metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[sodium [[tris­(3-methyl­pyridine-2-carboxylato)europate(III)]-μ-3-methylpyridine-2-carboxylato] trihydrate]

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 28 July 2010; accepted 5 August 2010; online 18 August 2010)

In the title structure, {Na[Eu(C7H6NO2)4]·3H2O}n, the EuIII atom is nine-coordin­ated within a slightly distorted tricapped trigonal-prismatic coordination geometry defined by five carboxyl­ate-O atoms and four pyridine-N atoms. One of the carboxyl­ate ligands bridges the Eu cations, forming a one-dimensional coordination polymer along the b axis. The Eu—O bond distances lie within the range 2.362 (4)–2.461 (4) Å. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the polymers into a three-dimensional network.

Related literature

For general background to pyridine carb­oxy­lic complexes, see: Seo et al. (2010[Seo, H. J., Yoo, K., Song, M., Park, J. S., Jin, S., Kim, Y. I. & Kim, J. (2010). Org. Electron. 11, 564-572.]); Kukovec et al. (2009[Kukovec, B., Popovic, Z., Komorsky-Lovric, S., Vojkovic, V. & Vinkovic, M. (2009). Inorg. Chim. Acta, 362, 2704-2714.]); Hong et al. (2008[Hong, J. H., Oh, Y., Kim, Y., Kang, S. K., Choi, J., Kim, W. S., Lee, J. I., Kim, S. & Hur, N. H. (2008). Cryst. Growth Des., 8, 1364-1371.]); Soares-Santos et al. (2006[Soares-Santos, P. C. R., Paz, F. A. A., Sa Ferreira, R. A., Klinowski, J., Carlos, L. D., Trindade, T. & Norgueira, H. I. S. (2006). Polyhedron, 25, 2471-2482.]). For the syntheses and structures of Eu complexes, see: Lis et al. (2009[Lis, S., Piskula, Z. & Kubicki, M. (2009). Mater. Chem. Phys. 114, 134-138.]); Godlewska et al. (2008[Godlewska, P., Macalik, L. & Hanuza, J. (2008). J. Alloys Compd, 451, 236-239.]); Legendziewicz et al. (2002[Legendziewicz, J. (2002). J. Alloys Compd. 341, 34-44.]).

[Scheme 1]

Experimental

Crystal data
  • Na[Eu(C7H6NO2)4]·3H2O

  • Mr = 773.51

  • Monoclinic, P 21 /n

  • a = 11.721 (3) Å

  • b = 12.615 (4) Å

  • c = 21.133 (6) Å

  • β = 96.585 (7)°

  • V = 3104.1 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 233 K

  • 0.22 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.583, Tmax = 0.741

  • 25592 measured reflections

  • 5782 independent reflections

  • 4104 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.148

  • S = 1.05

  • 5782 reflections

  • 428 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.77 e Å−3

  • Δρmin = −1.63 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O28 2.362 (4)
Eu1—O18 2.366 (4)
Eu1—O8 2.375 (5)
Eu1—O38 2.445 (4)
Eu1—O39i 2.461 (4)
Eu1—N11 2.606 (5)
Eu1—N1 2.619 (6)
Eu1—N31 2.683 (6)
Eu1—N21 2.745 (6)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O41—H41A⋯O29i 0.82 (2) 2.08 (6) 2.767 (7) 141 (8)
O41—H41B⋯O19 0.81 (2) 2.02 (3) 2.809 (8) 164 (9)
O42—H42A⋯O9 0.81 (4) 2.41 (10) 2.774 (9) 108 (8)
O42—H42B⋯O43 0.82 (4) 2.08 (4) 2.852 (10) 158 (10)
O43—H43A⋯O41ii 0.82 (3) 2.02 (6) 2.769 (9) 152 (11)
O43—H43B⋯O29i 0.83 (2) 2.14 (6) 2.884 (8) 149 (10)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). Diamond, Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Metal complexes of picolinic acid and their derivatives have been of considerable interest due to their adoption of various coordination modes and their interesting photophysical properties (Seo et al., 2010; Kukovec et al., 2009; Hong et al., 2008; Soares-Santos et al., 2006). Especially, Eu(III) complexes have been extensively studied due to their unique luminescence properties such as narrow emission bands and the excitation spectra of the five-dimensional0 — > 7F0 transition (Lis et al., 2009; Godlewska et al., 2008; Legendziewicz et al., 2002). In this study, we report the synthesis and characterization of a Eu(III)-picolinic acid derivative in order to develop new lanthanide complexes for novel photoluminescent applications.

In the title one-dimensional coordination polymer, {Na[Eu(C7H6NO2)4] 3H2O}n, the Eu atom is nine-coordinate within a slightly distorted tricapped trigonal prismatic coordination geometry. The Eu(III) atom is coordinated to the five carboxylate-O atoms and four pyridine-N atoms. The Eu—O bond distances are within the range of 2.362 (4) - 2.461 (4) Å, Table 1, which are significantly shorter than the sum of the covalent radii of Eu and O atoms (2.66 Å). The dihedral angles between the pyridine rings and the carboxylate groups are in the range of 5.0 (4) - 24.7 (4) °. One of the carboxylate ligands bridges Eu cations to form a one-dimensional coordination polymer along the crystallographic b axis (Fig. 2). Intramolecular O—H···O hydrogen bonds link the uncoordinated water molecules to the coordinated water molecules, Table 2. In the crystal structure, intermolecular O—H···O hydrogen bonds link the polymers into a three-dimensional network, Table 2. The title compound exhibits an intense emission at 618 nm upon 396 nm excitation in PL spectra with 325 nm of He—Cd laser excitation wavelength.

Related literature top

For general background to pyridine carboxylic complexes, see: Seo et al. (2010); Kukovec et al. (2009); Hong et al. (2008); Soares-Santos et al. (2006). For the syntheses and structures of Eu complexes, see: Lis et al. (2009); Godlewska et al. (2008); Legendziewicz et al. (2002).

Experimental top

Europium trichloride solution was prepared by dissolving EuCl3 6H2O (0.37 g, 1.0 mmol; Aldrich) in absolute ethanol (20 ml) at room temperature with stirring. The ligand solution was prepared by dissolving 3-methylpicolinic acid (0.55 g, 4.0 mmol; Aldrich) in absolute ethanol (30 ml) at room temperature. The pH of the ligand solution was adjusted to about 6 with 2 N NaOH solution. The Eu solution was added drop wise and slowly to the ligand solution. The reaction mixture was stirred for 2 h at room temperature. Colourless crystals of (I) were obtained at room temperature over a period of a few weeks. The complex was recrystallized from distilled water.

Refinement top

The water-H atoms were located in a difference Fourier map and refined with O—H = 0.82±0.01 Å. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.94 - 0.97 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic-H and 1.5Ueq(C) for methyl-H atoms. The maximum and minimum residual electron density peaks of 1.77 and -1.63 eÅ-3, respectively, were located 1.55 Å and 0.79 Å from the O39 and Eu1 atoms, respectively.

Structure description top

Metal complexes of picolinic acid and their derivatives have been of considerable interest due to their adoption of various coordination modes and their interesting photophysical properties (Seo et al., 2010; Kukovec et al., 2009; Hong et al., 2008; Soares-Santos et al., 2006). Especially, Eu(III) complexes have been extensively studied due to their unique luminescence properties such as narrow emission bands and the excitation spectra of the five-dimensional0 — > 7F0 transition (Lis et al., 2009; Godlewska et al., 2008; Legendziewicz et al., 2002). In this study, we report the synthesis and characterization of a Eu(III)-picolinic acid derivative in order to develop new lanthanide complexes for novel photoluminescent applications.

In the title one-dimensional coordination polymer, {Na[Eu(C7H6NO2)4] 3H2O}n, the Eu atom is nine-coordinate within a slightly distorted tricapped trigonal prismatic coordination geometry. The Eu(III) atom is coordinated to the five carboxylate-O atoms and four pyridine-N atoms. The Eu—O bond distances are within the range of 2.362 (4) - 2.461 (4) Å, Table 1, which are significantly shorter than the sum of the covalent radii of Eu and O atoms (2.66 Å). The dihedral angles between the pyridine rings and the carboxylate groups are in the range of 5.0 (4) - 24.7 (4) °. One of the carboxylate ligands bridges Eu cations to form a one-dimensional coordination polymer along the crystallographic b axis (Fig. 2). Intramolecular O—H···O hydrogen bonds link the uncoordinated water molecules to the coordinated water molecules, Table 2. In the crystal structure, intermolecular O—H···O hydrogen bonds link the polymers into a three-dimensional network, Table 2. The title compound exhibits an intense emission at 618 nm upon 396 nm excitation in PL spectra with 325 nm of He—Cd laser excitation wavelength.

For general background to pyridine carboxylic complexes, see: Seo et al. (2010); Kukovec et al. (2009); Hong et al. (2008); Soares-Santos et al. (2006). For the syntheses and structures of Eu complexes, see: Lis et al. (2009); Godlewska et al. (2008); Legendziewicz et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex showing the atom-numbering scheme and 50% probability ellipsoids. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 3/2, y - 1/2, -z + 1/2]
[Figure 2] Fig. 2. One-dimensional supramolecular chain along the b axis. H atoms have been omitted for clarity.
catena-Poly[sodium [[tris(3-methylpyridine-2-carboxylato)europate(III)]-µ-3-methylpyridine- 2-carboxylato] trihydrate] top
Crystal data top
Na[Eu(C7H6NO2)4]·3H2OF(000) = 1552
Mr = 773.51Dx = 1.655 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3070 reflections
a = 11.721 (3) Åθ = 2.5–20.6°
b = 12.615 (4) ŵ = 2.10 mm1
c = 21.133 (6) ÅT = 233 K
β = 96.585 (7)°Block, colourless
V = 3104.1 (16) Å30.22 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4104 reflections with I > 2σ(I)
φ and ω scansRint = 0.088
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 25.5°, θmin = 1.9°
Tmin = 0.583, Tmax = 0.741h = 1414
25592 measured reflectionsk = 1515
5782 independent reflectionsl = 2525
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + 1.5543P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max = 0.001
S = 1.05Δρmax = 1.77 e Å3
5782 reflectionsΔρmin = 1.63 e Å3
428 parameters
Crystal data top
Na[Eu(C7H6NO2)4]·3H2OV = 3104.1 (16) Å3
Mr = 773.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.721 (3) ŵ = 2.10 mm1
b = 12.615 (4) ÅT = 233 K
c = 21.133 (6) Å0.22 × 0.15 × 0.14 mm
β = 96.585 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5782 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4104 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.741Rint = 0.088
25592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0456 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.77 e Å3
5782 reflectionsΔρmin = 1.63 e Å3
428 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.73313 (3)0.28658 (2)0.240306 (15)0.02324 (14)
N10.9295 (5)0.3407 (4)0.3039 (3)0.0301 (13)
C21.0234 (6)0.2942 (5)0.2843 (4)0.0314 (17)
C31.1302 (7)0.2917 (6)0.3230 (4)0.043 (2)
C41.1340 (8)0.3421 (7)0.3822 (4)0.053 (2)
H41.20330.34250.40950.063*
C51.0396 (7)0.3910 (6)0.4014 (4)0.044 (2)
H51.04350.42550.4410.053*
C60.9388 (7)0.3882 (6)0.3610 (4)0.0413 (19)
H60.87350.42120.37410.05*
C71.0039 (7)0.2447 (6)0.2190 (4)0.0374 (18)
O80.9005 (4)0.2233 (3)0.1990 (2)0.0311 (11)
O91.0864 (5)0.2306 (5)0.1881 (3)0.067 (2)
C101.2366 (8)0.2388 (8)0.3051 (6)0.069 (3)
H10A1.29680.24290.34050.104*
H10B1.26150.27430.26830.104*
H10C1.22010.1650.29470.104*
N110.5296 (5)0.3202 (5)0.1801 (3)0.0291 (13)
C120.4908 (6)0.2464 (5)0.1358 (3)0.0268 (15)
C130.3748 (7)0.2430 (6)0.1098 (4)0.0355 (17)
C140.3025 (7)0.3207 (6)0.1293 (4)0.043 (2)
H140.22440.320.11330.052*
C150.3431 (7)0.3994 (7)0.1720 (4)0.051 (2)
H150.29510.45410.18360.061*
C160.4579 (6)0.3936 (6)0.1967 (4)0.0381 (18)
H160.48630.44460.22690.046*
C170.5823 (6)0.1697 (5)0.1196 (3)0.0312 (16)
O180.6691 (4)0.1589 (3)0.1622 (2)0.0276 (10)
O190.5705 (5)0.1243 (4)0.0678 (2)0.0409 (13)
C200.3256 (7)0.1569 (6)0.0649 (4)0.052 (2)
H20A0.32260.09080.08810.078*
H20B0.3740.14810.03090.078*
H20C0.24870.17660.04680.078*
N210.5686 (5)0.1796 (5)0.2975 (3)0.0313 (14)
C220.5719 (6)0.2005 (5)0.3608 (3)0.0264 (15)
C230.5236 (7)0.1327 (5)0.4029 (3)0.0357 (17)
C240.4677 (7)0.0435 (6)0.3758 (4)0.0419 (19)
H240.43420.00460.40220.05*
C250.4604 (7)0.0241 (6)0.3116 (4)0.0416 (19)
H250.41950.03480.29360.05*
C260.5146 (7)0.0935 (6)0.2739 (4)0.0402 (19)
H260.51310.0790.23020.048*
C270.6349 (6)0.3030 (5)0.3811 (3)0.0296 (16)
O280.6793 (4)0.3518 (3)0.3374 (2)0.0294 (11)
O290.6355 (5)0.3339 (4)0.4368 (2)0.0386 (12)
C300.5320 (9)0.1480 (7)0.4743 (4)0.060 (3)
H30A0.61160.15990.4910.09*
H30B0.50370.08510.49380.09*
H30C0.48620.20880.48380.09*
N310.7520 (5)0.3872 (4)0.1301 (3)0.0317 (14)
C320.7060 (6)0.4861 (5)0.1258 (3)0.0314 (16)
C330.6665 (7)0.5319 (5)0.0673 (3)0.0371 (18)
C340.6810 (8)0.4736 (6)0.0131 (4)0.048 (2)
H340.65430.50120.02730.058*
C350.7342 (8)0.3756 (6)0.0175 (4)0.051 (2)
H350.74670.3380.01950.061*
C360.7687 (7)0.3338 (6)0.0771 (4)0.0407 (19)
H360.80430.2670.08040.049*
C370.7039 (6)0.5389 (5)0.1895 (3)0.0284 (15)
O380.7132 (4)0.4795 (3)0.2383 (2)0.0270 (11)
O390.6971 (4)0.6366 (3)0.1914 (2)0.0302 (11)
C400.6091 (8)0.6392 (6)0.0615 (4)0.052 (2)
H40A0.55290.64410.09170.079*
H40B0.5710.64810.01860.079*
H40C0.66640.69420.07050.079*
Na10.8432 (2)0.0484 (2)0.16277 (12)0.0320 (6)
O410.7863 (5)0.0404 (4)0.0495 (3)0.0408 (13)
H41A0.777 (7)0.022 (2)0.058 (4)0.049*
H41B0.720 (3)0.060 (6)0.048 (4)0.049*
O421.0436 (6)0.0189 (5)0.1588 (3)0.0574 (16)
H42A1.020 (9)0.068 (5)0.136 (4)0.069*
H42B1.073 (8)0.003 (8)0.128 (3)0.069*
O431.0969 (6)0.1006 (6)0.0514 (3)0.0682 (19)
H43A1.111 (9)0.090 (8)0.015 (2)0.082*
H43B1.028 (3)0.113 (8)0.040 (5)0.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.0261 (2)0.0200 (2)0.0234 (2)0.00011 (13)0.00207 (15)0.00091 (13)
N10.032 (3)0.023 (3)0.035 (3)0.004 (3)0.000 (3)0.005 (3)
C20.027 (4)0.016 (3)0.052 (5)0.004 (3)0.006 (4)0.001 (3)
C30.032 (4)0.036 (4)0.059 (6)0.001 (3)0.007 (4)0.008 (4)
C40.050 (6)0.052 (5)0.050 (5)0.002 (4)0.018 (4)0.006 (4)
C50.047 (5)0.041 (4)0.041 (5)0.008 (4)0.009 (4)0.005 (4)
C60.048 (5)0.030 (4)0.045 (5)0.002 (3)0.002 (4)0.003 (3)
C70.035 (5)0.029 (4)0.050 (5)0.001 (3)0.012 (4)0.001 (3)
O80.025 (3)0.032 (3)0.036 (3)0.001 (2)0.005 (2)0.005 (2)
O90.032 (3)0.095 (5)0.079 (5)0.023 (3)0.030 (3)0.039 (4)
C100.040 (6)0.073 (6)0.093 (8)0.014 (5)0.002 (6)0.002 (6)
N110.020 (3)0.035 (3)0.033 (3)0.005 (3)0.002 (3)0.006 (3)
C120.025 (4)0.029 (3)0.026 (4)0.003 (3)0.002 (3)0.006 (3)
C130.034 (4)0.037 (4)0.035 (4)0.001 (3)0.001 (4)0.009 (3)
C140.033 (4)0.043 (4)0.054 (5)0.007 (4)0.003 (4)0.005 (4)
C150.033 (5)0.052 (5)0.068 (6)0.016 (4)0.013 (4)0.004 (4)
C160.032 (4)0.037 (4)0.047 (5)0.003 (3)0.010 (4)0.002 (3)
C170.035 (4)0.029 (4)0.029 (4)0.003 (3)0.001 (3)0.000 (3)
O180.025 (2)0.026 (2)0.029 (3)0.002 (2)0.005 (2)0.002 (2)
O190.048 (3)0.040 (3)0.032 (3)0.001 (2)0.002 (3)0.011 (2)
C200.043 (5)0.048 (5)0.059 (6)0.000 (4)0.022 (4)0.005 (4)
N210.033 (3)0.028 (3)0.033 (3)0.001 (3)0.006 (3)0.003 (3)
C220.030 (4)0.021 (3)0.028 (4)0.001 (3)0.005 (3)0.007 (3)
C230.049 (5)0.024 (4)0.036 (4)0.001 (3)0.014 (4)0.007 (3)
C240.042 (5)0.031 (4)0.054 (5)0.005 (3)0.013 (4)0.007 (4)
C250.039 (5)0.034 (4)0.053 (5)0.010 (3)0.010 (4)0.006 (4)
C260.045 (5)0.040 (4)0.035 (4)0.009 (4)0.003 (4)0.006 (3)
C270.030 (4)0.033 (4)0.025 (4)0.008 (3)0.003 (3)0.001 (3)
O280.040 (3)0.024 (2)0.027 (2)0.002 (2)0.015 (2)0.006 (2)
O290.049 (3)0.040 (3)0.027 (3)0.007 (3)0.008 (2)0.001 (2)
C300.100 (8)0.041 (5)0.041 (5)0.026 (5)0.018 (5)0.005 (4)
N310.038 (4)0.026 (3)0.032 (3)0.004 (3)0.007 (3)0.001 (2)
C320.039 (4)0.023 (4)0.033 (4)0.001 (3)0.009 (3)0.000 (3)
C330.045 (5)0.035 (4)0.031 (4)0.012 (3)0.002 (4)0.005 (3)
C340.075 (6)0.045 (5)0.026 (4)0.016 (4)0.005 (4)0.001 (4)
C350.085 (7)0.039 (5)0.032 (4)0.011 (4)0.019 (5)0.005 (4)
C360.062 (5)0.027 (4)0.037 (4)0.003 (4)0.018 (4)0.003 (3)
C370.029 (4)0.022 (4)0.034 (4)0.003 (3)0.000 (3)0.001 (3)
O380.044 (3)0.007 (2)0.031 (3)0.0076 (18)0.009 (2)0.0021 (18)
O390.039 (3)0.022 (2)0.029 (3)0.002 (2)0.003 (2)0.006 (2)
C400.065 (6)0.040 (5)0.050 (5)0.005 (4)0.005 (5)0.011 (4)
Na10.0388 (16)0.0279 (14)0.0295 (14)0.0015 (12)0.0048 (13)0.0019 (11)
O410.054 (4)0.038 (3)0.032 (3)0.007 (3)0.013 (3)0.002 (2)
O420.057 (4)0.058 (4)0.061 (4)0.007 (3)0.020 (4)0.005 (3)
O430.049 (4)0.107 (5)0.052 (4)0.013 (4)0.018 (4)0.001 (4)
Geometric parameters (Å, º) top
Eu1—O282.362 (4)N21—C221.360 (9)
Eu1—O182.366 (4)C22—C231.399 (9)
Eu1—O82.375 (5)C22—C271.526 (9)
Eu1—O382.445 (4)C23—C241.392 (10)
Eu1—O39i2.461 (4)C23—C301.513 (11)
Eu1—N112.606 (5)C24—C251.371 (11)
Eu1—N12.619 (6)C24—H240.94
Eu1—N312.683 (6)C25—C261.386 (10)
Eu1—N212.745 (6)C25—H250.94
N1—C61.341 (9)C26—H260.94
N1—C21.354 (9)C27—O291.238 (8)
C2—C31.415 (11)C27—O281.271 (8)
C2—C71.507 (11)O28—Na1ii2.495 (5)
C3—C41.399 (12)C30—H30A0.97
C3—C101.501 (12)C30—H30B0.97
C4—C51.368 (12)C30—H30C0.97
C4—H40.94N31—C361.342 (9)
C5—C61.376 (11)N31—C321.359 (8)
C5—H50.94C32—C331.395 (10)
C6—H60.94C32—C371.505 (9)
C7—O91.242 (9)C33—C341.389 (10)
C7—O81.266 (9)C33—C401.510 (11)
O8—Na12.405 (5)C34—C351.382 (12)
C10—H10A0.97C34—H340.94
C10—H10B0.97C35—C361.382 (11)
C10—H10C0.97C35—H350.94
N11—C161.325 (9)C36—H360.94
N11—C121.360 (9)C37—O391.236 (7)
C12—C131.408 (10)C37—O381.269 (8)
C12—C171.512 (10)O38—Na1ii2.425 (5)
C13—C141.389 (11)O39—Eu1ii2.461 (4)
C13—C201.513 (11)C40—H40A0.97
C14—C151.388 (12)C40—H40B0.97
C14—H140.94C40—H40C0.97
C15—C161.389 (11)Na1—O422.390 (7)
C15—H150.94Na1—O412.412 (6)
C16—H160.94Na1—O38i2.425 (5)
C17—O191.229 (8)Na1—O28i2.495 (5)
C17—O181.287 (8)O41—H41A0.82 (2)
O18—Na12.470 (5)O41—H41B0.81 (2)
C20—H20A0.97O42—H42A0.81 (4)
C20—H20B0.97O42—H42B0.82 (4)
C20—H20C0.97O43—H43A0.82 (3)
N21—C261.326 (9)O43—H43B0.83 (2)
O28—Eu1—O18138.38 (16)H20A—C20—H20C109.5
O28—Eu1—O8138.64 (17)H20B—C20—H20C109.5
O18—Eu1—O873.99 (16)C26—N21—C22119.2 (6)
O28—Eu1—O3868.54 (14)C26—N21—Eu1124.5 (5)
O18—Eu1—O38130.08 (15)C22—N21—Eu1113.3 (4)
O8—Eu1—O38114.16 (15)N21—C22—C23122.6 (6)
O28—Eu1—O39i82.10 (15)N21—C22—C27113.5 (6)
O18—Eu1—O39i86.72 (15)C23—C22—C27123.9 (6)
O8—Eu1—O39i73.99 (16)C24—C23—C22116.0 (7)
O38—Eu1—O39i143.12 (15)C24—C23—C30119.1 (7)
O28—Eu1—N1192.68 (17)C22—C23—C30124.8 (7)
O18—Eu1—N1164.57 (16)C25—C24—C23121.6 (7)
O8—Eu1—N11128.55 (17)C25—C24—H24119.2
O38—Eu1—N1175.50 (17)C23—C24—H24119.2
O39i—Eu1—N11129.43 (17)C24—C25—C26118.3 (7)
O28—Eu1—N176.71 (17)C24—C25—H25120.8
O18—Eu1—N1136.50 (16)C26—C25—H25120.8
O8—Eu1—N164.04 (17)N21—C26—C25122.2 (7)
O38—Eu1—N179.96 (16)N21—C26—H26118.9
O39i—Eu1—N171.71 (16)C25—C26—H26118.9
N11—Eu1—N1155.41 (18)O29—C27—O28125.5 (7)
O28—Eu1—N31130.23 (16)O29—C27—C22118.9 (6)
O18—Eu1—N3176.59 (16)O28—C27—C22115.5 (6)
O8—Eu1—N3171.71 (17)C27—O28—Eu1129.5 (4)
O38—Eu1—N3162.05 (15)C27—O28—Na1ii115.5 (4)
O39i—Eu1—N31144.81 (17)Eu1—O28—Na1ii112.56 (18)
N11—Eu1—N3170.19 (18)C23—C30—H30A109.5
N1—Eu1—N3199.62 (18)C23—C30—H30B109.5
O28—Eu1—N2161.14 (16)H30A—C30—H30B109.5
O18—Eu1—N2177.87 (17)C23—C30—H30C109.5
O8—Eu1—N21130.42 (17)H30A—C30—H30C109.5
O38—Eu1—N21115.25 (16)H30B—C30—H30C109.5
O39i—Eu1—N2164.34 (17)C36—N31—C32120.0 (6)
N11—Eu1—N2169.23 (18)C36—N31—Eu1121.5 (4)
N1—Eu1—N21121.48 (18)C32—N31—Eu1114.9 (4)
N31—Eu1—N21138.30 (18)N31—C32—C33121.9 (6)
O28—Eu1—Na1143.49 (12)N31—C32—C37113.2 (6)
O18—Eu1—Na140.69 (11)C33—C32—C37124.9 (6)
O8—Eu1—Na139.15 (12)C34—C33—C32116.9 (7)
O38—Eu1—Na1146.40 (11)C34—C33—C40120.2 (7)
O39i—Eu1—Na161.90 (11)C32—C33—C40122.8 (7)
N11—Eu1—Na1105.07 (13)C35—C34—C33120.9 (7)
N1—Eu1—Na196.20 (13)C35—C34—H34119.5
N31—Eu1—Na186.14 (13)C33—C34—H34119.5
N21—Eu1—Na195.37 (13)C36—C35—C34119.1 (7)
O28—Eu1—Na1ii34.76 (11)C36—C35—H35120.5
O18—Eu1—Na1ii147.06 (11)C34—C35—H35120.5
O8—Eu1—Na1ii134.53 (12)N31—C36—C35120.9 (7)
O38—Eu1—Na1ii33.77 (11)N31—C36—H36119.5
O39i—Eu1—Na1ii114.16 (11)C35—C36—H36119.5
N11—Eu1—Na1ii82.61 (13)O39—C37—O38124.2 (6)
N1—Eu1—Na1ii76.06 (13)O39—C37—C32118.5 (6)
N31—Eu1—Na1ii95.64 (12)O38—C37—C32117.2 (5)
N21—Eu1—Na1ii88.33 (13)C37—O38—Na1ii118.8 (4)
Na1—Eu1—Na1ii172.242 (13)C37—O38—Eu1126.9 (4)
C6—N1—C2119.0 (6)Na1ii—O38—Eu1112.13 (17)
C6—N1—Eu1123.7 (5)C37—O39—Eu1ii140.1 (4)
C2—N1—Eu1115.3 (4)C33—C40—H40A109.5
N1—C2—C3121.9 (7)C33—C40—H40B109.5
N1—C2—C7114.6 (6)H40A—C40—H40B109.5
C3—C2—C7123.4 (7)C33—C40—H40C109.5
C4—C3—C2116.3 (8)H40A—C40—H40C109.5
C4—C3—C10119.1 (8)H40B—C40—H40C109.5
C2—C3—C10124.7 (8)O42—Na1—O885.1 (2)
C5—C4—C3121.7 (8)O42—Na1—O4196.8 (2)
C5—C4—H4119.2O8—Na1—O41112.9 (2)
C3—C4—H4119.2O42—Na1—O38i109.9 (2)
C4—C5—C6118.1 (8)O8—Na1—O38i98.53 (18)
C4—C5—H5120.9O41—Na1—O38i140.2 (2)
C6—C5—H5120.9O42—Na1—O18154.5 (2)
N1—C6—C5123.0 (8)O8—Na1—O1871.62 (17)
N1—C6—H6118.5O41—Na1—O1883.39 (18)
C5—C6—H6118.5O38i—Na1—O1884.22 (17)
O9—C7—O8124.5 (8)O42—Na1—O28i87.1 (2)
O9—C7—C2119.8 (7)O8—Na1—O28i159.7 (2)
O8—C7—C2115.7 (6)O41—Na1—O28i86.55 (18)
C7—O8—Eu1127.2 (5)O38i—Na1—O28i66.77 (15)
C7—O8—Na1121.6 (4)O18—Na1—O28i118.29 (18)
Eu1—O8—Na1102.29 (19)O42—Na1—Eu1122.20 (18)
C3—C10—H10A109.5O8—Na1—Eu138.56 (12)
C3—C10—H10B109.5O41—Na1—Eu1113.60 (15)
H10A—C10—H10B109.5O38i—Na1—Eu176.54 (12)
C3—C10—H10C109.5O18—Na1—Eu138.65 (11)
H10A—C10—H10C109.5O28i—Na1—Eu1139.58 (14)
H10B—C10—H10C109.5O42—Na1—Eu1i99.58 (18)
C16—N11—C12119.2 (6)O8—Na1—Eu1i131.19 (15)
C16—N11—Eu1123.9 (5)O41—Na1—Eu1i114.62 (15)
C12—N11—Eu1116.1 (4)O38i—Na1—Eu1i34.09 (10)
N11—C12—C13121.4 (6)O18—Na1—Eu1i103.45 (13)
N11—C12—C17113.8 (6)O28i—Na1—Eu1i32.67 (10)
C13—C12—C17124.8 (6)Eu1—Na1—Eu1i109.18 (7)
C14—C13—C12117.2 (7)O42—Na1—H41A97 (2)
C14—C13—C20119.5 (7)O8—Na1—H41A132.3 (6)
C12—C13—C20123.3 (7)O41—Na1—H41A19.4 (6)
C15—C14—C13121.5 (8)O38i—Na1—H41A124.4 (12)
C15—C14—H14119.2O18—Na1—H41A91.5 (18)
C13—C14—H14119.2O28i—Na1—H41A67.2 (7)
C14—C15—C16116.8 (7)Eu1—Na1—H41A127.3 (16)
C14—C15—H15121.6Eu1i—Na1—H41A95.6 (7)
C16—C15—H15121.6O42—Na1—H42A19.9 (10)
N11—C16—C15123.7 (7)O8—Na1—H42A75 (2)
N11—C16—H16118.2O41—Na1—H42A85 (2)
C15—C16—H16118.2O38i—Na1—H42A127.8 (14)
O19—C17—O18125.0 (7)O18—Na1—H42A136.9 (11)
O19—C17—C12119.3 (6)O28i—Na1—H42A102.2 (18)
O18—C17—C12115.6 (6)Eu1—Na1—H42A114 (2)
C17—O18—Eu1125.3 (4)Eu1i—Na1—H42A119.1 (8)
C17—O18—Na1130.5 (4)H41A—Na1—H42A91 (3)
Eu1—O18—Na1100.66 (17)Na1—O41—H41B101 (7)
C13—C20—H20A109.5H41A—O41—H41B99 (8)
C13—C20—H20B109.5Na1—O42—H42B126 (7)
H20A—C20—H20B109.5H42A—O42—H42B86 (10)
C13—C20—H20C109.5H43A—O43—H43B93 (10)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H41A···O29i0.82 (2)2.08 (6)2.767 (7)141 (8)
O41—H41B···O190.81 (2)2.02 (3)2.809 (8)164 (9)
O42—H42A···O90.81 (4)2.41 (10)2.774 (9)108 (8)
O42—H42B···O430.82 (4)2.08 (4)2.852 (10)158 (10)
O43—H43A···O41iii0.82 (3)2.02 (6)2.769 (9)152 (11)
O43—H43B···O29i0.83 (2)2.14 (6)2.884 (8)149 (10)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaNa[Eu(C7H6NO2)4]·3H2O
Mr773.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)233
a, b, c (Å)11.721 (3), 12.615 (4), 21.133 (6)
β (°) 96.585 (7)
V3)3104.1 (16)
Z4
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.22 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.583, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
25592, 5782, 4104
Rint0.088
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.148, 1.05
No. of reflections5782
No. of parameters428
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.77, 1.63

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), WinGX publication routines (Farrugia, 1999).

Selected bond lengths (Å) top
Eu1—O282.362 (4)Eu1—N112.606 (5)
Eu1—O182.366 (4)Eu1—N12.619 (6)
Eu1—O82.375 (5)Eu1—N312.683 (6)
Eu1—O382.445 (4)Eu1—N212.745 (6)
Eu1—O39i2.461 (4)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H41A···O29i0.82 (2)2.08 (6)2.767 (7)141 (8)
O41—H41B···O190.81 (2)2.02 (3)2.809 (8)164 (9)
O42—H42A···O90.81 (4)2.41 (10)2.774 (9)108 (8)
O42—H42B···O430.82 (4)2.08 (4)2.852 (10)158 (10)
O43—H43A···O41ii0.82 (3)2.02 (6)2.769 (9)152 (11)
O43—H43B···O29i0.83 (2)2.14 (6)2.884 (8)149 (10)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+2, y, z.
 

Acknowledgements

The X-ray data were collected at the Center for Research Facilities at Chungnam National University.

References

First citationBrandenburg, K. (2010). Diamond, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGodlewska, P., Macalik, L. & Hanuza, J. (2008). J. Alloys Compd, 451, 236–239.  Web of Science CrossRef CAS Google Scholar
First citationHong, J. H., Oh, Y., Kim, Y., Kang, S. K., Choi, J., Kim, W. S., Lee, J. I., Kim, S. & Hur, N. H. (2008). Cryst. Growth Des., 8, 1364–1371.  Web of Science CSD CrossRef CAS Google Scholar
First citationKukovec, B., Popovic, Z., Komorsky-Lovric, S., Vojkovic, V. & Vinkovic, M. (2009). Inorg. Chim. Acta, 362, 2704–2714.  Web of Science CSD CrossRef CAS Google Scholar
First citationLegendziewicz, J. (2002). J. Alloys Compd. 341, 34–44.  Web of Science CrossRef CAS Google Scholar
First citationLis, S., Piskula, Z. & Kubicki, M. (2009). Mater. Chem. Phys. 114, 134–138.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeo, H. J., Yoo, K., Song, M., Park, J. S., Jin, S., Kim, Y. I. & Kim, J. (2010). Org. Electron. 11, 564–572.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoares-Santos, P. C. R., Paz, F. A. A., Sa Ferreira, R. A., Klinowski, J., Carlos, L. D., Trindade, T. & Norgueira, H. I. S. (2006). Polyhedron, 25, 2471–2482.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds