organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-Phenyl-N-[(E)-2-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)ethen­yl]aniline

crossmark logo

aDepartment of Systems Engineering, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@wakayama-u.ac.jp

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 18 January 2022; accepted 24 January 2022; online 28 January 2022)

The title compound, C20H24BNO2, has a polarized π-system due to significant resonance between the N—C(H)=C(H)—B and ionic N+=C(H)—C(H)=B canonical forms. The dihedral angles between the NC2B plane (r.m.s. deviation 0.0223 Å) and the C3N (r.m.s. deviation 0.0025 Å) and BCO2 (r.m.s. deviation 0.0044 Å) planes are 2.51 (12) and 3.09 (19)°, respectively. This indicates the lone pair of the nitro­gen atom and a vacant p orbital of the boron atom are conjugated with the central C=C bond. In comparison with the carbazole analogue [Hatayama & Okuno (2012[Hatayama, Y. & Okuno, T. (2012). Acta Cryst. E68, o84.]). Acta Cryst. E68, o84], the C—N and C—B bonds are shorter. The results are well explained by the increase in the contribution of the N+=C(H)—C(H)=B canonical form in the title compound.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C20H24BNO2, has a hybrid π-conjugated system within the N—C(H)=C(H)—B fragment. The insertion of a π-conjugated system in the N—B bond affords a highly polarized π-system owing to the contribution of an ionic canonical structure, i.e. N+= C(H)—C(H)=B. The contribution of the ionic canonical structure is small when p-phenyl­ene is inserted into the N—B bond (Yuan et al., 2006[Yuan, Z., Entwistle, C. D., Collings, J. C., Albesa-Jové, D., Batsanov, A. S., Howard, J. A. K., Taylor, N. J., Kaiser, H. M., Kaufmann, D. E., Poon, S. Y., Wong, W. Y., Jardin, C., Fathallah, S., Boucekkine, A., Halet, J. F. & Marder, T. B. (2006). Chem. Eur. J. 12, 2758-2771.]). However, when a C≡C bond is inserted into the N—B bond (Onuma et al., 2015[Onuma, K., Suzuki, K. & Yamashita, M. (2015). Chem. Lett. 44, 405-407.]), a relatively large contribution of the ionic canonical structure is apparent. The structure of the C=C bond inserted system, namely 9-[(E)-2-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)ethen­yl]-9H-carbazole has been reported (Hatayama & Okuno, 2012[Hatayama, Y. & Okuno, T. (2012). Acta Cryst. E68, o84.]). In the title compound, the carbazole unit of the former is replaced by a di­phenyl­amino residue (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H are atoms shown as small spheres.

The dihedral angles between the C13/C14/B1/N1 plane (r.m.s. deviation 0.0223 Å) and the N1/C1/C7/C13 (r.m.s. deviation 0.0025 Å) and B1/O1/O2/C14 (r.m.s. deviation 0.0044 Å) planes are 2.51 (12) and 3.09 (19)°, respectively, indicating the lone pair of the nitro­gen atom and a vacant p orbital of the boron are conjugated with the central C=C bond. The C13—N1 [1.3824 (19) Å] and C14—B1 [1.532 (2) Å] bonds are shortened, compared with those in the carbazole analogue of 1.396 (3) Å and 1.537 (3) Å, respectively; the central C=C bond at 1.341 (2) Å is experimentally equivalent to that of 1.336 (4) Å in the carbazolyl derivative. The results are well explained by the increase in the contribution of the N+=C(H)—C(H)=B canonical structure in the title compound. This is presumably because the nitro­gen atom of di­phenyl­amino group donates its lone pair to the π-system more effectively compared to that of the carbazolyl group, which leads to a decrease in the contribution of the N+=C(H)—C(H)=B canonical structure in the latter.

Synthesis and crystallization

The title compound was obtained by hydro­boration of N-ethynyl-N-phenyl­aniline (Tokutome & Okuno, 2013[Tokutome, Y. & Okuno, T. (2013). J. Mol. Struct. 1047, 136-142.]) with 4,4,5,5-tetra­methyl-1,3,2-dioxaborolane in 16% yield. 1H NMR (CDCl3): δ 1.25 (s, 12H), 4.17 (d, J = 15.6 Hz, 1H), 7.07 (d, J = 7.7 Hz, 4H), 7.12 (t, J = 7.7 Hz, 2H), 7.31 (t, J = 7.7 Hz, 4H), 7.64 (d, J = 15.6 Hz, 1H).

Single crystals were obtained by recrystallization from hexane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C20H24BNO2
Mr 321.23
Crystal system, space group Monoclinic, C2/c
Temperature (K) 93
a, b, c (Å) 32.071 (11), 6.011 (2), 22.219 (8)
β (°) 122.590 (4)
V3) 3609 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.13 × 0.11 × 0.05
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.991, 0.996
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 13892, 3869, 3041
Rint 0.084
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.147, 1.09
No. of reflections 3869
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.27
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SHELXS and SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalStructure (Rigaku, 2019); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

N-Phenyl-N-[(E)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethenyl]aniline top
Crystal data top
C20H24BNO2F(000) = 1376.00
Mr = 321.23Dx = 1.182 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 32.071 (11) ÅCell parameters from 5341 reflections
b = 6.011 (2) Åθ = 1.5–31.1°
c = 22.219 (8) ŵ = 0.07 mm1
β = 122.590 (4)°T = 93 K
V = 3609 (2) Å3Prism, colourless
Z = 80.13 × 0.11 × 0.05 mm
Data collection top
Rigaku Saturn724+
diffractometer
3041 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.084
ω scansθmax = 27.0°, θmin = 1.5°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 3340
Tmin = 0.991, Tmax = 0.996k = 77
13892 measured reflectionsl = 2826
3869 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0758P)2 + 0.8943P]
where P = (Fo2 + 2Fc2)/3
3869 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. The Uiso(H) values were set at 1.2Ueq(Csp2) and 1.5 Ueq(Csp3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34742 (4)0.98270 (18)0.51068 (5)0.0221 (3)
O20.41736 (4)0.82168 (18)0.60407 (5)0.0218 (3)
N10.36028 (5)0.6152 (2)0.35305 (7)0.0199 (3)
C10.32337 (5)0.6584 (3)0.28043 (8)0.0190 (3)
C20.29881 (6)0.8631 (3)0.25973 (8)0.0218 (3)
H20.30900.98010.29360.026*
C30.25961 (6)0.8955 (3)0.18984 (8)0.0242 (4)
H30.24271.03420.17640.029*
C40.24475 (6)0.7281 (3)0.13936 (8)0.0242 (4)
H40.21730.74970.09190.029*
C50.27059 (6)0.5283 (3)0.15912 (8)0.0239 (4)
H50.26130.41460.12440.029*
C60.30963 (6)0.4925 (3)0.22861 (8)0.0217 (3)
H60.32710.35550.24120.026*
C70.39973 (5)0.4638 (2)0.36945 (8)0.0186 (3)
C80.40344 (6)0.2606 (3)0.40195 (8)0.0220 (3)
H80.37980.22070.41330.026*
C90.44182 (6)0.1166 (3)0.41769 (8)0.0237 (3)
H90.44460.02210.44010.028*
C100.47629 (6)0.1748 (3)0.40080 (8)0.0246 (4)
H100.50250.07570.41150.030*
C110.47247 (6)0.3772 (3)0.36832 (8)0.0248 (4)
H110.49600.41660.35670.030*
C120.43426 (6)0.5225 (3)0.35273 (8)0.0226 (3)
H120.43170.66170.33070.027*
C130.35865 (6)0.7131 (2)0.40803 (8)0.0194 (3)
H130.33050.80290.39420.023*
C140.39193 (6)0.6968 (3)0.47847 (8)0.0206 (3)
H140.41970.60110.49570.025*
C150.34973 (6)1.0522 (3)0.57530 (8)0.0210 (3)
C160.40496 (6)1.0063 (3)0.63455 (8)0.0226 (3)
C170.31353 (6)0.9064 (3)0.58176 (10)0.0296 (4)
H17A0.31400.94810.62470.036*
H17B0.28010.92720.53960.036*
H17C0.32320.75000.58510.036*
C180.33465 (6)1.2945 (3)0.56815 (9)0.0261 (4)
H18A0.33611.34210.61150.031*
H18B0.35731.38570.56160.031*
H18C0.30081.31240.52670.031*
C190.41396 (7)0.9327 (3)0.70589 (9)0.0344 (4)
H19A0.40581.05480.72700.041*
H19B0.39310.80380.69880.041*
H19C0.44880.89200.73800.041*
C200.43914 (6)1.1987 (3)0.64438 (10)0.0311 (4)
H20A0.43211.32670.66480.037*
H20B0.47371.15300.67670.037*
H20C0.43361.24000.59800.037*
B10.38529 (6)0.8323 (3)0.53116 (9)0.0188 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (6)0.0246 (6)0.0168 (6)0.0045 (4)0.0105 (5)0.0009 (4)
O20.0246 (6)0.0227 (6)0.0180 (6)0.0047 (4)0.0114 (5)0.0001 (4)
N10.0220 (7)0.0207 (6)0.0176 (6)0.0024 (5)0.0110 (6)0.0006 (5)
C10.0176 (7)0.0236 (8)0.0171 (7)0.0014 (6)0.0101 (6)0.0001 (6)
C20.0258 (8)0.0213 (8)0.0214 (8)0.0001 (6)0.0149 (7)0.0009 (6)
C30.0248 (8)0.0283 (8)0.0242 (8)0.0046 (6)0.0164 (7)0.0051 (6)
C40.0211 (8)0.0338 (9)0.0172 (8)0.0005 (6)0.0101 (7)0.0024 (6)
C50.0247 (8)0.0298 (8)0.0201 (8)0.0048 (6)0.0139 (7)0.0042 (6)
C60.0239 (8)0.0219 (8)0.0233 (8)0.0005 (6)0.0154 (7)0.0004 (6)
C70.0178 (7)0.0201 (7)0.0159 (7)0.0012 (6)0.0077 (6)0.0024 (6)
C80.0215 (8)0.0241 (8)0.0224 (8)0.0025 (6)0.0132 (7)0.0023 (6)
C90.0256 (8)0.0209 (8)0.0231 (8)0.0005 (6)0.0121 (7)0.0002 (6)
C100.0215 (8)0.0267 (8)0.0226 (8)0.0024 (6)0.0099 (7)0.0038 (6)
C110.0216 (8)0.0312 (9)0.0244 (8)0.0018 (6)0.0143 (7)0.0035 (7)
C120.0253 (8)0.0236 (8)0.0206 (8)0.0007 (6)0.0135 (7)0.0002 (6)
C130.0210 (8)0.0183 (7)0.0241 (8)0.0015 (6)0.0155 (7)0.0021 (6)
C140.0202 (8)0.0212 (7)0.0216 (8)0.0012 (6)0.0121 (7)0.0011 (6)
C150.0252 (8)0.0207 (7)0.0203 (8)0.0021 (6)0.0143 (7)0.0009 (6)
C160.0272 (8)0.0227 (8)0.0195 (8)0.0014 (6)0.0136 (7)0.0011 (6)
C170.0329 (9)0.0244 (8)0.0404 (10)0.0022 (7)0.0256 (8)0.0032 (7)
C180.0313 (9)0.0214 (8)0.0286 (9)0.0041 (6)0.0182 (8)0.0009 (6)
C190.0430 (10)0.0406 (10)0.0193 (8)0.0060 (8)0.0166 (8)0.0008 (7)
C200.0280 (9)0.0308 (9)0.0300 (9)0.0045 (7)0.0127 (8)0.0091 (7)
B10.0193 (8)0.0187 (8)0.0203 (9)0.0020 (6)0.0118 (7)0.0007 (6)
Geometric parameters (Å, º) top
O1—B11.380 (2)C10—H100.9500
O1—C151.4585 (18)C11—C121.388 (2)
O2—B11.375 (2)C11—H110.9500
O2—C161.4623 (18)C12—H120.9500
N1—C131.3824 (19)C13—C141.341 (2)
N1—C11.419 (2)C13—H130.9500
N1—C71.4369 (19)C14—B11.532 (2)
C1—C21.398 (2)C14—H140.9500
C1—C61.403 (2)C15—C181.516 (2)
C2—C31.388 (2)C15—C171.522 (2)
C2—H20.9500C15—C161.560 (2)
C3—C41.386 (2)C16—C191.516 (2)
C3—H30.9500C16—C201.526 (2)
C4—C51.390 (2)C17—H17A0.9800
C4—H40.9500C17—H17B0.9800
C5—C61.384 (2)C17—H17C0.9800
C5—H50.9500C18—H18A0.9800
C6—H60.9500C18—H18B0.9800
C7—C121.390 (2)C18—H18C0.9800
C7—C81.391 (2)C19—H19A0.9800
C8—C91.387 (2)C19—H19B0.9800
C8—H80.9500C19—H19C0.9800
C9—C101.390 (2)C20—H20A0.9800
C9—H90.9500C20—H20B0.9800
C10—C111.386 (2)C20—H20C0.9800
B1—O1—C15107.10 (11)N1—C13—H13116.0
B1—O2—C16107.02 (12)C13—C14—B1120.13 (14)
C13—N1—C1121.41 (13)C13—C14—H14119.9
C13—N1—C7119.53 (13)B1—C14—H14119.9
C1—N1—C7119.05 (12)O1—C15—C18109.14 (12)
C2—C1—C6118.90 (14)O1—C15—C17106.93 (13)
C2—C1—N1120.80 (14)C18—C15—C17110.29 (13)
C6—C1—N1120.25 (14)O1—C15—C16102.26 (12)
C3—C2—C1120.12 (15)C18—C15—C16114.30 (13)
C3—C2—H2119.9C17—C15—C16113.29 (13)
C1—C2—H2119.9O2—C16—C19108.47 (13)
C4—C3—C2120.84 (15)O2—C16—C20106.72 (13)
C4—C3—H3119.6C19—C16—C20110.72 (14)
C2—C3—H3119.6O2—C16—C15102.24 (12)
C3—C4—C5119.03 (15)C19—C16—C15115.10 (14)
C3—C4—H4120.5C20—C16—C15112.83 (13)
C5—C4—H4120.5C15—C17—H17A109.5
C6—C5—C4120.93 (15)C15—C17—H17B109.5
C6—C5—H5119.5H17A—C17—H17B109.5
C4—C5—H5119.5C15—C17—H17C109.5
C5—C6—C1120.06 (15)H17A—C17—H17C109.5
C5—C6—H6120.0H17B—C17—H17C109.5
C1—C6—H6120.0C15—C18—H18A109.5
C12—C7—C8120.28 (14)C15—C18—H18B109.5
C12—C7—N1119.38 (14)H18A—C18—H18B109.5
C8—C7—N1120.34 (13)C15—C18—H18C109.5
C9—C8—C7119.68 (14)H18A—C18—H18C109.5
C9—C8—H8120.2H18B—C18—H18C109.5
C7—C8—H8120.2C16—C19—H19A109.5
C8—C9—C10120.11 (15)C16—C19—H19B109.5
C8—C9—H9119.9H19A—C19—H19B109.5
C10—C9—H9119.9C16—C19—H19C109.5
C11—C10—C9120.09 (15)H19A—C19—H19C109.5
C11—C10—H10120.0H19B—C19—H19C109.5
C9—C10—H10120.0C16—C20—H20A109.5
C10—C11—C12120.06 (15)C16—C20—H20B109.5
C10—C11—H11120.0H20A—C20—H20B109.5
C12—C11—H11120.0C16—C20—H20C109.5
C11—C12—C7119.77 (15)H20A—C20—H20C109.5
C11—C12—H12120.1H20B—C20—H20C109.5
C7—C12—H12120.1O2—B1—O1112.71 (13)
C14—C13—N1127.95 (14)O2—B1—C14123.48 (14)
C14—C13—H13116.0O1—B1—C14123.79 (14)
C13—N1—C1—C230.2 (2)C1—N1—C13—C14176.36 (15)
C7—N1—C1—C2150.72 (14)C7—N1—C13—C144.5 (2)
C13—N1—C1—C6147.37 (14)N1—C13—C14—B1175.57 (14)
C7—N1—C1—C631.7 (2)B1—O1—C15—C18145.27 (13)
C6—C1—C2—C33.7 (2)B1—O1—C15—C1795.43 (14)
N1—C1—C2—C3173.86 (13)B1—O1—C15—C1623.86 (15)
C1—C2—C3—C41.1 (2)B1—O2—C16—C19146.11 (14)
C2—C3—C4—C51.8 (2)B1—O2—C16—C2094.56 (14)
C3—C4—C5—C62.1 (2)B1—O2—C16—C1524.11 (14)
C4—C5—C6—C10.6 (2)O1—C15—C16—O228.89 (14)
C2—C1—C6—C53.4 (2)C18—C15—C16—O2146.69 (13)
N1—C1—C6—C5174.15 (13)C17—C15—C16—O285.81 (15)
C13—N1—C7—C12113.40 (16)O1—C15—C16—C19146.25 (14)
C1—N1—C7—C1267.48 (19)C18—C15—C16—C1995.96 (17)
C13—N1—C7—C866.41 (19)C17—C15—C16—C1931.54 (19)
C1—N1—C7—C8112.71 (16)O1—C15—C16—C2085.36 (15)
C12—C7—C8—C90.0 (2)C18—C15—C16—C2032.44 (18)
N1—C7—C8—C9179.76 (14)C17—C15—C16—C20159.93 (13)
C7—C8—C9—C100.2 (2)C16—O2—B1—O110.22 (17)
C8—C9—C10—C110.2 (2)C16—O2—B1—C14168.01 (14)
C9—C10—C11—C120.1 (2)C15—O1—B1—O29.76 (17)
C10—C11—C12—C70.3 (2)C15—O1—B1—C14172.01 (14)
C8—C7—C12—C110.3 (2)C13—C14—B1—O2178.88 (14)
N1—C7—C12—C11179.94 (13)C13—C14—B1—O13.1 (2)
 

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHatayama, Y. & Okuno, T. (2012). Acta Cryst. E68, o84.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOnuma, K., Suzuki, K. & Yamashita, M. (2015). Chem. Lett. 44, 405–407.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTokutome, Y. & Okuno, T. (2013). J. Mol. Struct. 1047, 136–142.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, Z., Entwistle, C. D., Collings, J. C., Albesa-Jové, D., Batsanov, A. S., Howard, J. A. K., Taylor, N. J., Kaiser, H. M., Kaufmann, D. E., Poon, S. Y., Wong, W. Y., Jardin, C., Fathallah, S., Boucekkine, A., Halet, J. F. & Marder, T. B. (2006). Chem. Eur. J. 12, 2758–2771.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds