 (19)C18—H18A0.9600
P2—C251.878 (2)C18—H18B0.9600
P2—C211.894 (3)C18—H18C0.9600
O2—C61.438 (3)C21—C241.534 (4)
C2—O1i1.438 (3)C21—C231.534 (4)
C2—C31.512 (3)C21—C221.536 (4)
C2—H20.9800C22—H22A0.9600
O3—C71.162 (4)C22—H22B0.9600
C3—C41.518 (4)C22—H22C0.9600
C3—H3A0.9700C23—H23A0.9600
C3—H3B0.9700C23—H23B0.9600
C4—C51.533 (4)C23—H23C0.9600
C4—H4A0.9700C24—H24A0.9600
C4—H4B0.9700C24—H24B0.9600
C5—C61.507 (3)C24—H24C0.9600
C5—H5A0.9700C25—C261.526 (4)
C5—H5B0.9700C25—C281.533 (4)
C6—H60.9800C25—C271.537 (4)
C11—C131.530 (4)C26—H26A0.9600
C11—C121.532 (4)C26—H26B0.9600
C11—C141.533 (4)C26—H26C0.9600
C12—H12A0.9600C27—H27A0.9600
C12—H12B0.9600C27—H27B0.9600
C12—H12C0.9600C27—H27C0.9600
C13—H13A0.9600C28—H28A0.9600
C13—H13B0.9600C28—H28B0.9600
C13—H13C0.9600C28—H28C0.9600
C14—H14A0.9600
C7—Ni1—P2108.38 (10)C11—C14—H14C109.5
C7—Ni1—P1108.39 (10)H14A—C14—H14C109.5
P2—Ni1—P1143.19 (3)H14B—C14—H14C109.5
O1—P1—C1198.33 (11)C18—C15—C16108.2 (2)
O1—P1—C1596.52 (11)C18—C15—C17109.8 (2)
C11—P1—C15110.98 (12)C16—C15—C17108.5 (2)
O1—P1—Ni1128.58 (7)C18—C15—P1114.0 (2)
C11—P1—Ni1109.51 (9)C16—C15—P1104.64 (18)
C15—P1—Ni1111.55 (9)C17—C15—P1111.38 (18)
C2i—O1—P1122.67 (16)C15—C16—H16A109.5
C6—C1—C2111.6 (2)C15—C16—H16B109.5
C6—C1—H1A109.3H16A—C16—H16B109.5
C2—C1—H1A109.3C15—C16—H16C109.5
C6—C1—H1B109.3H16A—C16—H16C109.5
C2—C1—H1B109.3H16B—C16—H16C109.5
H1A—C1—H1B108.0C15—C17—H17A109.5
O2—P2—C2598.35 (11)C15—C17—H17B109.5
O2—P2—C2196.88 (11)H17A—C17—H17B109.5
C25—P2—C21110.52 (12)C15—C17—H17C109.5
O2—P2—Ni1128.64 (7)H17A—C17—H17C109.5
C25—P2—Ni1109.50 (8)H17B—C17—H17C109.5
C21—P2—Ni1111.50 (9)C15—C18—H18A109.5
C6—O2—P2123.55 (15)C15—C18—H18B109.5
O1i—C2—C3110.8 (2)H18A—C18—H18B109.5
O1i—C2—C1107.85 (19)C15—C18—H18C109.5
C3—C2—C1111.1 (2)H18A—C18—H18C109.5
O1i—C2—H2109.0H18B—C18—H18C109.5
C3—C2—H2109.0C24—C21—C23109.1 (2)
C1—C2—H2109.0C24—C21—C22107.9 (2)
C2—C3—C4111.3 (2)C23—C21—C22108.1 (2)
C2—C3—H3A109.4C24—C21—P2112.14 (18)
C4—C3—H3A109.4C23—C21—P2113.38 (19)
C2—C3—H3B109.4C22—C21—P2105.86 (19)
C4—C3—H3B109.4C21—C22—H22A109.5
H3A—C3—H3B108.0C21—C22—H22B109.5
C3—C4—C5110.5 (2)H22A—C22—H22B109.5
C3—C4—H4A109.6C21—C22—H22C109.5
C5—C4—H4A109.6H22A—C22—H22C109.5
C3—C4—H4B109.6H22B—C22—H22C109.5
C5—C4—H4B109.6C21—C23—H23A109.5
H4A—C4—H4B108.1C21—C23—H23B109.5
C6—C5—C4111.2 (2)H23A—C23—H23B109.5
C6—C5—H5A109.4C21—C23—H23C109.5
C4—C5—H5A109.4H23A—C23—H23C109.5
C6—C5—H5B109.4H23B—C23—H23C109.5
C4—C5—H5B109.4C21—C24—H24A109.5
H5A—C5—H5B108.0C21—C24—H24B109.5
O2—C6—C5111.2 (2)H24A—C24—H24B109.5
O2—C6—C1106.77 (19)C21—C24—H24C109.5
C5—C6—C1111.3 (2)H24A—C24—H24C109.5
O2—C6—H6109.2H24B—C24—H24C109.5
C5—C6—H6109.2C26—C25—C28110.8 (2)
C1—C6—H6109.2C26—C25—C27108.1 (2)
O3—C7—Ni1176.8 (3)C28—C25—C27107.9 (2)
C13—C11—C12108.3 (2)C26—C25—P2110.76 (18)
C13—C11—C14109.8 (2)C28—C25—P2113.90 (17)
C12—C11—C14107.9 (2)C27—C25—P2104.98 (18)
C13—C11—P1114.45 (18)C25—C26—H26A109.5
C12—C11—P1105.24 (18)C25—C26—H26B109.5
C14—C11—P1110.74 (18)H26A—C26—H26B109.5
C11—C12—H12A109.5C25—C26—H26C109.5
C11—C12—H12B109.5H26A—C26—H26C109.5
H12A—C12—H12B109.5H26B—C26—H26C109.5
C11—C12—H12C109.5C25—C27—H27A109.5
H12A—C12—H12C109.5C25—C27—H27B109.5
H12B—C12—H12C109.5H27A—C27—H27B109.5
C11—C13—H13A109.5C25—C27—H27C109.5
C11—C13—H13B109.5H27A—C27—H27C109.5
H13A—C13—H13B109.5H27B—C27—H27C109.5
C11—C13—H13C109.5C25—C28—H28A109.5
H13A—C13—H13C109.5C25—C28—H28B109.5
H13B—C13—H13C109.5H28A—C28—H28B109.5
C11—C14—H14A109.5C25—C28—H28C109.5
C11—C14—H14B109.5H28A—C28—H28C109.5
H14A—C14—H14B109.5H28B—C28—H28C109.5
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ni2(C22H46O2P2)2(CO)2]
Mr982.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)31.7851 (9), 8.5449 (2), 21.3311 (5)
β (°) 90.995 (2)
V3)5792.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.2 × 0.15 × 0.05
Data collection
DiffractometerAgilent Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.883, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27324, 6958, 4948
Rint0.073
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.125, 1.09
No. of reflections6958
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.46

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2001).

 

Acknowledgements

Financial support from the Swedish Research Council and the Knut and Alice Wallenberg Foundation is gratefully acknowledged.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrun, S., Torres, O., Pla-Quintana, A., Roglans, A., Goddard, R. & Porschke, K. R. (2013). Organometallics, 32, 1710–1720.  Web of Science CSD CrossRef CAS Google Scholar
First citationCastonguay, A., Beauchamp, A. L. & Zargarian, D. (2008). Organometallics, 27, 5723–5731.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrystalMaker (2001). CrystalMaker. CrystalMaker Software Ltd, Biscester, England.  Google Scholar
First citationJohnson, M. T. & Wendt, O. F. (2011). Inorg. Chim. Acta, 367, 222–224.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiang, L. C., Hung, Y. T., Huang, Y. L., Chien, P. S., Lee, P. Y. & Chen, W. C. (2012). Organometallics, 31, 700–708.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaciejewski, H., Sydor, A. & Kubicki, M. (2004). J. Organomet. Chem. 689, 3075–3081.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlsson, D., Arunachalampillai, A. & Wendt, O. F. (2007). Dalton Trans. pp. 5427–5433.  Web of Science CSD CrossRef Google Scholar
First citationPandarus, V., Castonguay, A. & Zargarian, D. (2008). Dalton Trans. pp. 4756–4761.  Web of Science CSD CrossRef Google Scholar
First citationRosenthal, U., Oehme, G., Gorls, H., Burlakov, V. V., Polyakov, A. V., Yanovsky, A. I. & Struchkov, Y. T. (1990). J. Organomet. Chem. 389, 409–416.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSjövall, S., Andersson, C. & Wendt, O. F. (2001). Inorg. Chim. Acta, 325, 182–186.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m176-m177
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds