metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­phenyl­tin(IV)]-μ-N-(4-acetyl­phen­yl)maleamato]

aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and bSchool of Chemistry, University of Manchester, Manchester M30 9PL, England
*Correspondence e-mail: moazzamhussain_b@yahoo.com

(Received 19 June 2013; accepted 26 June 2013; online 3 July 2013)

The crystal structure of the polymeric title compound, [Sn(C6H5)3(C12H10NO4)]n, comprises polymeric chains whereby adjacent Sn atoms are bridged by carboxyl­ate and amide carbonyl O atoms [Sn—O = 2.115 (15) and 2.653 (1) Å, respectively]. The SnIV atom is five-coordinated showing a distorted trigonal–bipyramid geometry, with the three phenyl ipso-C atoms defining the trigonal plane and the axial positions occupied by O atoms [O—Sn—O = 171.91 (5)°]. Intra­molecular N—H⋯O hydrogen bonding leads to a seven-membered loop. There is an intra­molecular C—H⋯O inter­action within the polymeric chain. An inter­molecular C—H⋯O inter­action along c links the polymeric chains into sheets which are linked into a three-dimensional network via C—H⋯π inter­actions.

Related literature

For reviews of organotin structural chemistry, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.], 1994[Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.]). For related structures, see: Sadiq-ur-Rehman et al. (2005[Sadiq-ur-Rehman, Shahid, K, Ali, S., Bhatti, M.H. & Parvez, M., (2005). J. Organomet. Chem. 690, 1396-1408.]); Parvez et al. (2002[Parvez, M., Ali, S., Ahmad, S., Bhatti, M. H. & Mazhar, M. (2002). Acta Cryst. C58, m334-m335.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C12H10NO4)]

  • Mr = 582.20

  • Triclinic, [P \overline 1]

  • a = 9.7556 (5) Å

  • b = 11.3298 (6) Å

  • c = 12.0571 (6) Å

  • α = 73.187 (1)°

  • β = 87.082 (1)°

  • γ = 79.841 (1)°

  • V = 1255.69 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.726, Tmax = 1.000

  • 10025 measured reflections

  • 5034 independent reflections

  • 4905 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.09

  • 5034 reflections

  • 425 parameters

  • All H-atom parameters refined

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg3 are the centroids of the C1–C6, C7–C12 and C13–C18 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.87 (3) 1.88 (3) 2.707 (2) 158 (2)
C6—H6⋯O3i 0.91 (3) 2.58 (3) 3.253 (3) 131 (2)
C20—H20⋯O4ii 0.93 (3) 2.48 (3) 3.242 (3) 139 (2)
C3—H3⋯Cg2iii 0.92 (3) 2.93 (3) 3.651 (2) 137 (2)
C27—H27⋯Cg3iv 0.92 (3) 2.83 (3) 3.674 (2) 154 (2)
C30—H30CCg1v 0.93 (3) 2.93 (3) 3.794 (4) 155 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) -x+2, -y, -z+1; (iv) -x+2, -y+1, -z; (v) x-1, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organotin(IV) carboxylates are well known for their potential applications and rich structural diversity (Tiekink, 1991). Among organotin(IV) carboxylates, tri-organotin(IV) carboxylates have shown discrete to polymer chain structures (Tiekink, 1994). Triphenyltin(IV) carboxylates generally adopt a tetrahedral geometry with a monodentate carboxylate [Sadiq-ur-Rehman et al., 2005] or a distorted trigonal bipyramidal geometry with bridging ligand or with an additional donor atom like N or O derived from the adjacent ligand [Parvez et al., 2002]. In the present report we have studied the polymeric title compound, (I), catena-poly{[triphenyltin(IV)]-µ-N-(4-acetylphenyl)maleamato}, (Fig. 1).

The geometry around tin atom is distorted trigonal bipyramidal as defined by three ipso-carbon atoms of the three phenyl rings in equatorial positions [Sn1—C1 = 2.133 (2) Å, Sn1—C7 = 2.117 (2) Å, Sn1—C13 = 2.119 (2) Å] while the axial positions are occupied by the O atom of a monodentate carboxylate ligand [Sn1—O1 = 2.115 (15) Å] and the amide carbonyl of an adjacent ligand [Sn1—O3 = 2.653 (1) Å]. The sum of the angles in the equatorial plane is 354.9° indicating distortion. The major distortion from ideal trigonal bipyramidal geometry is found in the axial angle [O1—Sn1—O3 = 171.91 (5)°]. The monodentate mode of coordination of the carboxylate ligand is reflected in the disparate O1—C19 and O2—C19 bond distances of 1.295 (3) and 1.234 (3) Å, respectively, with the longer separation associated with the stronger Sn1—O1 interaction. The much longer distance, Sn1—O2 = 3.100 (1) Å, further demonstrates the monodentate nature of the carboxylate ligand. Although this value is quite long for any coordination of Sn with O, it falls well within the sum of their van der Waals radii (3.70 Å). Adjacent Sn atoms are linked by the O1 and O3 atoms of each ligand generating polymeric chains (Fig. 2).

The ligand forms an essentially planar seven-membered ring involving an intramolecular N1—H1N···O2 hydrogen bond (Figs 1 and 2).

Related literature top

For reviews of organotin structural chemistry, see: Tiekink (1991, 1994). For related structures, see: Sadiq-ur-Rehman et al. (2005); Parvez et al. (2002).

Experimental top

A solution of maleic anhydride (1.0 g, 10 mmol) in ethyl acetate (50 ml ) was added to a solution of p-aminoacetophonene (1.35 g, 10 mmol) in ethyl acetate (50 ml) in a 250 ml conical flask. The mixture was stirred for 3 h at room temperature. After stirring, the precipitates of the acid were filtered and recrystallized with ethanol. Equimolar amounts of acid (2.33 g, 10 mmol) and triphenyltin hydroxide (3.17 g 10.0 mmol) were suspended in a dry ethanol / acetone (100 ml, 8:2) solvent mixture and refluxed for 8 h. After cooling to room temperature, the reaction mixture was filtered and solvents were evaporated in rotary evaporator. The solid obtained was recrystallized from chloroform with few drops of n-hexane.

Refinement top

H atoms were found by difference Fourier techniques and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Polymeric chains viewed down b. The intramolecular N1—H1N···O2 hydrogen bonds are shown with dashed lines.
catena-Poly[[triphenyltin(IV)]-µ-N-(4-acetylphenyl)maleamato] top
Crystal data top
[Sn(C6H5)3(C12H10NO4)]Z = 2
Mr = 582.20F(000) = 588
Triclinic, P1Dx = 1.540 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7556 (5) ÅCell parameters from 7807 reflections
b = 11.3298 (6) Åθ = 2.2–26.3°
c = 12.0571 (6) ŵ = 1.05 mm1
α = 73.187 (1)°T = 100 K
β = 87.082 (1)°Block, colourless
γ = 79.841 (1)°0.40 × 0.30 × 0.30 mm
V = 1255.69 (11) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5034 independent reflections
Radiation source: fine-focus sealed tube4905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.726, Tmax = 1.000k = 1414
10025 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.7706P]
where P = (Fo2 + 2Fc2)/3
5034 reflections(Δ/σ)max = 0.002
425 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Sn(C6H5)3(C12H10NO4)]γ = 79.841 (1)°
Mr = 582.20V = 1255.69 (11) Å3
Triclinic, P1Z = 2
a = 9.7556 (5) ÅMo Kα radiation
b = 11.3298 (6) ŵ = 1.05 mm1
c = 12.0571 (6) ÅT = 100 K
α = 73.187 (1)°0.40 × 0.30 × 0.30 mm
β = 87.082 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5034 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4905 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 1.000Rint = 0.017
10025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.061All H-atom parameters refined
S = 1.09Δρmax = 0.94 e Å3
5034 reflectionsΔρmin = 0.52 e Å3
425 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn11.118867 (13)0.216792 (11)0.364576 (10)0.01473 (6)
O10.91398 (14)0.21171 (14)0.43008 (12)0.0192 (3)
O20.82580 (15)0.29679 (14)0.25203 (12)0.0203 (3)
O30.36940 (15)0.25668 (14)0.28265 (12)0.0207 (3)
O40.54744 (17)0.37815 (17)0.35968 (13)0.0294 (4)
N10.56244 (18)0.31413 (16)0.18064 (15)0.0180 (3)
C11.2068 (2)0.12405 (18)0.53210 (17)0.0157 (4)
C21.1190 (2)0.09341 (19)0.62727 (18)0.0188 (4)
C31.1730 (2)0.0327 (2)0.73784 (18)0.0223 (4)
C41.3154 (2)0.0025 (2)0.75508 (18)0.0229 (4)
C51.4035 (2)0.0305 (2)0.6616 (2)0.0249 (5)
C61.3499 (2)0.0898 (2)0.55069 (19)0.0214 (4)
C71.1471 (2)0.10390 (19)0.24991 (17)0.0163 (4)
C81.0993 (2)0.1477 (2)0.13559 (19)0.0228 (4)
C91.1310 (3)0.0744 (2)0.0605 (2)0.0261 (5)
C101.2088 (2)0.0445 (2)0.0984 (2)0.0256 (5)
C111.2536 (2)0.0907 (2)0.2129 (2)0.0246 (5)
C121.2232 (2)0.0165 (2)0.28751 (19)0.0199 (4)
C131.0903 (2)0.41459 (18)0.30166 (17)0.0163 (4)
C141.0550 (2)0.4792 (2)0.18678 (19)0.0227 (4)
C151.0324 (2)0.6089 (2)0.15076 (19)0.0246 (5)
C161.0452 (2)0.6755 (2)0.2282 (2)0.0239 (4)
C171.0806 (2)0.6130 (2)0.3421 (2)0.0248 (5)
C181.1028 (2)0.4831 (2)0.37833 (19)0.0210 (4)
C190.8119 (2)0.26463 (19)0.35832 (18)0.0176 (4)
C200.6763 (2)0.2894 (2)0.41850 (18)0.0195 (4)
C210.5453 (2)0.3011 (2)0.38405 (18)0.0190 (4)
C220.4852 (2)0.28728 (18)0.27760 (17)0.0172 (4)
C230.5275 (2)0.32237 (19)0.06658 (17)0.0172 (4)
C240.4041 (2)0.2941 (2)0.0351 (2)0.0259 (5)
C250.3785 (2)0.3122 (2)0.0815 (2)0.0258 (5)
C260.4739 (2)0.35404 (19)0.16698 (18)0.0193 (4)
C270.5990 (2)0.3783 (2)0.13311 (18)0.0195 (4)
C280.6248 (2)0.36391 (19)0.01899 (19)0.0194 (4)
C290.4505 (2)0.3716 (2)0.29234 (18)0.0218 (4)
C300.3051 (3)0.3806 (3)0.3335 (2)0.0289 (5)
H21.023 (3)0.112 (2)0.618 (2)0.023 (6)*
H31.112 (3)0.013 (3)0.798 (2)0.032 (7)*
H41.354 (3)0.036 (3)0.826 (3)0.033 (7)*
H51.498 (3)0.004 (3)0.672 (2)0.032 (7)*
H61.409 (3)0.107 (2)0.489 (2)0.027 (7)*
H81.047 (3)0.227 (3)0.113 (2)0.024 (6)*
H91.104 (3)0.105 (3)0.011 (3)0.042 (8)*
H101.228 (3)0.092 (3)0.049 (2)0.031 (7)*
H111.304 (3)0.170 (3)0.240 (2)0.026 (7)*
H121.254 (3)0.046 (2)0.357 (2)0.020 (6)*
H141.045 (3)0.436 (3)0.132 (2)0.030 (7)*
H151.010 (3)0.650 (3)0.075 (2)0.030 (7)*
H161.032 (3)0.756 (2)0.206 (2)0.020 (6)*
H171.085 (3)0.654 (3)0.393 (2)0.030 (7)*
H181.127 (3)0.442 (2)0.453 (2)0.026 (6)*
H200.688 (3)0.302 (2)0.489 (2)0.021 (6)*
H210.476 (3)0.319 (2)0.437 (2)0.022 (6)*
H240.339 (3)0.263 (3)0.091 (3)0.036 (7)*
H250.301 (3)0.293 (3)0.103 (2)0.037 (8)*
H270.663 (3)0.408 (3)0.188 (2)0.032 (7)*
H280.711 (3)0.385 (3)0.001 (2)0.031 (7)*
H30A0.303 (3)0.410 (3)0.412 (3)0.045 (8)*
H30B0.244 (3)0.434 (3)0.300 (2)0.027 (7)*
H30C0.282 (3)0.301 (3)0.315 (3)0.037 (8)*
H1N0.647 (3)0.326 (2)0.188 (2)0.025 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01521 (8)0.01594 (8)0.01313 (8)0.00281 (5)0.00159 (5)0.00392 (5)
O10.0137 (7)0.0241 (7)0.0190 (7)0.0039 (6)0.0019 (5)0.0040 (6)
O20.0153 (7)0.0291 (8)0.0178 (7)0.0057 (6)0.0007 (5)0.0075 (6)
O30.0140 (7)0.0280 (8)0.0195 (7)0.0051 (6)0.0003 (5)0.0052 (6)
O40.0261 (8)0.0426 (10)0.0191 (8)0.0003 (7)0.0007 (6)0.0114 (7)
N10.0129 (8)0.0242 (9)0.0178 (8)0.0044 (7)0.0005 (6)0.0067 (7)
C10.0183 (10)0.0133 (9)0.0165 (9)0.0044 (7)0.0015 (7)0.0044 (7)
C20.0162 (10)0.0197 (10)0.0203 (10)0.0049 (8)0.0007 (8)0.0045 (8)
C30.0267 (11)0.0232 (11)0.0164 (10)0.0081 (9)0.0048 (8)0.0032 (8)
C40.0299 (12)0.0211 (10)0.0151 (10)0.0025 (9)0.0057 (8)0.0010 (8)
C50.0172 (11)0.0305 (12)0.0247 (11)0.0021 (9)0.0055 (8)0.0046 (9)
C60.0182 (10)0.0252 (11)0.0191 (10)0.0057 (8)0.0032 (8)0.0031 (8)
C70.0147 (9)0.0191 (10)0.0173 (9)0.0069 (7)0.0013 (7)0.0064 (8)
C80.0291 (11)0.0179 (10)0.0210 (10)0.0053 (9)0.0030 (9)0.0037 (8)
C90.0374 (13)0.0270 (11)0.0174 (11)0.0131 (10)0.0009 (9)0.0072 (9)
C100.0305 (12)0.0261 (11)0.0266 (11)0.0110 (9)0.0071 (9)0.0150 (10)
C110.0212 (11)0.0204 (11)0.0337 (12)0.0028 (9)0.0012 (9)0.0106 (9)
C120.0163 (10)0.0227 (11)0.0204 (11)0.0050 (8)0.0016 (8)0.0043 (8)
C130.0124 (9)0.0170 (9)0.0192 (10)0.0032 (7)0.0009 (7)0.0044 (8)
C140.0280 (11)0.0222 (11)0.0183 (10)0.0059 (9)0.0001 (8)0.0055 (8)
C150.0273 (11)0.0231 (11)0.0194 (11)0.0036 (9)0.0000 (9)0.0001 (9)
C160.0217 (11)0.0169 (11)0.0320 (12)0.0046 (8)0.0009 (9)0.0047 (9)
C170.0263 (11)0.0247 (11)0.0282 (12)0.0074 (9)0.0019 (9)0.0127 (9)
C180.0204 (10)0.0238 (11)0.0188 (10)0.0034 (8)0.0042 (8)0.0056 (8)
C190.0160 (9)0.0189 (10)0.0200 (10)0.0051 (8)0.0015 (8)0.0074 (8)
C200.0202 (10)0.0229 (10)0.0163 (10)0.0048 (8)0.0004 (8)0.0062 (8)
C210.0172 (10)0.0228 (10)0.0175 (10)0.0034 (8)0.0034 (8)0.0069 (8)
C220.0144 (9)0.0174 (9)0.0183 (10)0.0000 (7)0.0001 (7)0.0044 (8)
C230.0157 (9)0.0196 (10)0.0167 (9)0.0023 (8)0.0008 (7)0.0061 (8)
C240.0189 (10)0.0395 (13)0.0211 (11)0.0116 (9)0.0017 (8)0.0080 (10)
C250.0173 (10)0.0388 (13)0.0250 (11)0.0103 (9)0.0032 (8)0.0107 (10)
C260.0183 (10)0.0199 (10)0.0199 (10)0.0009 (8)0.0015 (8)0.0073 (8)
C270.0160 (10)0.0237 (10)0.0186 (10)0.0026 (8)0.0024 (8)0.0065 (8)
C280.0136 (9)0.0215 (10)0.0240 (11)0.0046 (8)0.0007 (8)0.0069 (8)
C290.0247 (11)0.0210 (10)0.0200 (10)0.0001 (8)0.0023 (8)0.0079 (8)
C300.0264 (12)0.0409 (14)0.0217 (12)0.0038 (10)0.0046 (9)0.0130 (11)
Geometric parameters (Å, º) top
Sn1—O12.1156 (14)C12—H120.85 (3)
Sn1—C72.117 (2)C13—C181.390 (3)
Sn1—C132.120 (2)C13—C141.395 (3)
Sn1—C12.1331 (19)C14—C151.387 (3)
O1—C191.295 (2)C14—H140.95 (3)
O2—C191.234 (3)C15—C161.382 (3)
O3—C221.233 (2)C15—H150.92 (3)
O4—C291.213 (3)C16—C171.380 (3)
N1—C221.346 (3)C16—H160.86 (3)
N1—C231.406 (3)C17—C181.388 (3)
N1—H1N0.87 (3)C17—H170.88 (3)
C1—C61.394 (3)C18—H180.91 (3)
C1—C21.395 (3)C19—C201.498 (3)
C2—C31.393 (3)C20—C211.336 (3)
C2—H20.93 (3)C20—H200.93 (3)
C3—C41.382 (3)C21—C221.497 (3)
C3—H30.92 (3)C21—H210.94 (3)
C4—C51.379 (3)C23—C241.396 (3)
C4—H40.90 (3)C23—C281.401 (3)
C5—C61.393 (3)C24—C251.390 (3)
C5—H50.92 (3)C24—H240.94 (3)
C6—H60.91 (3)C25—C261.388 (3)
C7—C121.392 (3)C25—H250.89 (3)
C7—C81.397 (3)C26—C271.402 (3)
C8—C91.386 (3)C26—C291.490 (3)
C8—H80.92 (3)C27—C281.369 (3)
C9—C101.385 (3)C27—H270.92 (3)
C9—H90.87 (3)C28—H280.97 (3)
C10—C111.390 (3)C29—C301.504 (3)
C10—H100.90 (3)C30—H30A0.90 (3)
C11—C121.388 (3)C30—H30B0.93 (3)
C11—H110.91 (3)C30—H30C0.93 (3)
O1—Sn1—C7106.04 (6)C16—C15—C14120.3 (2)
O1—Sn1—C1394.72 (6)C16—C15—H15120.2 (17)
C7—Sn1—C13121.26 (8)C14—C15—H15119.4 (17)
O1—Sn1—C191.79 (7)C17—C16—C15120.0 (2)
C7—Sn1—C1113.71 (7)C17—C16—H16119.3 (16)
C13—Sn1—C1119.95 (7)C15—C16—H16120.7 (16)
C19—O1—Sn1117.65 (13)C16—C17—C18119.7 (2)
C22—N1—C23128.88 (18)C16—C17—H17121.0 (18)
C22—N1—H1N117.3 (17)C18—C17—H17119.2 (18)
C23—N1—H1N113.8 (17)C17—C18—C13121.1 (2)
C6—C1—C2117.95 (19)C17—C18—H18119.7 (17)
C6—C1—Sn1122.54 (15)C13—C18—H18119.3 (17)
C2—C1—Sn1119.49 (15)O2—C19—O1123.74 (19)
C3—C2—C1120.93 (19)O2—C19—C20123.54 (18)
C3—C2—H2118.3 (16)O1—C19—C20112.62 (17)
C1—C2—H2120.8 (16)C21—C20—C19130.75 (19)
C4—C3—C2120.3 (2)C21—C20—H20116.9 (15)
C4—C3—H3121.6 (17)C19—C20—H20112.3 (15)
C2—C3—H3118.2 (17)C20—C21—C22132.41 (19)
C5—C4—C3119.4 (2)C20—C21—H21115.4 (15)
C5—C4—H4118.2 (18)C22—C21—H21112.2 (15)
C3—C4—H4122.3 (18)O3—C22—N1124.60 (19)
C4—C5—C6120.5 (2)O3—C22—C21119.31 (18)
C4—C5—H5119.5 (17)N1—C22—C21116.05 (18)
C6—C5—H5119.9 (17)C24—C23—C28119.58 (19)
C5—C6—C1120.9 (2)C24—C23—N1124.44 (19)
C5—C6—H6119.6 (17)C28—C23—N1115.97 (18)
C1—C6—H6119.5 (17)C25—C24—C23118.9 (2)
C12—C7—C8118.41 (19)C25—C24—H24119.9 (18)
C12—C7—Sn1118.82 (15)C23—C24—H24121.2 (18)
C8—C7—Sn1122.66 (15)C26—C25—C24121.9 (2)
C9—C8—C7120.7 (2)C26—C25—H25118.3 (19)
C9—C8—H8122.1 (16)C24—C25—H25119.8 (19)
C7—C8—H8117.2 (16)C25—C26—C27118.27 (19)
C10—C9—C8120.4 (2)C25—C26—C29122.99 (19)
C10—C9—H9120 (2)C27—C26—C29118.72 (19)
C8—C9—H9119 (2)C28—C27—C26120.75 (19)
C9—C10—C11119.6 (2)C28—C27—H27118.6 (17)
C9—C10—H10119.5 (18)C26—C27—H27120.6 (17)
C11—C10—H10120.9 (18)C27—C28—C23120.56 (19)
C12—C11—C10119.9 (2)C27—C28—H28118.7 (16)
C12—C11—H11119.1 (16)C23—C28—H28120.7 (16)
C10—C11—H11121.0 (16)O4—C29—C26120.4 (2)
C11—C12—C7121.0 (2)O4—C29—C30120.8 (2)
C11—C12—H12118.1 (17)C26—C29—C30118.85 (19)
C7—C12—H12120.9 (17)C29—C30—H30A109 (2)
C18—C13—C14118.53 (19)C29—C30—H30B108.8 (16)
C18—C13—Sn1118.94 (15)H30A—C30—H30B111 (3)
C14—C13—Sn1122.50 (15)C29—C30—H30C109.3 (18)
C15—C14—C13120.3 (2)H30A—C30—H30C107 (3)
C15—C14—H14118.4 (16)H30B—C30—H30C112 (2)
C13—C14—H14121.2 (16)
C7—Sn1—O1—C1967.36 (15)C7—Sn1—C13—C1416.1 (2)
C13—Sn1—O1—C1957.08 (15)C1—Sn1—C13—C14169.33 (16)
C1—Sn1—O1—C19177.32 (14)C18—C13—C14—C150.3 (3)
O1—Sn1—C1—C6176.43 (17)Sn1—C13—C14—C15177.59 (16)
C7—Sn1—C1—C668.03 (18)C13—C14—C15—C160.3 (3)
C13—Sn1—C1—C687.08 (18)C14—C15—C16—C170.0 (3)
O1—Sn1—C1—C22.16 (16)C15—C16—C17—C180.2 (3)
C7—Sn1—C1—C2110.56 (16)C16—C17—C18—C130.2 (3)
C13—Sn1—C1—C294.33 (16)C14—C13—C18—C170.1 (3)
C6—C1—C2—C31.3 (3)Sn1—C13—C18—C17177.87 (16)
Sn1—C1—C2—C3179.92 (16)Sn1—O1—C19—O213.9 (3)
C1—C2—C3—C40.5 (3)Sn1—O1—C19—C20162.73 (13)
C2—C3—C4—C51.4 (3)O2—C19—C20—C2129.0 (4)
C3—C4—C5—C60.6 (3)O1—C19—C20—C21154.3 (2)
C4—C5—C6—C11.1 (3)C19—C20—C21—C223.8 (4)
C2—C1—C6—C52.1 (3)C23—N1—C22—O35.0 (3)
Sn1—C1—C6—C5179.34 (17)C23—N1—C22—C21172.72 (19)
O1—Sn1—C7—C12102.06 (16)C20—C21—C22—O3153.0 (2)
C13—Sn1—C7—C12152.00 (15)C20—C21—C22—N129.2 (3)
C1—Sn1—C7—C122.74 (18)C22—N1—C23—C244.9 (3)
O1—Sn1—C7—C881.76 (17)C22—N1—C23—C28174.1 (2)
C13—Sn1—C7—C824.2 (2)C28—C23—C24—C252.2 (3)
C1—Sn1—C7—C8178.92 (16)N1—C23—C24—C25176.7 (2)
C12—C7—C8—C92.1 (3)C23—C24—C25—C261.9 (4)
Sn1—C7—C8—C9174.13 (17)C24—C25—C26—C270.0 (3)
C7—C8—C9—C101.0 (3)C24—C25—C26—C29178.7 (2)
C8—C9—C10—C110.8 (3)C25—C26—C27—C281.5 (3)
C9—C10—C11—C121.7 (3)C29—C26—C27—C28179.74 (19)
C10—C11—C12—C70.6 (3)C26—C27—C28—C231.2 (3)
C8—C7—C12—C111.2 (3)C24—C23—C28—C270.7 (3)
Sn1—C7—C12—C11175.11 (16)N1—C23—C28—C27178.29 (19)
O1—Sn1—C13—C1882.01 (16)C25—C26—C29—O4161.8 (2)
C7—Sn1—C13—C18166.00 (15)C27—C26—C29—O416.8 (3)
C1—Sn1—C13—C1812.79 (19)C25—C26—C29—C3017.9 (3)
O1—Sn1—C13—C1495.87 (17)C27—C26—C29—C30163.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C1–C6, C7–C12 and C13–C18 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.87 (3)1.88 (3)2.707 (2)158 (2)
C6—H6···O3i0.91 (3)2.58 (3)3.253 (3)131 (2)
C20—H20···O4ii0.93 (3)2.48 (3)3.242 (3)139 (2)
C3—H3···Cg2iii0.92 (3)2.93 (3)3.651 (2)137 (2)
C27—H27···Cg3iv0.92 (3)2.83 (3)3.674 (2)154 (2)
C30—H30C···Cg1v0.93 (3)2.93 (3)3.794 (4)155 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+2, y, z+1; (iv) x+2, y+1, z; (v) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C12H10NO4)]
Mr582.20
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.7556 (5), 11.3298 (6), 12.0571 (6)
α, β, γ (°)73.187 (1), 87.082 (1), 79.841 (1)
V3)1255.69 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.726, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10025, 5034, 4905
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.09
No. of reflections5034
No. of parameters425
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.94, 0.52

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C1–C6, C7–C12 and C13–C18 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.87 (3)1.88 (3)2.707 (2)158 (2)
C6—H6···O3i0.91 (3)2.58 (3)3.253 (3)131 (2)
C20—H20···O4ii0.93 (3)2.48 (3)3.242 (3)139 (2)
C3—H3···Cg2iii0.92 (3)2.93 (3)3.651 (2)137 (2)
C27—H27···Cg3iv0.92 (3)2.83 (3)3.674 (2)154 (2)
C30—H30C···Cg1v0.93 (3)2.93 (3)3.794 (4)155 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+2, y, z+1; (iv) x+2, y+1, z; (v) x1, y, z1.
 

Acknowledgements

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

References

First citationBruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationParvez, M., Ali, S., Ahmad, S., Bhatti, M. H. & Mazhar, M. (2002). Acta Cryst. C58, m334–m335.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSadiq-ur-Rehman, Shahid, K, Ali, S., Bhatti, M.H. & Parvez, M., (2005). J. Organomet. Chem. 690, 1396–1408.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationTiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71–116.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds