metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(ethyl­enedi­amine)cobalt(II) sulfate

aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
*Correspondence e-mail: apinpus@gmail.com

(Received 27 April 2010; accepted 3 May 2010; online 8 May 2010)

The structure of the title compound, [CoII(C2H8N2)3]SO4, the cobalt example of [M(C2H8N2)3]SO4, is reported. The Co and S atoms are located at the 2d and 2c Wyckoff sites (point symmetry 32), respectively. The Co atom is coordinated by six N atoms of three chelating ethyl­enediamine mol­ecules generated from half of the ethyl­enediamine mol­ecule in the asymmetric unit. The O atoms of the sulfate anion are disordered mostly over two crystallographic sites. The third disorder site of O (site symmetry 3) has a site occupancy approaching zero. The H atoms of the ethyl­enediamine mol­ecules inter­act with the sulfate anions via inter­molecular N—H⋯O hydrogen-bonding inter­actions.

Related literature

For isostructural [M(C2H8N2)3]SO4 complexes, see: Haque et al. (1970[Haque, M.-U., Caughlan, C. N. & Emerson, K. (1970). Inorg. Chem. 9, 2421-2424.]); Cullen & Lingafelter (1970[Cullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858-1864.]); Daniels et al. (1995[Daniels, L. M., Murillo, C. A. & Rodriguez, K. G. (1995). Inorg. Chim. Acta, 229, 27-32.]); Lu (2009[Lu, J. (2009). Acta Cryst. E65, m1187.]) for the nickel, copper, vanadium and manganese analogues, respectively.

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H8N2)3]SO4

  • Mr = 335.30

  • Trigonal, [P \overline 31c ]

  • a = 8.9920 (2) Å

  • c = 9.5927 (3) Å

  • V = 671.71 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 298 K

  • 0.48 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.543, Tmax = 0.760

  • 3638 measured reflections

  • 688 independent reflections

  • 589 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 1.06

  • 688 reflections

  • 47 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.90 2.13 2.889 (12) 142
N1—H1A⋯O1i 0.90 2.15 3.049 (7) 176
N1—H1A⋯O2ii 0.90 2.22 3.054 (8) 155
N1—H1A⋯O2iii 0.90 2.32 3.104 (11) 145
N1—H1B⋯O2iv 0.90 1.98 2.843 (6) 161
N1—H1B⋯O1 0.90 2.48 3.353 (14) 165
N1—H1B⋯O1v 0.90 2.52 3.256 (10) 139
Symmetry codes: (i) -x+1, -y+1, -z; (ii) y, -x+y, -z; (iii) x-y+1, x, -z; (iv) -x+y, -x+1, z; (v) [-y+1, -x+1, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The title complex, [CoII(C2H8N2)3]SO4 (Fig. 1), is isostructural to the earlier reported [NiII(C2H8N2)3]SO4 (Haque et al.,, 1970), [VII(C2H8N2)3]SO4 (Daniels et al., 1995), [MnII(C2H8N2)3]SO4 (Lu, 2009) and [CuII(C2H8N2)3]SO4 (Cullen & Lingafelter, 1970) complexes, constituting the [MII(C2H2N2)3]SO4 series. The [MII(C2H2N2)3]SO4 structures crystallize in the same trigonal space group of P31c with quite similar cell parameters. Likewise, the metal and sulfur atoms are positioned in the same crystallographic sites; MII on the 2d and S on the 2c Wyckoff sites (each with point symmetry 32). The disorder about the six-fold rotation axis found in the sulfate anion is intriguingly common in each structure, although the number of unique O atoms varies from two to four. In the structure of [CoII(C2H8N2)3]SO4, the O atoms were refined as being disordered over three crystallographic sites, although the site occupancy of O3 located on the 4f Wyckoff site approaches zero. The bond length associated with this O3 atom (S1—O3; 1.382 (16) Å) is notably shorter than the other S—O bonds (1.431 (5)–1.445 (5) Å). The disordered sulfate anions are linked to the [CoII(C2H8N2)3]2+ cations by hydrogen bonding interactions of N—H···O type to form a hydrogen-bonding supramolecular network. The hydrogen bonding geometries are consistent with those of the previously reported [MII(C2H2N2)3]SO4 complexes.

Related literature top

For isostructural [M(C2H8N2)3]SO4 complexes, see: Haque et al. (1970); Cullen & Lingafelter (1970); Daniels et al. (1995); Lu (2009) for the nickel, copper, vanadium and manganese analogues, respectively.

Experimental top

Orange blocks of the title complex were synthesized and grown from the sovolthermal reaction of Co(NO3)2.6H2O (1.34 mmol), NH2SO3H (1.34 mmol), NH2C2H4NH2 (3.89 mmol) in ethylene glycol (160 mmol), conducted at 453 K for 72 h.

Refinement top

The O atoms were positioned from a difference Fourier map, and refined with restraints using commands SUMP, SADI and SIMU in SHELXL (Sheldrick, 2008). Although there was an indication for further splitting of the O2 atom, after the final cycles of refinement, such action did not give a better result. All H-atoms were treated as riding groups on the bonded atoms, with C—H = 0.97 Å and N—H 0.90 Å, and with Uiso(H) = 1.2Uequiv(C, N).

Structure description top

The title complex, [CoII(C2H8N2)3]SO4 (Fig. 1), is isostructural to the earlier reported [NiII(C2H8N2)3]SO4 (Haque et al.,, 1970), [VII(C2H8N2)3]SO4 (Daniels et al., 1995), [MnII(C2H8N2)3]SO4 (Lu, 2009) and [CuII(C2H8N2)3]SO4 (Cullen & Lingafelter, 1970) complexes, constituting the [MII(C2H2N2)3]SO4 series. The [MII(C2H2N2)3]SO4 structures crystallize in the same trigonal space group of P31c with quite similar cell parameters. Likewise, the metal and sulfur atoms are positioned in the same crystallographic sites; MII on the 2d and S on the 2c Wyckoff sites (each with point symmetry 32). The disorder about the six-fold rotation axis found in the sulfate anion is intriguingly common in each structure, although the number of unique O atoms varies from two to four. In the structure of [CoII(C2H8N2)3]SO4, the O atoms were refined as being disordered over three crystallographic sites, although the site occupancy of O3 located on the 4f Wyckoff site approaches zero. The bond length associated with this O3 atom (S1—O3; 1.382 (16) Å) is notably shorter than the other S—O bonds (1.431 (5)–1.445 (5) Å). The disordered sulfate anions are linked to the [CoII(C2H8N2)3]2+ cations by hydrogen bonding interactions of N—H···O type to form a hydrogen-bonding supramolecular network. The hydrogen bonding geometries are consistent with those of the previously reported [MII(C2H2N2)3]SO4 complexes.

For isostructural [M(C2H8N2)3]SO4 complexes, see: Haque et al. (1970); Cullen & Lingafelter (1970); Daniels et al. (1995); Lu (2009) for the nickel, copper, vanadium and manganese analogues, respectively.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title complex showing atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. [Symmetry codes: (i) -y+1, x-y, z; (ii) -x+y+1, -x+1, z; (iii) -y+1, -x+1, -z+1/2; (iv) -x+y+1, y, -z+1/2; (v) x, x-y, -z+1/2; (vi) -y+1, x-y+1, z, (vii) -x+y, -x+1, z; (viii) -x+y, y, -z+1/2; (ix) x, x-y+1, -z+1/2]. Hydrogen atoms are omitted.
[Figure 2] Fig. 2. View of the hydrogen bonding interactions (dotted lines) between the disordered sulfate O atoms and the amino-H atoms of the [CoII(C2H8N2)]2+ cations. [Symmetry codes: (ii) -x+y+1, -x+1, z; (iii) -y+1, -x+1, -z+1/2; (viii) -x+y, y, -z+1/2; (ix) x, x-y+1, -z+1/2; (xiii) y, x, z+1/2; (xiv) -y+x, -y+1, -z+1/2; (xv) -x+1, -x+y+1, z+1/2].
Tris(ethylenediamine)cobalt(II) sulfate top
Crystal data top
[Co(C2H8N2)3]SO4Dx = 1.658 Mg m3
Mr = 335.30Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 589 reflections
Hall symbol: -P 3 2cθ = 2.6–31.0°
a = 8.9920 (2) ŵ = 1.45 mm1
c = 9.5927 (3) ÅT = 298 K
V = 671.71 (3) Å3Block, orange
Z = 20.48 × 0.22 × 0.20 mm
F(000) = 354
Data collection top
Bruker SMART CCD area-detector
diffractometer
688 independent reflections
Radiation source: fine-focus sealed tube589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
? scanθmax = 31.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 810
Tmin = 0.543, Tmax = 0.760k = 1111
3638 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.1217P]
where P = (Fo2 + 2Fc2)/3
688 reflections(Δ/σ)max < 0.001
47 parametersΔρmax = 0.25 e Å3
16 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Co(C2H8N2)3]SO4Z = 2
Mr = 335.30Mo Kα radiation
Trigonal, P31cµ = 1.45 mm1
a = 8.9920 (2) ÅT = 298 K
c = 9.5927 (3) Å0.48 × 0.22 × 0.20 mm
V = 671.71 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
688 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
589 reflections with I > 2σ(I)
Tmin = 0.543, Tmax = 0.760Rint = 0.027
3638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02816 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
688 reflectionsΔρmin = 0.29 e Å3
47 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.66670.33330.25000.02175 (16)
N10.68784 (18)0.54599 (18)0.12760 (13)0.0332 (3)
H1A0.69360.52650.03630.040*
H1B0.59540.55790.14180.040*
S10.33330.66670.25000.0240 (2)
C10.8446 (2)0.7024 (2)0.17145 (19)0.0388 (4)
H1C0.84050.80310.14090.047*
H1D0.94440.70560.12970.047*
O10.3029 (19)0.5088 (9)0.1852 (8)0.096 (3)0.319 (8)
O20.339 (2)0.7851 (9)0.1475 (6)0.096 (4)0.316 (9)
O30.33330.66670.1059 (16)0.086 (8)0.094 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0226 (2)0.0226 (2)0.0201 (2)0.01129 (10)0.0000.000
N10.0410 (8)0.0330 (7)0.0283 (7)0.0204 (6)0.0033 (5)0.0031 (5)
S10.0243 (3)0.0243 (3)0.0233 (4)0.01215 (14)0.0000.000
C10.0445 (10)0.0267 (8)0.0413 (9)0.0147 (7)0.0058 (7)0.0076 (6)
O10.185 (9)0.051 (4)0.063 (4)0.069 (5)0.012 (5)0.016 (3)
O20.194 (12)0.055 (4)0.044 (3)0.067 (5)0.012 (4)0.012 (3)
O30.118 (11)0.118 (11)0.021 (11)0.059 (5)0.0000.000
Geometric parameters (Å, º) top
Co1—N1i2.1696 (13)S1—O2vi1.431 (5)
Co1—N1ii2.1696 (13)S1—O2v1.431 (5)
Co1—N1iii2.1696 (13)S1—O2vii1.431 (5)
Co1—N1iv2.1696 (13)S1—O2viii1.431 (5)
Co1—N12.1696 (13)S1—O2ix1.431 (5)
Co1—N1v2.1696 (13)S1—O1ix1.445 (5)
N1—C11.469 (2)S1—O1viii1.445 (5)
N1—H1A0.9000S1—O1vi1.445 (5)
N1—H1B0.9000S1—O1vii1.445 (5)
S1—O31.382 (16)C1—C1iv1.512 (4)
S1—O3v1.382 (16)C1—H1C0.9700
S1—O21.431 (5)C1—H1D0.9700
N1i—Co1—N1ii80.49 (7)O2viii—S1—O1viii110.7 (4)
N1i—Co1—N1iii93.48 (5)O2ix—S1—O1viii138.0 (11)
N1ii—Co1—N1iii93.17 (8)O1ix—S1—O1viii63.4 (8)
N1i—Co1—N1iv93.17 (8)O3—S1—O1vi64.5 (3)
N1ii—Co1—N1iv93.48 (5)O3v—S1—O1vi115.5 (3)
N1iii—Co1—N1iv171.28 (7)O2—S1—O1vi57.2 (5)
N1i—Co1—N193.48 (5)O2vi—S1—O1vi110.7 (4)
N1ii—Co1—N1171.28 (8)O2v—S1—O1vi138.0 (11)
N1iii—Co1—N193.48 (5)O2vii—S1—O1vi69.9 (6)
N1iv—Co1—N180.49 (7)O2viii—S1—O1vi45.7 (4)
N1i—Co1—N1v171.28 (8)O2ix—S1—O1vi119.2 (10)
N1ii—Co1—N1v93.48 (5)O1ix—S1—O1vi93.3 (11)
N1iii—Co1—N1v80.49 (7)O1viii—S1—O1vi102.9 (4)
N1iv—Co1—N1v93.48 (5)O3—S1—O1vii115.5 (3)
N1—Co1—N1v93.17 (8)O3v—S1—O1vii64.5 (3)
C1—N1—Co1107.94 (10)O2—S1—O1vii138.0 (11)
C1—N1—H1A110.1O2vi—S1—O1vii69.9 (6)
Co1—N1—H1A110.1O2v—S1—O1vii57.2 (5)
C1—N1—H1B110.1O2vii—S1—O1vii110.7 (4)
Co1—N1—H1B110.1O2viii—S1—O1vii119.2 (10)
H1A—N1—H1B108.4O2ix—S1—O1vii45.7 (4)
O3—S1—O3v180.000 (3)O1ix—S1—O1vii102.9 (4)
O3—S1—O246.6 (3)O1viii—S1—O1vii93.3 (11)
O3v—S1—O2133.4 (3)O1vi—S1—O1vii161.1 (12)
O3—S1—O2vi46.6 (3)N1—C1—C1iv108.84 (12)
O3v—S1—O2vi133.4 (3)N1—C1—H1C109.9
O2—S1—O2vi78.0 (5)C1iv—C1—H1C109.9
O3—S1—O2v133.4 (3)N1—C1—H1D109.9
O3v—S1—O2v46.6 (3)C1iv—C1—H1D109.9
O2—S1—O2v104.4 (11)H1C—C1—H1D108.3
O2vi—S1—O2v99.7 (7)O2vi—O1—O2viii91.9 (8)
O3—S1—O2vii133.4 (3)O2vi—O1—S166.5 (5)
O3v—S1—O2vii46.6 (3)O2viii—O1—S160.9 (3)
O2—S1—O2vii99.7 (7)O2vi—O1—O1vii75.7 (11)
O2vi—S1—O2vii176.3 (13)O2viii—O1—O1vii117.8 (4)
O2v—S1—O2vii78.0 (5)S1—O1—O1vii58.3 (4)
O3—S1—O2viii46.6 (3)O2vi—O1—O2ix108.3 (7)
O3v—S1—O2viii133.4 (3)O2viii—O1—O2ix92.2 (8)
O2—S1—O2viii78.0 (5)S1—O1—O2ix54.6 (4)
O2vi—S1—O2viii78.0 (5)O1viii—O2—O1vi129.8 (7)
O2v—S1—O2viii176.3 (13)O1viii—O2—S167.8 (4)
O2vii—S1—O2viii104.4 (11)O1vi—O2—S161.9 (4)
O3—S1—O2ix133.4 (3)O1viii—O2—O1ix63.3 (12)
O3v—S1—O2ix46.6 (3)O1vi—O2—O1ix87.5 (9)
O2—S1—O2ix176.3 (13)S1—O2—O1ix55.5 (3)
O2vi—S1—O2ix104.4 (11)O1viii—O2—O2vi49.8 (6)
O2v—S1—O2ix78.0 (5)O1vi—O2—O2vi95.3 (5)
O2vii—S1—O2ix78.0 (5)S1—O2—O2vi51.0 (2)
O2viii—S1—O2ix99.7 (7)O1ix—O2—O2vi91.9 (8)
O3—S1—O1ix115.5 (3)O1viii—O2—O2viii106.1 (5)
O3v—S1—O1ix64.5 (3)S1—O2—O2viii51.0 (2)
O2—S1—O1ix69.9 (6)O1ix—O2—O2viii102.2 (4)
O2vi—S1—O1ix119.2 (10)O2vi—O2—O2viii60.000 (1)
O2v—S1—O1ix45.7 (4)O2vi—O3—O2viii107.9 (8)
O2vii—S1—O1ix57.2 (5)O2vi—O3—S169.0 (8)
O2viii—S1—O1ix138.0 (11)O2viii—O3—S169.0 (8)
O2ix—S1—O1ix110.7 (4)O2vi—O3—O1viii61.1 (6)
O3—S1—O1viii64.5 (3)O2viii—O3—O1viii128.2 (13)
O3v—S1—O1viii115.5 (3)S1—O3—O1viii59.8 (5)
O2—S1—O1viii45.7 (4)O2vi—O3—O1vi128.2 (13)
O2vi—S1—O1viii57.2 (5)O2viii—O3—O1vi47.4 (6)
O2v—S1—O1viii69.9 (6)S1—O3—O1vi59.8 (5)
O2vii—S1—O1viii119.2 (10)O1viii—O3—O1vi96.9 (7)
Symmetry codes: (i) x+y+1, x+1, z; (ii) x, xy, z+1/2; (iii) y+1, xy, z; (iv) x+y+1, y, z+1/2; (v) y+1, x+1, z+1/2; (vi) y+1, xy+1, z; (vii) x+y, y, z+1/2; (viii) x+y, x+1, z; (ix) x, xy+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3x0.902.132.889 (12)142
N1—H1A···O1x0.902.153.049 (7)176
N1—H1A···O2xi0.902.223.054 (8)155
N1—H1A···O2xii0.902.323.104 (11)145
N1—H1B···O2viii0.901.982.843 (6)161
N1—H1B···O10.902.483.353 (14)165
N1—H1B···O1v0.902.523.256 (10)139
Symmetry codes: (v) y+1, x+1, z+1/2; (viii) x+y, x+1, z; (x) x+1, y+1, z; (xi) y, x+y, z; (xii) xy+1, x, z.

Experimental details

Crystal data
Chemical formula[Co(C2H8N2)3]SO4
Mr335.30
Crystal system, space groupTrigonal, P31c
Temperature (K)298
a, c (Å)8.9920 (2), 9.5927 (3)
V3)671.71 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.48 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.543, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
3638, 688, 589
Rint0.027
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.06
No. of reflections688
No. of parameters47
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.29

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.902.132.889 (12)142
N1—H1A···O1i0.902.153.049 (7)176
N1—H1A···O2ii0.902.223.054 (8)155
N1—H1A···O2iii0.902.323.104 (11)145
N1—H1B···O2iv0.901.982.843 (6)161
N1—H1B···O10.902.483.353 (14)165
N1—H1B···O1v0.902.523.256 (10)139
Symmetry codes: (i) x+1, y+1, z; (ii) y, x+y, z; (iii) xy+1, x, z; (iv) x+y, x+1, z; (v) y+1, x+1, z+1/2.
 

Acknowledgements

This work was supported financially by the Thailand Research Fund and the Center of Excellence for Innovation in Chemistry. BY thanks the Royal Golden Jubilee PhD program and the Graduate School of Chiang Mai University for a graduate scholarship.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858–1864.  CSD CrossRef CAS Web of Science Google Scholar
First citationDaniels, L. M., Murillo, C. A. & Rodriguez, K. G. (1995). Inorg. Chim. Acta, 229, 27–32.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaque, M.-U., Caughlan, C. N. & Emerson, K. (1970). Inorg. Chem. 9, 2421–2424.  Google Scholar
First citationLu, J. (2009). Acta Cryst. E65, m1187.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds