organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(3-Bromo­phen­yl)-3-(6-meth­­oxy-2-naphth­yl)prop-2-en-1-one

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cSeQuent Scientific Limited, New Mangalore 575 011, India, and dDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 9 August 2010; accepted 31 August 2010; online 11 September 2010)

In the title compound, C20H15BrO2, the prop-2-en-1-one fragment is substanti­ally twisted [C—C—C—O = 23.0 (11)°]. The dihedral angle between the benzene and naphthalene rings is 44.28 (13)°. The only possible directional inter­actions in the crystal are weak C—H⋯π contacts, which generate (001) sheets.

Related literature

For related structures, see: Yathirajan et al. (2007a[Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007a). Acta Cryst. E63, o540-o541.],b[Yathirajan, H. S., Mayekar, A. N., Sarojini, B. K., Narayana, B. & Bolte, M. (2007b). Acta Cryst. E63, o1012-o1013.]); Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 157-162.]). For background to the non-linear optical properties of chalcones, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15BrO2

  • Mr = 367.23

  • Orthorhombic, P b c a

  • a = 14.0955 (14) Å

  • b = 6.1295 (6) Å

  • c = 36.119 (4) Å

  • V = 3120.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 120 K

  • 0.11 × 0.09 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.760, Tmax = 0.925

  • 28579 measured reflections

  • 3545 independent reflections

  • 1719 reflections with I > 2σ(I)

  • Rint = 0.228

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.163

  • S = 1.05

  • 3545 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg2i 0.95 2.70 3.432 (6) 134
C7—H7⋯Cg2ii 0.95 2.80 3.520 (6) 134
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SCALEPACK and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), (Fig. 1), was prepared as part of our ongoing studies (Yathirajan et al., 2007a,b; Jasinski et al., 2009) of substituted phenyl/naphthyl chalcone derivatives as possible candidates for non-linear optical materials (Sarojini et al., 2006). However, (I) crystallizes in a centrosymmetric space group, thus its second-harmonic generation (SHG) response must be zero.

The prop-2-en-1-one (enone) fragment in (I) is substantially twisted, as indicated by the C11—C12—C13—O2 torsion angle of 23.0 (11)°. The dihedral angle between the aromatic ring systems is 44.28 (13)°. Equivalent data for related structures are as follows: (2E)-1-(2,4-dichlorophenyl)-3-(6-methoxy-2-naphthyl)prop-2-en-1-one (Yathirajan et al., 2007a): -10.9 (2) and 44.94 (4)°; (2E)-3-(6-methoxy-2-naphthyl)-1-phenylprop-2-en-1-one (Yathirajan et al., 2007b): -15.9 (4) and 14.9 (8)°; (2E)-1-(2-hydroxyphenyl)-3-(6-methoxy-2-naphthyl)prop-2-en-1-one (Jasinski et al., 2009): -14.9 (2) and 31.7 (3)°. Otherwise, the bond lengths for (I) fall within their expected ranges (Allen et al., 1987).

In the crystal of (I), the only possible directional interactions between molecules are weak C—H···π contacts in which the C3–C8 ring of the naphthyl moiety provides both the C—H donor groups and the aromatic acceptor surface (Table 1, Fig. 2). Together, these generate (001) sheets.

Related literature top

For related structures, see: Yathirajan et al. (2007a,b); Jasinski et al. (2009). For background to the non-linear optical properties of chalcones, see: Sarojini et al. (2006). For reference structural data, see: Allen et al. (1987).

Experimental top

To a thoroughly stirred solution of 6-methoxy-2-naphthaldehyde (1.86 g, 0.01 mol) and 3-bromoacetophenone (1.99 g, 0.01 mol) in 25 ml methanol, 5 ml of 40% KOH solution was added. The reaction mixture was stirred overnight and the solid separated was collected by filtration. The product obtained was recrystallized from methanol. Colourless slabs of (I) were grown by the slow evaporation of the ethylacetate solution (m.p. 427–429 K).

Refinement top

The crystal studied was a weak scatterer, which may correlate with the high Rint value. The hydrogen atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating rigid-group model was applied to the methyl group.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Partial packing diagram for (I) showing the possible weak C—H···π contacts. All H atoms except H4 and H7 omitted for clarity. Symmetry codes: (i) 1/2–x, y–1/2, z; (ii) 1–x, 1/2 + y, 1/2–z.
(2E)-1-(3-Bromophenyl)-3-(6-methoxy-2-naphthyl)prop-2-en-1-one top
Crystal data top
C20H15BrO2F(000) = 1488
Mr = 367.23Dx = 1.563 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 55128 reflections
a = 14.0955 (14) Åθ = 2.9–27.5°
b = 6.1295 (6) ŵ = 2.64 mm1
c = 36.119 (4) ÅT = 120 K
V = 3120.6 (5) Å3Slab, colourless
Z = 80.11 × 0.09 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
3545 independent reflections
Radiation source: fine-focus sealed tube1719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.228
ω and ϕ scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1818
Tmin = 0.760, Tmax = 0.925k = 77
28579 measured reflectionsl = 4646
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0343P)2 + 12.2862P]
where P = (Fo2 + 2Fc2)/3
3545 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C20H15BrO2V = 3120.6 (5) Å3
Mr = 367.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.0955 (14) ŵ = 2.64 mm1
b = 6.1295 (6) ÅT = 120 K
c = 36.119 (4) Å0.11 × 0.09 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
3545 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1719 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.925Rint = 0.228
28579 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0343P)2 + 12.2862P]
where P = (Fo2 + 2Fc2)/3
3545 reflectionsΔρmax = 0.61 e Å3
209 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3881 (4)0.3963 (12)0.14070 (18)0.0269 (16)
C20.3536 (5)0.2944 (11)0.17160 (18)0.0260 (16)
H20.32240.15760.16950.031*
C30.3647 (4)0.3940 (11)0.20683 (18)0.0244 (15)
C40.3332 (4)0.2939 (11)0.23966 (18)0.0247 (16)
H40.30570.15260.23840.030*
C50.3411 (4)0.3933 (11)0.27329 (17)0.0257 (15)
H50.31920.32020.29490.031*
C60.3820 (4)0.6074 (12)0.27654 (18)0.0226 (15)
C70.4144 (4)0.7064 (11)0.24441 (19)0.0266 (17)
H70.44180.84770.24600.032*
C80.4083 (4)0.6051 (12)0.20954 (18)0.0249 (16)
C90.4425 (5)0.7045 (12)0.1768 (2)0.0316 (18)
H90.47240.84320.17820.038*
C100.4332 (4)0.6034 (12)0.14329 (19)0.0290 (16)
H100.45690.67180.12160.035*
C110.3820 (4)0.7262 (12)0.31156 (18)0.0262 (18)
H110.40350.87300.31070.031*
C120.3550 (5)0.6518 (11)0.34459 (18)0.0290 (17)
H120.33560.50390.34680.035*
C130.3544 (5)0.7926 (12)0.3780 (2)0.0305 (17)
C140.3642 (4)0.6878 (12)0.4150 (2)0.0276 (17)
C150.3486 (5)0.8158 (12)0.44671 (19)0.0312 (17)
H150.32740.96220.44420.037*
C160.3638 (5)0.7308 (12)0.4810 (2)0.0313 (17)
C170.3927 (5)0.5156 (12)0.48559 (19)0.0290 (18)
H170.40140.45550.50960.035*
C180.4085 (5)0.3918 (13)0.4543 (2)0.0363 (18)
H180.43050.24610.45710.044*
C190.3934 (5)0.4728 (12)0.4191 (2)0.035 (2)
H190.40290.38270.39810.042*
C200.3351 (5)0.1184 (12)0.10028 (19)0.0400 (19)
H20A0.33180.08220.07390.060*
H20B0.27070.12980.11030.060*
H20C0.36970.00360.11350.060*
O10.3827 (3)0.3202 (8)0.10487 (13)0.0351 (13)
O20.3495 (4)0.9934 (9)0.37483 (13)0.0361 (12)
Br10.34948 (6)0.90763 (13)0.52413 (2)0.0403 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.024 (4)0.033 (4)0.024 (4)0.007 (4)0.003 (3)0.002 (4)
C20.027 (4)0.023 (4)0.027 (4)0.005 (4)0.011 (4)0.001 (3)
C30.022 (4)0.022 (4)0.029 (4)0.002 (4)0.000 (3)0.003 (4)
C40.021 (4)0.019 (4)0.034 (4)0.002 (3)0.004 (3)0.006 (3)
C50.022 (3)0.031 (4)0.024 (4)0.002 (4)0.003 (3)0.008 (4)
C60.014 (3)0.023 (4)0.030 (4)0.001 (3)0.002 (3)0.001 (4)
C70.013 (3)0.029 (4)0.038 (5)0.001 (3)0.002 (3)0.004 (4)
C80.018 (3)0.031 (4)0.026 (4)0.005 (4)0.001 (3)0.000 (4)
C90.027 (4)0.034 (4)0.034 (5)0.002 (4)0.003 (4)0.003 (4)
C100.022 (4)0.032 (4)0.033 (4)0.000 (4)0.003 (3)0.009 (4)
C110.019 (4)0.028 (4)0.031 (4)0.001 (3)0.000 (3)0.009 (4)
C120.024 (4)0.031 (4)0.032 (4)0.006 (4)0.000 (4)0.009 (3)
C130.021 (4)0.032 (5)0.038 (4)0.001 (4)0.011 (4)0.001 (4)
C140.016 (4)0.033 (4)0.034 (4)0.002 (3)0.002 (3)0.004 (4)
C150.025 (4)0.030 (4)0.039 (4)0.004 (4)0.002 (4)0.007 (4)
C160.028 (4)0.034 (4)0.032 (4)0.003 (3)0.003 (4)0.004 (4)
C170.027 (4)0.034 (4)0.026 (4)0.003 (3)0.001 (3)0.002 (3)
C180.030 (4)0.038 (5)0.041 (5)0.000 (4)0.005 (4)0.003 (5)
C190.023 (4)0.040 (5)0.042 (5)0.001 (3)0.011 (4)0.007 (4)
C200.059 (5)0.033 (4)0.029 (4)0.007 (4)0.005 (4)0.004 (4)
O10.045 (3)0.035 (3)0.026 (3)0.002 (2)0.001 (2)0.001 (3)
O20.034 (3)0.044 (3)0.031 (3)0.006 (3)0.001 (3)0.002 (3)
Br10.0471 (4)0.0440 (5)0.0298 (4)0.0048 (5)0.0016 (4)0.0062 (4)
Geometric parameters (Å, º) top
C1—C21.369 (9)C11—H110.9500
C1—O11.378 (8)C12—C131.483 (9)
C1—C101.422 (9)C12—H120.9500
C2—C31.420 (9)C13—O21.238 (8)
C2—H20.9500C13—C141.489 (10)
C3—C41.407 (9)C14—C191.389 (9)
C3—C81.436 (9)C14—C151.406 (9)
C4—C51.364 (9)C15—C161.361 (9)
C4—H40.9500C15—H150.9500
C5—C61.439 (9)C16—C171.391 (10)
C5—H50.9500C16—Br11.909 (7)
C6—C71.387 (9)C17—C181.379 (9)
C6—C111.459 (9)C17—H170.9500
C7—C81.407 (9)C18—C191.380 (10)
C7—H70.9500C18—H180.9500
C8—C91.414 (9)C19—H190.9500
C9—C101.366 (9)C20—O11.418 (8)
C9—H90.9500C20—H20A0.9800
C10—H100.9500C20—H20B0.9800
C11—C121.333 (9)C20—H20C0.9800
C2—C1—O1126.3 (6)C6—C11—H11116.4
C2—C1—C10120.8 (6)C11—C12—C13122.0 (7)
O1—C1—C10112.9 (6)C11—C12—H12119.0
C1—C2—C3119.7 (6)C13—C12—H12119.0
C1—C2—H2120.1O2—C13—C12120.3 (7)
C3—C2—H2120.1O2—C13—C14121.1 (7)
C4—C3—C2122.2 (6)C12—C13—C14118.6 (6)
C4—C3—C8118.1 (6)C19—C14—C15119.2 (7)
C2—C3—C8119.7 (6)C19—C14—C13122.2 (7)
C5—C4—C3122.0 (6)C15—C14—C13118.5 (6)
C5—C4—H4119.0C16—C15—C14120.2 (7)
C3—C4—H4119.0C16—C15—H15119.9
C4—C5—C6120.9 (6)C14—C15—H15119.9
C4—C5—H5119.6C15—C16—C17121.2 (7)
C6—C5—H5119.6C15—C16—Br1120.6 (5)
C7—C6—C5117.6 (6)C17—C16—Br1118.2 (5)
C7—C6—C11120.5 (6)C18—C17—C16118.1 (7)
C5—C6—C11121.7 (6)C18—C17—H17120.9
C6—C7—C8122.4 (6)C16—C17—H17120.9
C6—C7—H7118.8C17—C18—C19122.1 (7)
C8—C7—H7118.8C17—C18—H18119.0
C7—C8—C9122.5 (7)C19—C18—H18119.0
C7—C8—C3119.0 (6)C18—C19—C14119.1 (8)
C9—C8—C3118.5 (6)C18—C19—H19120.4
C10—C9—C8120.8 (7)C14—C19—H19120.4
C10—C9—H9119.6O1—C20—H20A109.5
C8—C9—H9119.6O1—C20—H20B109.5
C9—C10—C1120.4 (7)H20A—C20—H20B109.5
C9—C10—H10119.8O1—C20—H20C109.5
C1—C10—H10119.8H20A—C20—H20C109.5
C12—C11—C6127.2 (7)H20B—C20—H20C109.5
C12—C11—H11116.4C1—O1—C20115.6 (6)
O1—C1—C2—C3180.0 (6)C7—C6—C11—C12178.5 (7)
C10—C1—C2—C31.4 (9)C5—C6—C11—C127.2 (10)
C1—C2—C3—C4178.0 (6)C6—C11—C12—C13177.3 (6)
C1—C2—C3—C82.7 (9)C11—C12—C13—O223.0 (11)
C2—C3—C4—C5177.7 (6)C11—C12—C13—C14154.4 (6)
C8—C3—C4—C51.6 (9)O2—C13—C14—C19163.5 (7)
C3—C4—C5—C60.2 (10)C12—C13—C14—C1913.8 (10)
C4—C5—C6—C71.1 (9)O2—C13—C14—C1512.6 (10)
C4—C5—C6—C11173.4 (6)C12—C13—C14—C15170.1 (6)
C5—C6—C7—C80.1 (9)C19—C14—C15—C161.2 (10)
C11—C6—C7—C8174.5 (6)C13—C14—C15—C16175.0 (6)
C6—C7—C8—C9179.1 (6)C14—C15—C16—C171.5 (10)
C6—C7—C8—C31.7 (10)C14—C15—C16—Br1176.6 (5)
C4—C3—C8—C72.5 (9)C15—C16—C17—C181.9 (10)
C2—C3—C8—C7176.8 (6)Br1—C16—C17—C18176.2 (5)
C4—C3—C8—C9178.3 (6)C16—C17—C18—C192.2 (10)
C2—C3—C8—C92.4 (9)C17—C18—C19—C142.0 (10)
C7—C8—C9—C10178.3 (6)C15—C14—C19—C181.5 (10)
C3—C8—C9—C100.9 (10)C13—C14—C19—C18174.6 (6)
C8—C9—C10—C10.4 (10)C2—C1—O1—C201.2 (9)
C2—C1—C10—C90.2 (10)C10—C1—O1—C20177.5 (6)
O1—C1—C10—C9178.6 (6)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg2i0.952.703.432 (6)134
C7—H7···Cg2ii0.952.803.520 (6)134
Symmetry codes: (i) x+1/2, y3/2, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H15BrO2
Mr367.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)14.0955 (14), 6.1295 (6), 36.119 (4)
V3)3120.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.11 × 0.09 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.760, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
28579, 3545, 1719
Rint0.228
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.163, 1.05
No. of reflections3545
No. of parameters209
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0343P)2 + 12.2862P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.61, 0.63

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg2i0.952.703.432 (6)134
C7—H7···Cg2ii0.952.803.520 (6)134
Symmetry codes: (i) x+1/2, y3/2, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

ANM thanks the University of Mysore for providing research facilities. HSY thanks the University of Mysore for sanctioning sabbatical leave.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 157–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007a). Acta Cryst. E63, o540–o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Mayekar, A. N., Sarojini, B. K., Narayana, B. & Bolte, M. (2007b). Acta Cryst. E63, o1012–o1013.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds