organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(2,3-di­methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 June 2010; accepted 25 June 2010; online 3 July 2010)

In the title compound, C15H14ClNO, the N—H and C=O bonds in the amide group are anti to each other. The amide group is inclined at 60.3 (1)° to the chloro-substituted benzoyl ring and at 59.2 (1)° to the dimethyl-substituted aniline ring. The mean planes through the two benzene rings make a dihedral angle of 7.7 (1)°. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming chains along [010].

Related literature

For the preparation of the title compound, see: Gowda, Jyothi et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For related structures, see: Gowda, Foro et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1342.], 2009[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o444.]); Gowda, Jyothi et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]); Gowda, Tokarčík et al. (2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o965.]). For a review of halogen bonding, see: Fourmigué (2009[Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36-45.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClNO

  • Mr = 259.72

  • Monoclinic, P 21 /c

  • a = 13.0108 (5) Å

  • b = 4.9970 (1) Å

  • c = 22.6241 (9) Å

  • β = 118.553 (4)°

  • V = 1292.01 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 K

  • 0.54 × 0.43 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.861, Tmax = 0.985

  • 20701 measured reflections

  • 2293 independent reflections

  • 1959 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.06

  • 2293 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.23 2.9388 (19) 140
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

To explore the effect of substituents on the structures of benzanilides (Gowda, Foro et al., 2008, 2009; Gowda, Jyothi et al., 2003; Gowda, Tokarčík et al., 2009), in the present work, the structure of 2-chloro-N-(2,3-dimethylphenyl)-benzamide (I) has been determined The N—H and CO bonds in the amide group are anti to each other (Fig.1), similar to that observed in 2-chloro-N-(phenyl)-benzamide (II) (Gowda, Jyothi et al., 2003), N-(2,3-dimethylphenyl)- benzamide (III) (Gowda, Tokarčík et al., 2009), 2-chloro-N-(2,3-dichlorophenyl)-benzamide (IV) (Gowda, Foro et al., 2008), and 2-chloro-N-(3,5-dimethylphenyl)- benzamide (V) (Gowda, Foro et al., 2009).

The molecular structure of (I) includes a short intramolecular Cl1···O1 contact of 3.1837 (16) Å, which can be interpreted within the concept of halogen bonding (Fourmigué, 2009). The central amide group –NHCO– is inclined at 60.3 (1) ° to the benzoyl ring (C2–C7) and at 59.2 (1) ° to the anilino ring (C8–C13). The mean planes through the two benzene rings make a dihedral angle of 7.7 (1) °. The crystal packing (Fig. 2) is dominated by intermolecular N–H···O hydrogen bonds (Table 1) which link the molecules into the chains extending along the b axis.

Related literature top

For the preparation of the title compound, see: Gowda, Jyothi et al. (2003). For related structures, see: Gowda, Foro et al. (2008, 2009); Gowda, Jyothi et al. (2003); Gowda, Tokarčík et al. (2009). For a review on halogen bonding, see: Fourmigué (2009).

Experimental top

The title compound was prepared according to the literature method (Gowda, Jyothi et al., 2003). Plate-like colorless single crystals of (I) were obtained from an ethanolic solution held at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, including free rotation about the Caromatic–Cmethyl bond, with C–H = 0.93 or 0.96 Å and N–H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5Ueq(C methyl).

Structure description top

To explore the effect of substituents on the structures of benzanilides (Gowda, Foro et al., 2008, 2009; Gowda, Jyothi et al., 2003; Gowda, Tokarčík et al., 2009), in the present work, the structure of 2-chloro-N-(2,3-dimethylphenyl)-benzamide (I) has been determined The N—H and CO bonds in the amide group are anti to each other (Fig.1), similar to that observed in 2-chloro-N-(phenyl)-benzamide (II) (Gowda, Jyothi et al., 2003), N-(2,3-dimethylphenyl)- benzamide (III) (Gowda, Tokarčík et al., 2009), 2-chloro-N-(2,3-dichlorophenyl)-benzamide (IV) (Gowda, Foro et al., 2008), and 2-chloro-N-(3,5-dimethylphenyl)- benzamide (V) (Gowda, Foro et al., 2009).

The molecular structure of (I) includes a short intramolecular Cl1···O1 contact of 3.1837 (16) Å, which can be interpreted within the concept of halogen bonding (Fourmigué, 2009). The central amide group –NHCO– is inclined at 60.3 (1) ° to the benzoyl ring (C2–C7) and at 59.2 (1) ° to the anilino ring (C8–C13). The mean planes through the two benzene rings make a dihedral angle of 7.7 (1) °. The crystal packing (Fig. 2) is dominated by intermolecular N–H···O hydrogen bonds (Table 1) which link the molecules into the chains extending along the b axis.

For the preparation of the title compound, see: Gowda, Jyothi et al. (2003). For related structures, see: Gowda, Foro et al. (2008, 2009); Gowda, Jyothi et al. (2003); Gowda, Tokarčík et al. (2009). For a review on halogen bonding, see: Fourmigué (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the crystal packing of (I), showing the chains of molecules linked by intermolecular N–H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted. Symmetry code (i): x, y - 1, z.
2-Chloro-N-(2,3-dimethylphenyl)benzamide top
Crystal data top
C15H14ClNOF(000) = 544
Mr = 259.72Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11536 reflections
a = 13.0108 (5) Åθ = 2.0–29.4°
b = 4.9970 (1) ŵ = 0.28 mm1
c = 22.6241 (9) ÅT = 295 K
β = 118.553 (4)°Plate, colorless
V = 1292.01 (9) Å30.54 × 0.43 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2293 independent reflections
Graphite monochromator1959 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.027
ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1515
Tmin = 0.861, Tmax = 0.985k = 55
20701 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.5282P]
where P = (Fo2 + 2Fc2)/3
2293 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H14ClNOV = 1292.01 (9) Å3
Mr = 259.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0108 (5) ŵ = 0.28 mm1
b = 4.9970 (1) ÅT = 295 K
c = 22.6241 (9) Å0.54 × 0.43 × 0.05 mm
β = 118.553 (4)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2293 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
1959 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.985Rint = 0.027
20701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
2293 reflectionsΔρmin = 0.20 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44821 (16)0.5493 (3)0.33073 (9)0.0402 (4)
C20.32436 (15)0.4698 (3)0.28284 (9)0.0377 (4)
C30.22925 (17)0.5896 (4)0.28448 (9)0.0422 (4)
C40.11586 (17)0.5209 (4)0.23906 (10)0.0525 (5)
H40.05340.60290.24110.063*
C50.09558 (18)0.3309 (4)0.19085 (11)0.0552 (5)
H50.01920.28490.160.066*
C60.18775 (18)0.2085 (4)0.18810 (10)0.0525 (5)
H60.17370.07970.15540.063*
C70.30116 (17)0.2768 (4)0.23385 (9)0.0449 (4)
H70.36310.19220.23180.054*
C80.63848 (15)0.3676 (3)0.41456 (9)0.0392 (4)
C90.68395 (16)0.5350 (3)0.47093 (9)0.0411 (4)
C100.80539 (17)0.5320 (4)0.51345 (9)0.0463 (5)
C110.87516 (17)0.3630 (4)0.49984 (10)0.0523 (5)
H110.95550.36220.52850.063*
C120.82881 (18)0.1955 (4)0.44484 (11)0.0538 (5)
H120.87720.0810.43680.065*
C130.71009 (17)0.1991 (4)0.40184 (10)0.0475 (5)
H130.6780.08820.36420.057*
C140.6071 (2)0.7104 (4)0.48782 (11)0.0550 (5)
H14A0.62180.8950.48270.083*
H14B0.62420.67810.53350.083*
H14C0.52640.66970.4580.083*
C150.8603 (2)0.7101 (5)0.57434 (11)0.0662 (6)
H15A0.83670.89190.56110.099*
H15B0.94390.69720.59470.099*
H15C0.83530.65490.60610.099*
N10.51508 (13)0.3484 (3)0.36925 (8)0.0424 (4)
H1N0.48170.19710.36660.051*
O10.48384 (12)0.7779 (3)0.33335 (7)0.0546 (4)
Cl10.25124 (5)0.82447 (11)0.34617 (3)0.0650 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0486 (11)0.0274 (9)0.0474 (10)0.0033 (8)0.0252 (9)0.0017 (8)
C20.0446 (10)0.0279 (9)0.0409 (9)0.0020 (7)0.0206 (8)0.0043 (7)
C30.0518 (11)0.0332 (9)0.0453 (10)0.0006 (8)0.0262 (9)0.0016 (8)
C40.0452 (12)0.0519 (12)0.0599 (12)0.0072 (9)0.0249 (10)0.0069 (10)
C50.0457 (11)0.0538 (13)0.0517 (12)0.0018 (9)0.0117 (9)0.0014 (10)
C60.0592 (13)0.0467 (11)0.0424 (10)0.0030 (10)0.0167 (10)0.0061 (9)
C70.0496 (11)0.0388 (10)0.0474 (11)0.0016 (8)0.0241 (9)0.0004 (8)
C80.0423 (10)0.0290 (9)0.0431 (10)0.0061 (7)0.0179 (8)0.0023 (7)
C90.0521 (11)0.0304 (9)0.0419 (10)0.0070 (8)0.0233 (9)0.0028 (7)
C100.0532 (12)0.0390 (10)0.0389 (10)0.0133 (9)0.0157 (9)0.0054 (8)
C110.0420 (11)0.0554 (12)0.0517 (12)0.0055 (9)0.0161 (9)0.0097 (10)
C120.0505 (12)0.0530 (12)0.0619 (13)0.0040 (10)0.0301 (11)0.0035 (10)
C130.0523 (12)0.0400 (10)0.0489 (11)0.0034 (9)0.0232 (10)0.0050 (8)
C140.0676 (13)0.0505 (12)0.0531 (12)0.0021 (10)0.0339 (11)0.0029 (10)
C150.0742 (16)0.0584 (14)0.0483 (12)0.0178 (12)0.0150 (11)0.0045 (10)
N10.0448 (9)0.0248 (7)0.0513 (9)0.0071 (6)0.0178 (7)0.0000 (6)
O10.0565 (8)0.0259 (7)0.0734 (10)0.0080 (6)0.0245 (7)0.0035 (6)
Cl10.0793 (4)0.0553 (4)0.0724 (4)0.0015 (3)0.0458 (3)0.0180 (3)
Geometric parameters (Å, º) top
C1—O11.224 (2)C9—C101.403 (3)
C1—N11.341 (2)C9—C141.510 (3)
C1—C21.503 (3)C10—C111.378 (3)
C2—C71.389 (3)C10—C151.503 (3)
C2—C31.391 (3)C11—C121.377 (3)
C3—C41.379 (3)C11—H110.93
C3—Cl11.7395 (19)C12—C131.377 (3)
C4—C51.373 (3)C12—H120.93
C4—H40.93C13—H130.93
C5—C61.374 (3)C14—H14A0.96
C5—H50.93C14—H14B0.96
C6—C71.380 (3)C14—H14C0.96
C6—H60.93C15—H15A0.96
C7—H70.93C15—H15B0.96
C8—C131.384 (3)C15—H15C0.96
C8—C91.398 (2)N1—H1N0.86
C8—N11.437 (2)
O1—C1—N1123.65 (17)C11—C10—C9119.96 (18)
O1—C1—C2122.16 (16)C11—C10—C15119.49 (19)
N1—C1—C2114.18 (14)C9—C10—C15120.54 (19)
C7—C2—C3117.59 (17)C12—C11—C10121.59 (19)
C7—C2—C1120.52 (16)C12—C11—H11119.2
C3—C2—C1121.87 (16)C10—C11—H11119.2
C4—C3—C2121.45 (17)C11—C12—C13119.30 (19)
C4—C3—Cl1118.23 (15)C11—C12—H12120.3
C2—C3—Cl1120.29 (14)C13—C12—H12120.3
C5—C4—C3119.67 (19)C12—C13—C8120.01 (18)
C5—C4—H4120.2C12—C13—H13120
C3—C4—H4120.2C8—C13—H13120
C4—C5—C6120.22 (19)C9—C14—H14A109.5
C4—C5—H5119.9C9—C14—H14B109.5
C6—C5—H5119.9H14A—C14—H14B109.5
C5—C6—C7119.95 (19)C9—C14—H14C109.5
C5—C6—H6120H14A—C14—H14C109.5
C7—C6—H6120H14B—C14—H14C109.5
C6—C7—C2121.11 (18)C10—C15—H15A109.5
C6—C7—H7119.4C10—C15—H15B109.5
C2—C7—H7119.4H15A—C15—H15B109.5
C13—C8—C9121.34 (17)C10—C15—H15C109.5
C13—C8—N1116.40 (16)H15A—C15—H15C109.5
C9—C8—N1122.15 (16)H15B—C15—H15C109.5
C8—C9—C10117.77 (17)C1—N1—C8124.77 (14)
C8—C9—C14122.37 (17)C1—N1—H1N117.6
C10—C9—C14119.85 (17)C8—N1—H1N117.6
O1—C1—C2—C7118.6 (2)C13—C8—C9—C14176.88 (17)
N1—C1—C2—C760.8 (2)N1—C8—C9—C140.9 (3)
O1—C1—C2—C359.7 (3)C8—C9—C10—C111.6 (2)
N1—C1—C2—C3120.86 (19)C14—C9—C10—C11177.02 (17)
C7—C2—C3—C40.3 (3)C8—C9—C10—C15179.05 (17)
C1—C2—C3—C4178.06 (17)C14—C9—C10—C152.4 (3)
C7—C2—C3—Cl1177.75 (13)C9—C10—C11—C120.3 (3)
C1—C2—C3—Cl13.9 (2)C15—C10—C11—C12179.72 (19)
C2—C3—C4—C50.2 (3)C10—C11—C12—C130.9 (3)
Cl1—C3—C4—C5178.28 (16)C11—C12—C13—C80.8 (3)
C3—C4—C5—C60.4 (3)C9—C8—C13—C120.5 (3)
C4—C5—C6—C70.1 (3)N1—C8—C13—C12176.75 (17)
C5—C6—C7—C20.4 (3)O1—C1—N1—C85.1 (3)
C3—C2—C7—C60.6 (3)C2—C1—N1—C8174.31 (16)
C1—C2—C7—C6177.78 (17)C13—C8—N1—C1119.2 (2)
C13—C8—C9—C101.7 (3)C9—C8—N1—C164.6 (2)
N1—C8—C9—C10177.69 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.232.9388 (19)140
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H14ClNO
Mr259.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.0108 (5), 4.9970 (1), 22.6241 (9)
β (°) 118.553 (4)
V3)1292.01 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.54 × 0.43 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.861, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
20701, 2293, 1959
Rint0.027
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.06
No. of reflections2293
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.232.9388 (19)140
Symmetry code: (i) x, y1, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36–45.  Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds