organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­fluoro­phen­yl)-3,4,5-tri­meth­oxy­benzamide

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 13 April 2010; accepted 14 April 2010; online 24 April 2010)

In the title amide, C16H15F2NO4, the dihedral angle between the benzene rings is 2.33 (15)°. Mol­ecules are linked in the crystal structure by N—H⋯O hydrogen bonding involving N—H and C=O groups of the amide function, leading to a supra­molecular chain along [100].

Related literature

For background to the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Cabanes et al. (1994[Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982-985.]); Dawley & Flurkey (1993[Dawley, R. M. & Flurkey, W. H. (1993). J. Food Sci. 58, 609-610]); Ha et al. (2007[Ha, Y. M., Chang, S. W., Song, S. H. & Lee, H. J. (2007). Biol. Pharm. Bull. 30, 1711-1715.]); Hong et al. (2008[Hong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49.]); Kwak et al. (2010[Kwak, S. Y., Noh, J. M., Park, S. H., Byun, J. W. & Choi, H. R. (2010). Bioorg. Med. Chem. Lett. 20, 738-742.]); Lee et al. (2007[Lee, C. W., Son, E. M., Kim, H. S. & Xu, P. (2007). Bioorg. Med. Chem. Lett. 17, 5462-5464.]); Nerya et al. (2003[Nerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R. & Tamir, S. (2003). J. Agric. Food Chem. 51, 1201-1207.]); Park et al. (2010[Park, J. S., Kim, D. H., Lee, J. K., Lee, J. Y., Kim, D. H., Kim, H. K., Lee, H. J. & Kim, H. C. (2010). Bioorg. Med. Chem. Lett. 20, 1162-1164.]); Sung & Samyang Genex (2001[Sung, C. K. & Samyang Genex. (2001). US Patent WO 01/41778.]); Yi et al. (2009[Yi, W., Cao, R. H., Chen, Z. Y. Yu. L. Ma. L. & Song, H. C. (2009). Chem. Pharm. Bull. 7, 1273-1277.], 2010[Yi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. (2010). Eur. J. Med. Chem. 45, 639-646.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15F2NO4

  • Mr = 323.29

  • Monoclinic, P 21 /n

  • a = 5.0031 (3) Å

  • b = 8.8986 (5) Å

  • c = 32.726 (2) Å

  • β = 93.896 (4)°

  • V = 1453.59 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 174 K

  • 0.12 × 0.05 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 10828 measured reflections

  • 2634 independent reflections

  • 1522 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.185

  • S = 1.05

  • 2634 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H15⋯O14i 0.93 (4) 2.02 (4) 2.872 (4) 152 (3)
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Melanin synthesis is principally responsible for skin color and plays a key role in the prevention of UV-induced skin damages. Tyrosinase is the key enzyme (Ha et al., 2007) that converts tyrosine to melanin and its inhibitors are target molecules for developing anti-pigmentation agents. Therefore, treatments using potent inhibitory agents on tyrosinase and melanin formation may be cosmetically useful. Common tyrosinase inhibitors (Dawley & Flurkey, 1993; Nerya et al., 2003) are hydroquinone, ascorbic acid, kojic acid and arbutin (Cabanes et al., 1994). Recently, a number of reports have focused on the development of new agents for the inhibition of tyrosinase. They contain aromatic, methoxy, hydroxyl (Hong et al., 2008; Lee et al., 2007), aldehyde (Yi et al., 2010), amide (Kwak et al., 2010), thiosemicarbazone (Yi et al., 2009) groups in their respective molecule structure. The application of natural products as a melanin synthesis inhibitors has also attracted interest (Park et al., 2010; Sung et al., 2001). However, most of these are not sufficiently potent for practical use owing to their weak individual activities or due to safety concerns. Undoubtedly, significant research and development into novel tyrosinase inhibitors is required to generate molecules with better activities and reduced side-effects. In continuation of our program aimed to develop tyrosinase inhibitors, we have synthesized the title compound, N-(3,4-difluorophenyl)-3,4,5-trimethoxybenzamide, (I), from the reaction of 3,4-difluoroaniline with 3,4,5-trimethoxybenzoyl chloride under ambient condition. Herein, the crystal structure of (I) is described (Fig. 1).

The 3,4,5-trimethoxybenzoic acid moiety (except for the C10 methyl group) and 3,4-difluoroaniline group are essentially planar, with a mean deviations of 0.027 Å and 0.006 Å, respectively, from the corresponding least-squares plane defined by the ten and nine, respectively, constituent atoms. The dihedral angle between the benzene rings is 2.33 (15) °. The presence of intermolecular N15—H15···O14i (symmetry code: (i) x-1, y, z) hydrogen bonds lead to the formation an 1-D supramolecular chain along the a axis, Table 1.

Related literature top

For background to the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Cabanes et al. (1994); Dawley & Flurkey (1993); Ha et al. (2007); Hong et al. (2008); Kwak et al. (2010); Lee et al. (2007); Nerya et al. (2003); Park et al. (2010); Sung & Samyang Genex (2001); Yi et al. (2009, 2010).

Experimental top

3,4,5-Trimethoxybenzoyl chloride and 3,4-difluoroaniline were purchased from Sigma Chemical Co. Solvents used for synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and used without further purification. The title compound was prepared from the reaction of 3,4,5-trimethoxybenzoyl chloride (1.078 g, 5 mmol) and 3,4-difluoroaniline (0.5 g, 4 mmol) in THF with TEA (15 ml) as a catalyst. After being stirred for 5 h at 298 K, the mixture was treated with water and extracted with ethyl acetate. The combined extracts were dried over anhydrous magnesium sulfate. Removal of solvent gave a white solid (90%, m.pt. 428 K). Single crystals were obtained by slow evaporation of a methylene chloride and ethyl alcohol solution of (I) held at room temperature.

Refinement top

The amide-H atom was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq (carrier C) for aromatic and 1.5Ueq(carrier C) for methyl H atoms.

Structure description top

Melanin synthesis is principally responsible for skin color and plays a key role in the prevention of UV-induced skin damages. Tyrosinase is the key enzyme (Ha et al., 2007) that converts tyrosine to melanin and its inhibitors are target molecules for developing anti-pigmentation agents. Therefore, treatments using potent inhibitory agents on tyrosinase and melanin formation may be cosmetically useful. Common tyrosinase inhibitors (Dawley & Flurkey, 1993; Nerya et al., 2003) are hydroquinone, ascorbic acid, kojic acid and arbutin (Cabanes et al., 1994). Recently, a number of reports have focused on the development of new agents for the inhibition of tyrosinase. They contain aromatic, methoxy, hydroxyl (Hong et al., 2008; Lee et al., 2007), aldehyde (Yi et al., 2010), amide (Kwak et al., 2010), thiosemicarbazone (Yi et al., 2009) groups in their respective molecule structure. The application of natural products as a melanin synthesis inhibitors has also attracted interest (Park et al., 2010; Sung et al., 2001). However, most of these are not sufficiently potent for practical use owing to their weak individual activities or due to safety concerns. Undoubtedly, significant research and development into novel tyrosinase inhibitors is required to generate molecules with better activities and reduced side-effects. In continuation of our program aimed to develop tyrosinase inhibitors, we have synthesized the title compound, N-(3,4-difluorophenyl)-3,4,5-trimethoxybenzamide, (I), from the reaction of 3,4-difluoroaniline with 3,4,5-trimethoxybenzoyl chloride under ambient condition. Herein, the crystal structure of (I) is described (Fig. 1).

The 3,4,5-trimethoxybenzoic acid moiety (except for the C10 methyl group) and 3,4-difluoroaniline group are essentially planar, with a mean deviations of 0.027 Å and 0.006 Å, respectively, from the corresponding least-squares plane defined by the ten and nine, respectively, constituent atoms. The dihedral angle between the benzene rings is 2.33 (15) °. The presence of intermolecular N15—H15···O14i (symmetry code: (i) x-1, y, z) hydrogen bonds lead to the formation an 1-D supramolecular chain along the a axis, Table 1.

For background to the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Cabanes et al. (1994); Dawley & Flurkey (1993); Ha et al. (2007); Hong et al. (2008); Kwak et al. (2010); Lee et al. (2007); Nerya et al. (2003); Park et al. (2010); Sung & Samyang Genex (2001); Yi et al. (2009, 2010).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level.
N-(3,4-Difluorophenyl)-3,4,5-trimethoxybenzamide top
Crystal data top
C16H15F2NO4F(000) = 672
Mr = 323.29Dx = 1.477 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 761 reflections
a = 5.0031 (3) Åθ = 2.6–19.9°
b = 8.8986 (5) ŵ = 0.12 mm1
c = 32.726 (2) ÅT = 174 K
β = 93.896 (4)°Needle, colourless
V = 1453.59 (15) Å30.12 × 0.05 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.080
φ and ω scansθmax = 25.5°, θmin = 2.4°
10828 measured reflectionsh = 46
2634 independent reflectionsk = 106
1522 reflections with I > 2σ(I)l = 3934
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0682P)2 + 1.4724P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.065(Δ/σ)max < 0.001
wR(F2) = 0.185Δρmax = 0.32 e Å3
S = 1.05Δρmin = 0.31 e Å3
2634 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
216 parametersExtinction coefficient: 0.014 (2)
0 restraints
Crystal data top
C16H15F2NO4V = 1453.59 (15) Å3
Mr = 323.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.0031 (3) ŵ = 0.12 mm1
b = 8.8986 (5) ÅT = 174 K
c = 32.726 (2) Å0.12 × 0.05 × 0.04 mm
β = 93.896 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1522 reflections with I > 2σ(I)
10828 measured reflectionsRint = 0.080
2634 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
2634 reflectionsΔρmin = 0.31 e Å3
216 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6607 (7)0.3453 (4)0.11117 (12)0.0287 (9)
C20.4753 (7)0.2630 (5)0.13169 (11)0.0295 (9)
H20.35690.19880.11720.035*
C30.4671 (7)0.2766 (4)0.17375 (12)0.0290 (9)
C40.6362 (7)0.3786 (4)0.19522 (11)0.0269 (9)
C50.8177 (7)0.4651 (4)0.17433 (12)0.0308 (10)
C60.8325 (7)0.4471 (4)0.13255 (12)0.0297 (9)
H60.95580.50220.11870.036*
O70.3015 (5)0.1970 (3)0.19728 (8)0.0361 (7)
C80.1331 (8)0.0851 (5)0.17712 (13)0.0387 (11)
H8A0.00820.13280.15770.058*
H8B0.03680.03230.19710.058*
H8C0.24160.01540.16320.058*
O90.6159 (5)0.3968 (3)0.23691 (8)0.0372 (8)
C100.8440 (8)0.3424 (5)0.26132 (13)0.0436 (12)
H10A0.86040.23590.25750.065*
H10B0.82180.36330.28970.065*
H10C1.00270.39150.25310.065*
O110.9674 (5)0.5622 (3)0.19817 (8)0.0402 (8)
C121.1391 (8)0.6627 (5)0.17819 (14)0.0445 (12)
H12A1.28180.60680.16720.067*
H12B1.21290.73510.19760.067*
H12C1.03810.71380.15640.067*
C130.6990 (7)0.3258 (4)0.06673 (12)0.0317 (10)
O140.9186 (5)0.3442 (3)0.05305 (8)0.0409 (8)
N150.4757 (6)0.2891 (4)0.04286 (10)0.0299 (8)
H150.313 (8)0.294 (4)0.0547 (11)0.029 (10)*
C160.4673 (7)0.2563 (5)0.00065 (12)0.0305 (9)
C170.2768 (8)0.1532 (5)0.01466 (13)0.0389 (11)
H170.16330.10690.00280.047*
C180.2571 (9)0.1203 (5)0.05565 (13)0.0426 (11)
C190.4247 (9)0.1857 (5)0.08182 (12)0.0415 (11)
C200.6105 (9)0.2881 (6)0.06747 (13)0.0493 (13)
H200.72280.33370.08530.059*
C210.6312 (8)0.3240 (5)0.02595 (12)0.0402 (11)
H210.75710.39440.01610.048*
F220.0737 (6)0.0196 (3)0.07070 (8)0.0697 (9)
F230.3998 (5)0.1491 (3)0.12188 (7)0.0625 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0233 (19)0.032 (2)0.030 (2)0.0051 (18)0.0008 (16)0.0001 (18)
C20.0215 (18)0.035 (2)0.032 (2)0.0027 (17)0.0031 (16)0.0032 (18)
C30.0236 (19)0.030 (2)0.034 (2)0.0022 (17)0.0048 (17)0.0008 (19)
C40.0277 (19)0.032 (2)0.021 (2)0.0052 (18)0.0021 (16)0.0014 (18)
C50.028 (2)0.028 (2)0.035 (3)0.0000 (18)0.0016 (17)0.0020 (19)
C60.027 (2)0.030 (2)0.031 (2)0.0011 (18)0.0014 (16)0.0047 (18)
O70.0376 (15)0.0399 (18)0.0314 (16)0.0088 (14)0.0071 (12)0.0033 (13)
C80.039 (2)0.033 (2)0.045 (3)0.005 (2)0.008 (2)0.007 (2)
O90.0331 (15)0.0477 (19)0.0311 (17)0.0038 (14)0.0041 (12)0.0016 (14)
C100.037 (2)0.060 (3)0.034 (3)0.008 (2)0.0027 (19)0.005 (2)
O110.0464 (17)0.0383 (17)0.0351 (18)0.0121 (14)0.0030 (13)0.0064 (14)
C120.042 (2)0.040 (3)0.051 (3)0.007 (2)0.004 (2)0.001 (2)
C130.025 (2)0.035 (2)0.035 (2)0.0000 (18)0.0010 (17)0.0018 (19)
O140.0242 (14)0.066 (2)0.0332 (17)0.0050 (14)0.0079 (12)0.0011 (15)
N150.0239 (17)0.041 (2)0.025 (2)0.0001 (16)0.0027 (14)0.0020 (16)
C160.0235 (19)0.036 (2)0.032 (2)0.0010 (18)0.0012 (16)0.0018 (19)
C170.038 (2)0.044 (3)0.034 (3)0.005 (2)0.0042 (19)0.004 (2)
C180.046 (3)0.039 (3)0.041 (3)0.000 (2)0.003 (2)0.008 (2)
C190.047 (3)0.056 (3)0.021 (2)0.013 (2)0.0002 (19)0.005 (2)
C200.044 (3)0.074 (4)0.031 (3)0.001 (3)0.006 (2)0.011 (3)
C210.038 (2)0.051 (3)0.032 (3)0.007 (2)0.0018 (19)0.001 (2)
F220.085 (2)0.072 (2)0.0507 (18)0.0236 (18)0.0041 (15)0.0209 (16)
F230.0721 (18)0.087 (2)0.0284 (16)0.0145 (16)0.0001 (13)0.0119 (14)
Geometric parameters (Å, º) top
C1—C21.390 (5)O11—C121.429 (5)
C1—C61.402 (5)C12—H12A0.96
C1—C131.490 (5)C12—H12B0.96
C2—C31.385 (5)C12—H12C0.96
C2—H20.93C13—O141.226 (4)
C3—O71.367 (4)C13—N151.358 (5)
C3—C41.397 (5)N15—C161.410 (5)
C4—O91.384 (4)N15—H150.93 (4)
C4—C51.403 (5)C16—C211.375 (5)
C5—O111.355 (4)C16—C171.392 (5)
C5—C61.383 (5)C17—C181.370 (6)
C6—H60.93C17—H170.93
O7—C81.436 (5)C18—F221.352 (5)
C8—H8A0.96C18—C191.368 (6)
C8—H8B0.96C19—F231.348 (5)
C8—H8C0.96C19—C201.362 (6)
O9—C101.432 (4)C20—C211.393 (6)
C10—H10A0.96C20—H200.93
C10—H10B0.96C21—H210.93
C10—H10C0.96
C2—C1—C6120.4 (4)C5—O11—C12117.5 (3)
C2—C1—C13123.0 (4)O11—C12—H12A109.5
C6—C1—C13116.6 (3)O11—C12—H12B109.5
C3—C2—C1120.0 (4)H12A—C12—H12B109.5
C3—C2—H2120O11—C12—H12C109.5
C1—C2—H2120H12A—C12—H12C109.5
O7—C3—C2125.1 (3)H12B—C12—H12C109.5
O7—C3—C4115.0 (3)O14—C13—N15123.0 (4)
C2—C3—C4119.9 (3)O14—C13—C1121.3 (3)
O9—C4—C3119.3 (3)N15—C13—C1115.7 (3)
O9—C4—C5120.6 (3)C13—N15—C16125.6 (3)
C3—C4—C5120.1 (3)C13—N15—H15118 (2)
O11—C5—C6125.3 (4)C16—N15—H15117 (2)
O11—C5—C4114.8 (3)C21—C16—C17119.0 (4)
C6—C5—C4119.8 (4)C21—C16—N15123.4 (4)
C5—C6—C1119.7 (4)C17—C16—N15117.6 (3)
C5—C6—H6120.1C18—C17—C16119.7 (4)
C1—C6—H6120.1C18—C17—H17120.2
C3—O7—C8117.4 (3)C16—C17—H17120.2
O7—C8—H8A109.5F22—C18—C19118.9 (4)
O7—C8—H8B109.5F22—C18—C17120.0 (4)
H8A—C8—H8B109.5C19—C18—C17121.1 (4)
O7—C8—H8C109.5F23—C19—C20120.8 (4)
H8A—C8—H8C109.5F23—C19—C18119.1 (4)
H8B—C8—H8C109.5C20—C19—C18120.1 (4)
C4—O9—C10113.7 (3)C19—C20—C21119.6 (4)
O9—C10—H10A109.5C19—C20—H20120.2
O9—C10—H10B109.5C21—C20—H20120.2
H10A—C10—H10B109.5C16—C21—C20120.6 (4)
O9—C10—H10C109.5C16—C21—H21119.7
H10A—C10—H10C109.5C20—C21—H21119.7
H10B—C10—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O14i0.93 (4)2.02 (4)2.872 (4)152 (3)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H15F2NO4
Mr323.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)174
a, b, c (Å)5.0031 (3), 8.8986 (5), 32.726 (2)
β (°) 93.896 (4)
V3)1453.59 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.12 × 0.05 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10828, 2634, 1522
Rint0.080
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.185, 1.05
No. of reflections2634
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O14i0.93 (4)2.02 (4)2.872 (4)152 (3)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We wish to thank the DBIO company for partial support of this work.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985.  CrossRef CAS PubMed Google Scholar
First citationDawley, R. M. & Flurkey, W. H. (1993). J. Food Sci. 58, 609–610  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHa, Y. M., Chang, S. W., Song, S. H. & Lee, H. J. (2007). Biol. Pharm. Bull. 30, 1711–1715.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKwak, S. Y., Noh, J. M., Park, S. H., Byun, J. W. & Choi, H. R. (2010). Bioorg. Med. Chem. Lett. 20, 738–742.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, C. W., Son, E. M., Kim, H. S. & Xu, P. (2007). Bioorg. Med. Chem. Lett. 17, 5462–5464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R. & Tamir, S. (2003). J. Agric. Food Chem. 51, 1201–1207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPark, J. S., Kim, D. H., Lee, J. K., Lee, J. Y., Kim, D. H., Kim, H. K., Lee, H. J. & Kim, H. C. (2010). Bioorg. Med. Chem. Lett. 20, 1162–1164.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSung, C. K. & Samyang Genex. (2001). US Patent WO 01/41778.  Google Scholar
First citationYi, W., Cao, R. H., Chen, Z. Y. Yu. L. Ma. L. & Song, H. C. (2009). Chem. Pharm. Bull. 7, 1273–1277.  CrossRef Google Scholar
First citationYi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. (2010). Eur. J. Med. Chem. 45, 639–646.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds