organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­amino-1,3,5-triazin-1-ium 3-(prop-2-eno­yl­oxy)propano­ate acrylic acid monosolvate monohydrate

aDepartment of Physics, D.G. Vaishnav College, Chennai 600 106, India, bDepartment of Physics, Vel Tech Multi Tech Dr. Rangarajan and Dr. Sakunthala Eng. College, Chennai 600 062, India, cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, dInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław, 2, PO Box 937, Poland, and eDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, anbu_24663@yahoo.co.in

(Received 9 April 2013; accepted 11 April 2013; online 17 April 2013)

The asymmetric unit of the title salt, C3H7N6+·C6H7O4·C3H4O2·H2O, contains a 2,4,6-tri­amino-1,3,5-triazin-1-ium cation, a 3-(prop-2-eno­yloxy)propano­ate anion and acrylic acid and water solvent mol­ecules in a 1:1:1:1 ratio and with each species in a general position. In the crystal, the components are linked into a supra­molecular layer in the bc plane via a combination of O—H⋯O, N—H⋯N and N—H⋯O hydrogen bonding. The crystal studied was a non-merohedral twin, the minor component contribution being approximately 26%.

Related literature

For general background to melamine derivatives, see: Krische & Lehn, (2000[Krische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3-29.]). For related structures, see: Kanagathara et al. (2012[Kanagathara, N., Chakkaravarthi, G., Marchewka, M. K., Gunasekaran, S. & Anbalagan, G. (2012). Acta Cryst. E68, o2286.]); Wang et al. (2007[Wang, G., Wu, W. & Zhuang, L. (2007). Acta Cryst. E63, m2552-m2553.]).

[Scheme 1]

Experimental

Crystal data
  • C3H7N6+·C6H7O4·C3H4O2·H2O

  • Mr = 360.34

  • Triclinic, [P \overline 1]

  • a = 4.84800 (1) Å

  • b = 12.4200 (2) Å

  • c = 14.8850 (3) Å

  • α = 101.010 (1)°

  • β = 92.652 (1)°

  • γ = 94.117 (1)°

  • V = 875.84 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.973

  • 14152 measured reflections

  • 14152 independent reflections

  • 10635 reflections with I > 2σ(I)

  • Rint = 0.000

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.204

  • S = 1.07

  • 14152 reflections

  • 264 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4 0.84 (1) 2.05 (2) 2.804 (2) 149 (3)
O1—H1⋯O3i 0.82 1.77 2.5872 (17) 171
N1—H1A⋯O3ii 0.89 (1) 1.90 (1) 2.7829 (17) 175 (2)
N4—H4C⋯N2i 0.922 (19) 2.08 (2) 2.995 (2) 175 (16)
N4—H4D⋯O3ii 0.953 (15) 2.494 (16) 3.295 (2) 142 (12)
N4—H4D⋯O2iii 0.953 (15) 2.172 (15) 2.850 (2) 127 (12)
N5—H5A⋯O2iv 0.97 (2) 2.03 (2) 3.001 (2) 175 (17)
N5—H5B⋯O7v 0.898 (18) 2.031 (18) 2.875 (2) 156 (14)
N6—H6B⋯N3vi 0.88 (2) 2.17 (2) 3.039 (2) 169 (17)
O7—H7B⋯O6iv 0.84 (1) 2.17 (2) 2.977 (3) 161 (4)
Symmetry codes: (i) -x+1, -y-1, -z+1; (ii) x-1, y, z; (iii) -x, -y-1, -z+1; (iv) x+1, y, z; (v) -x+2, -y, -z+1; (vi) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Melamine and its derivatives can develop well defined non-covalent supramolecular nanoarchitectures via multiple hydrogen bonds by self-assembly of components containing complementary arrays of hydrogen-bonding sites (Krische & Lehn, 2000). The geometric parameters of the title compound (I), Fig. 1, are comparable with similar structures (Kanagathara et al., 2012; Wang et al., 2007).

The crystal packing is stabilized by intermolecular O—H···O, N—H···O, N—H···N and C—H···O interactions to form layers in the bc-plane, Fig. 2.

Related literature top

For general background to melamine derivatives, see: Krische & Lehn, (2000). For related structures, see: Kanagathara et al. (2012); Wang et al. (2007).

Experimental top

Melamine (0.64 g, 5 mmol) and acrylic acid (0.36 g, 5 mmol) were taken in 1:3 ratio. Melamine was dissolved in a hot solution (100 ml) of distilled water. Acrylic acid (1.3911 g, 0.01 mmol) was dissolved in distilled water (5 ml) separately. To the hot solution of melamine, the acrylic acid solution was added slowly, and stirred well for nearly four hours to get a homogeneous solution. Then, the mixture is allowed to evaporate. After several days, transparent crystals suitable for X-ray diffractions were formed.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The H atoms bound to O and N atoms were found from difference Fourier maps and refined isotropically, with distance restraints N—H = 0.88±0.01 Å and O—H = 0.82 ±0.01 Å; the hydroxyl-H atom was included in its calculated position with O—H = 0.82 Å. The crystal is a non-merohedral twin and the minor component contributes approximately 26%.

Structure description top

Melamine and its derivatives can develop well defined non-covalent supramolecular nanoarchitectures via multiple hydrogen bonds by self-assembly of components containing complementary arrays of hydrogen-bonding sites (Krische & Lehn, 2000). The geometric parameters of the title compound (I), Fig. 1, are comparable with similar structures (Kanagathara et al., 2012; Wang et al., 2007).

The crystal packing is stabilized by intermolecular O—H···O, N—H···O, N—H···N and C—H···O interactions to form layers in the bc-plane, Fig. 2.

For general background to melamine derivatives, see: Krische & Lehn, (2000). For related structures, see: Kanagathara et al. (2012); Wang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the constituents of (I), showing atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the packing of (I) in projection down the a axis. Hydrogen bonds are shown as dashed lines.
2,4,6-Triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy)propanoate acrylic acid monosolvate monohydrate top
Crystal data top
C3H7N6+·C6H7O4·C3H4O2·H2OZ = 2
Mr = 360.34F(000) = 380
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.84800 (1) ÅCell parameters from 3859 reflections
b = 12.4200 (2) Åθ = 2.0–25.0°
c = 14.8850 (3) ŵ = 0.11 mm1
α = 101.010 (1)°T = 295 K
β = 92.652 (1)°Block, colourless
γ = 94.117 (1)°0.30 × 0.26 × 0.24 mm
V = 875.84 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
14152 independent reflections
Radiation source: fine-focus sealed tube10635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω and φ scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.967, Tmax = 0.973k = 1414
14152 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.1084P)2 + 0.3527P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
14152 reflectionsΔρmax = 0.40 e Å3
264 parametersΔρmin = 0.25 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C3H7N6+·C6H7O4·C3H4O2·H2Oγ = 94.117 (1)°
Mr = 360.34V = 875.84 (3) Å3
Triclinic, P1Z = 2
a = 4.84800 (1) ÅMo Kα radiation
b = 12.4200 (2) ŵ = 0.11 mm1
c = 14.8850 (3) ÅT = 295 K
α = 101.010 (1)°0.30 × 0.26 × 0.24 mm
β = 92.652 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
14152 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
10635 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.973Rint = 0.000
14152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0593 restraints
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.40 e Å3
14152 reflectionsΔρmin = 0.25 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3604 (3)0.33906 (13)0.54291 (10)0.0388 (4)
C20.6285 (3)0.25897 (13)0.45046 (10)0.0387 (4)
C30.3461 (3)0.15225 (13)0.53714 (10)0.0376 (4)
C40.5541 (5)0.4187 (2)0.14464 (17)0.0881 (7)
H4A0.62720.48660.12970.106*
H4B0.61840.36060.11790.106*
C50.3624 (4)0.40507 (17)0.20271 (14)0.0658 (6)
H50.29420.33610.21600.079*
C60.2452 (4)0.49050 (15)0.24902 (13)0.0525 (5)
C70.7769 (3)0.16472 (14)0.73027 (11)0.0412 (4)
C80.5604 (3)0.15879 (14)0.80048 (11)0.0461 (4)
H8A0.40120.20870.77460.055*
H8B0.63520.18440.85340.055*
C90.4644 (3)0.04632 (15)0.83200 (12)0.0501 (5)
H9A0.43620.01050.78020.060*
H9B0.29070.05160.86130.060*
C100.6404 (4)0.12157 (16)0.92622 (12)0.0535 (5)
C110.8622 (4)0.17721 (19)0.99161 (14)0.0669 (6)
H111.01070.13831.00490.080*
C120.8592 (6)0.2792 (2)1.03178 (18)0.1037 (9)
H12A0.71220.31921.01920.124*
H12B1.00410.31231.07320.124*
N10.2537 (3)0.24126 (11)0.57194 (9)0.0404 (3)
H1A0.128 (3)0.2424 (18)0.6135 (11)0.074 (6)*
N20.5509 (3)0.35026 (11)0.48202 (9)0.0421 (3)
N30.5367 (3)0.15873 (11)0.47602 (8)0.0392 (3)
N40.2644 (3)0.42345 (13)0.57764 (11)0.0536 (4)
H4C0.323 (3)0.4922 (17)0.5560 (12)0.057 (5)*
H4D0.121 (3)0.4097 (13)0.6191 (11)0.042 (4)*
N50.8195 (3)0.26917 (14)0.38830 (9)0.0467 (4)
H5A0.899 (4)0.3378 (19)0.3654 (14)0.081 (7)*
H5B0.862 (3)0.2142 (14)0.3587 (11)0.042 (5)*
N60.2362 (3)0.05879 (13)0.56754 (11)0.0492 (4)
H6A0.110 (4)0.0621 (15)0.6107 (13)0.055 (5)*
H6B0.317 (4)0.0013 (17)0.5495 (12)0.062 (6)*
O10.3317 (3)0.58757 (11)0.21954 (9)0.0694 (4)
H10.25980.63200.24750.104*
O20.0843 (3)0.47429 (11)0.30853 (10)0.0718 (4)
O30.8711 (2)0.25670 (10)0.70356 (8)0.0532 (3)
O40.8527 (3)0.08094 (10)0.70184 (8)0.0563 (3)
O50.6780 (2)0.01609 (10)0.89658 (8)0.0518 (3)
O60.4413 (3)0.16469 (12)0.90105 (11)0.0773 (4)
O71.0138 (4)0.14515 (14)0.74741 (12)0.0742 (4)
H7A0.915 (5)0.0873 (16)0.724 (2)0.141 (14)*
H7B1.130 (6)0.135 (4)0.787 (2)0.21 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0455 (9)0.0298 (10)0.0405 (9)0.0014 (7)0.0056 (7)0.0058 (7)
C20.0450 (9)0.0327 (10)0.0367 (8)0.0016 (7)0.0031 (7)0.0028 (7)
C30.0422 (9)0.0324 (10)0.0389 (8)0.0013 (7)0.0007 (7)0.0097 (7)
C40.115 (2)0.0604 (16)0.0961 (17)0.0067 (13)0.0356 (16)0.0270 (13)
C50.0868 (15)0.0412 (13)0.0705 (13)0.0073 (10)0.0062 (12)0.0123 (10)
C60.0622 (12)0.0352 (11)0.0585 (11)0.0059 (9)0.0014 (9)0.0053 (9)
C70.0376 (9)0.0386 (11)0.0452 (9)0.0028 (8)0.0021 (7)0.0029 (8)
C80.0439 (10)0.0435 (11)0.0507 (10)0.0046 (8)0.0110 (8)0.0062 (8)
C90.0428 (10)0.0510 (12)0.0561 (11)0.0088 (8)0.0094 (8)0.0061 (9)
C100.0590 (12)0.0473 (13)0.0550 (11)0.0076 (9)0.0255 (9)0.0059 (9)
C110.0728 (14)0.0657 (16)0.0580 (12)0.0051 (11)0.0127 (10)0.0007 (11)
C120.128 (2)0.075 (2)0.0941 (19)0.0066 (16)0.0105 (17)0.0134 (15)
N10.0478 (8)0.0316 (8)0.0426 (7)0.0014 (6)0.0086 (7)0.0090 (6)
N20.0524 (8)0.0292 (8)0.0444 (8)0.0025 (6)0.0112 (6)0.0048 (6)
N30.0469 (8)0.0289 (8)0.0430 (8)0.0043 (6)0.0098 (6)0.0076 (6)
N40.0719 (11)0.0323 (9)0.0606 (10)0.0060 (8)0.0244 (9)0.0134 (7)
N50.0638 (10)0.0354 (9)0.0443 (8)0.0083 (7)0.0221 (7)0.0100 (7)
N60.0562 (10)0.0324 (9)0.0628 (10)0.0106 (7)0.0243 (8)0.0117 (7)
O10.0963 (11)0.0413 (9)0.0760 (9)0.0149 (7)0.0341 (8)0.0146 (6)
O20.0886 (10)0.0496 (9)0.0828 (10)0.0199 (7)0.0371 (8)0.0139 (7)
O30.0568 (7)0.0376 (8)0.0657 (8)0.0089 (6)0.0222 (6)0.0053 (6)
O40.0680 (8)0.0412 (8)0.0633 (8)0.0059 (6)0.0269 (6)0.0132 (6)
O50.0562 (8)0.0462 (8)0.0506 (7)0.0119 (6)0.0054 (6)0.0005 (6)
O60.0733 (10)0.0545 (10)0.1014 (12)0.0216 (7)0.0028 (8)0.0034 (8)
O70.0988 (13)0.0528 (10)0.0763 (10)0.0053 (9)0.0210 (10)0.0227 (8)
Geometric parameters (Å, º) top
C1—N41.320 (2)C8—H8B0.9700
C1—N21.3198 (19)C9—O51.451 (2)
C1—N11.356 (2)C9—H9A0.9700
C2—N51.335 (2)C9—H9B0.9700
C2—N21.344 (2)C10—O61.215 (2)
C2—N31.344 (2)C10—O51.329 (2)
C3—N61.321 (2)C10—C111.456 (3)
C3—N31.3225 (18)C11—C121.294 (3)
C3—N11.364 (2)C11—H110.9300
C4—C51.296 (3)C12—H12A0.9300
C4—H4A0.9300C12—H12B0.9300
C4—H4B0.9300N1—H1A0.889 (9)
C5—C61.467 (3)N4—H4C0.922 (19)
C5—H50.9300N4—H4D0.953 (15)
C6—O21.205 (2)N5—H5A0.97 (2)
C6—O11.308 (2)N5—H5B0.898 (18)
C7—O41.235 (2)N6—H6A0.911 (18)
C7—O31.2609 (19)N6—H6B0.88 (2)
C7—C81.511 (2)O1—H10.8200
C8—C91.500 (2)O7—H7A0.843 (10)
C8—H8A0.9700O7—H7B0.836 (10)
N4—C1—N2120.99 (15)O5—C9—H9B110.3
N4—C1—N1117.24 (15)C8—C9—H9B110.3
N2—C1—N1121.77 (14)H9A—C9—H9B108.5
N5—C2—N2116.22 (14)O6—C10—O5122.83 (18)
N5—C2—N3117.01 (15)O6—C10—C11125.0 (2)
N2—C2—N3126.76 (14)O5—C10—C11112.21 (17)
N6—C3—N3121.40 (15)C12—C11—C10122.1 (2)
N6—C3—N1116.79 (15)C12—C11—H11119.0
N3—C3—N1121.80 (14)C10—C11—H11119.0
C5—C4—H4A120.0C11—C12—H12A120.0
C5—C4—H4B120.0C11—C12—H12B120.0
H4A—C4—H4B120.0H12A—C12—H12B120.0
C4—C5—C6124.8 (2)C1—N1—C3119.00 (13)
C4—C5—H5117.6C1—N1—H1A114.6 (14)
C6—C5—H5117.6C3—N1—H1A126.4 (14)
O2—C6—O1122.40 (17)C1—N2—C2115.50 (13)
O2—C6—C5124.07 (18)C3—N3—C2115.15 (13)
O1—C6—C5113.53 (17)C1—N4—H4C119.3 (11)
O4—C7—O3123.29 (15)C1—N4—H4D116.1 (9)
O4—C7—C8119.37 (15)H4C—N4—H4D124.2 (15)
O3—C7—C8117.35 (15)C2—N5—H5A123.5 (12)
C9—C8—C7114.76 (15)C2—N5—H5B120.4 (10)
C9—C8—H8A108.6H5A—N5—H5B115.5 (16)
C7—C8—H8A108.6C3—N6—H6A114.9 (11)
C9—C8—H8B108.6C3—N6—H6B114.1 (12)
C7—C8—H8B108.6H6A—N6—H6B130.1 (17)
H8A—C8—H8B107.6C6—O1—H1109.5
O5—C9—C8107.26 (13)C10—O5—C9115.98 (13)
O5—C9—H9A110.3H7A—O7—H7B112 (4)
C8—C9—H9A110.3
C4—C5—C6—O2173.4 (2)N4—C1—N2—C2178.84 (15)
C4—C5—C6—O16.6 (3)N1—C1—N2—C20.7 (2)
O4—C7—C8—C92.2 (2)N5—C2—N2—C1179.50 (14)
O3—C7—C8—C9177.86 (15)N3—C2—N2—C11.6 (2)
C7—C8—C9—O577.34 (18)N6—C3—N3—C2179.36 (15)
O6—C10—C11—C122.7 (3)N1—C3—N3—C20.8 (2)
O5—C10—C11—C12177.0 (2)N5—C2—N3—C3179.48 (14)
N4—C1—N1—C3179.52 (15)N2—C2—N3—C31.6 (2)
N2—C1—N1—C30.0 (2)O6—C10—O5—C90.5 (2)
N6—C3—N1—C1179.95 (14)C11—C10—O5—C9179.17 (14)
N3—C3—N1—C10.1 (2)C8—C9—O5—C10174.42 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O40.84 (1)2.05 (2)2.804 (2)149 (3)
O1—H1···O3i0.821.772.5872 (17)171
N1—H1A···O3ii0.89 (1)1.90 (1)2.7829 (17)175 (2)
N4—H4C···N2i0.922 (19)2.08 (2)2.995 (2)175 (16)
N4—H4D···O3ii0.953 (15)2.494 (16)3.295 (2)142 (12)
N4—H4D···O2iii0.953 (15)2.172 (15)2.850 (2)127 (12)
N5—H5A···O2iv0.97 (2)2.03 (2)3.001 (2)175 (17)
N5—H5B···O7v0.898 (18)2.031 (18)2.875 (2)156 (14)
N6—H6B···N3vi0.88 (2)2.17 (2)3.039 (2)169 (17)
O7—H7B···O6iv0.84 (1)2.17 (2)2.977 (3)161 (4)
Symmetry codes: (i) x+1, y1, z+1; (ii) x1, y, z; (iii) x, y1, z+1; (iv) x+1, y, z; (v) x+2, y, z+1; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC3H7N6+·C6H7O4·C3H4O2·H2O
Mr360.34
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)4.84800 (1), 12.4200 (2), 14.8850 (3)
α, β, γ (°)101.010 (1), 92.652 (1), 94.117 (1)
V3)875.84 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
14152, 14152, 10635
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.204, 1.07
No. of reflections14152
No. of parameters264
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O40.843 (10)2.050 (19)2.804 (2)149 (3)
O1—H1···O3i0.821.772.5872 (17)171
N1—H1A···O3ii0.889 (9)1.896 (10)2.7829 (17)175 (2)
N4—H4C···N2i0.922 (19)2.08 (2)2.995 (2)175 (16)
N4—H4D···O3ii0.953 (15)2.494 (16)3.295 (2)142 (12)
N4—H4D···O2iii0.953 (15)2.172 (15)2.850 (2)127 (12)
N5—H5A···O2iv0.97 (2)2.03 (2)3.001 (2)175 (17)
N5—H5B···O7v0.898 (18)2.031 (18)2.875 (2)156 (14)
N6—H6B···N3vi0.88 (2)2.17 (2)3.039 (2)169 (17)
O7—H7B···O6iv0.836 (10)2.173 (17)2.977 (3)161 (4)
Symmetry codes: (i) x+1, y1, z+1; (ii) x1, y, z; (iii) x, y1, z+1; (iv) x+1, y, z; (v) x+2, y, z+1; (vi) x+1, y, z+1.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKanagathara, N., Chakkaravarthi, G., Marchewka, M. K., Gunasekaran, S. & Anbalagan, G. (2012). Acta Cryst. E68, o2286.  CSD CrossRef IUCr Journals Google Scholar
First citationKrische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3–29.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Wu, W. & Zhuang, L. (2007). Acta Cryst. E63, m2552–m2553.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds