metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(μ-4-hy­droxy­benzoato)bis­­[(4-hy­droxy­benzoato)manganese(II)]]-di-μ-4,4′-bi­pyridine] 4,4′-bi­pyridine disolvate tetra­hydrate]

aSchool of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China, and bCollege of Basic Science and Information Engineering, Yunnan Agricultural University, Kunming 650201, People's Republic of China
*Correspondence e-mail: qhzhao@ynu.edu.cn

(Received 12 January 2010; accepted 25 February 2010; online 3 March 2010)

In the polymeric title complex, {[Mn(O2CC6H4-p-OH)2(C10H8N2)]·C10H8N2·2H2O}n, the MnII atom is coordinated in a distorted octa­hedral geometry defined by four O atoms from three different carboxyl­ate ligands and two trans-N atoms from two 4,4′-bipyridine ligands. In the crystal structure, an extensive range of O—H⋯O and O—H⋯N hydrogen bonds link the complex and all non-coordinated mol­ecules into a three-dimensional network.

Related literature

For background to the use of aromatic carboxyl­ates and 4,4′-bipyridine in the design of supra­molecular structures containing metal-organic mol­ecules, see: Leonard et al. (1998[Leonard, R., Millivray, R., Groe, M. & Jerry, L. A. (1998). J. Am. Chem. Soc. 212, 2676-2677.]); Lucia et al. (1997[Lucia, C., Gianfranco, C., Davide, M. & Angelo, S. (1997). J. Chem. Soc. Dalton Trans. pp. 1801-1803.]); Corey et al. (2001[Corey, S., Hu, N.-X. & Wan, S.-N. (2001). J. Chem. Soc. Dalton Trans. pp. 134-137.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H5O3)2(C10H8N2)]·C10H8N2·2H2O

  • Mr = 677.56

  • Monoclinic, C 2/c

  • a = 18.1031 (17) Å

  • b = 11.6448 (11) Å

  • c = 31.771 (3) Å

  • β = 104.957 (1)°

  • V = 6470.6 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 293 K

  • 0.20 × 0.13 × 0.10 mm

Data collection
  • Bruker APEXII 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen.]) Tmin = 0.931, Tmax = 0.955

  • 20618 measured reflections

  • 7526 independent reflections

  • 4072 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.130

  • S = 1.01

  • 7526 reflections

  • 428 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2W 0.94 2.00 2.781 (4) 140
O1W—H1WB⋯O2Wi 0.97 2.15 2.992 (4) 145
O2W—H2WB⋯N4 0.89 2.34 2.934 (4) 124
O2W—H2WA⋯O2 0.98 1.82 2.793 (3) 172
O3—H3B⋯N3ii 0.82 1.88 2.694 (4) 169
O6—H6B⋯O1Wiii 0.82 1.90 2.701 (4) 167
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much progress has been achieved in the design of supramolecular structures containing metal-organic molecules during recent years. Multifunctional ligands can link metal ions into one-, two- or three-dimensional structures, and in this context, aromatic carboxylates and 4,4'-bipyridine have been used successfully to synthesize such materials (Leonard et al., 1998; Lucia et al., 1997; Corey et al., 2001).

As shown in Fig. 1, the MnII coordination environment can be considered as a distorted octahedral geometry, being coordinated by four O atoms in the equatorial plane (O1, O2, O5, O4ii; ii = -x, y, -z+3/2), derived from three different carboxylate groups, and two trans-N atoms (N1, N2i; i = x, y+1, z). The Mn—O chelating bond distances (2.271 (2) Å and 2.281 (2) Å) are longer than Mn—O bridging bonds (2.087 (2) Å and 2.1102 (19) Å). Pairs of Mn ions are linked via two carboxyl groups to generate an eight-membered Mn2(COO)2 ring with a Mn···Mn distance of 4.173 (2) Å. These Mn2(COO)2 units are further connected by two 4,4'-bipyridine ligands to form a double-chain structure (Fig. 2) with a Mn—Mn distance 8.355 (4) Å. There are six kinds of H-bonds occurring between the chains, the solvent water and 4,4'-bipyridine molecules, which join the components of the structure into a 3-D network.

Related literature top

For background to the use of aromatic carboxylates and 4,4'-bipyridine in the design of supramolecular structures containing metal-organic molecules, see: Leonard et al. (1998); Lucia et al. (1997); Corey et al. (2001).

Experimental top

Mn(O2CCH3)2 (27.67 mg, 0.1 mmol) was dissolved in H2O (5 ml), and 4-hydroxybenzoic acid (27.67 mg, 0.2 mmol) was dissolved in methanol (5 ml) at room temperature. The mixture was stirred for 1 h, a methanol solution (5 ml) of 4,4'-bipyridine (31.28 mg, 0.2 mmol) was added, and stirring continued for 30 mins. Yellow single crystals of the title complex were obtained by slow evaporation at room temperature for two weeks.

Refinement top

H atoms bonded to O1W and O2W atoms were located in a difference map and fixed at those positions (see Table 1 for bond distances) but their Uiso values were refined. The remaining H atoms were calculated geometrically and were allowed to ride on the parent atoms with distance restraints of O—H = 0.82 Å and C—H = 0.93 Å, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The immediate environment for the Mn atom in the title complex with the atom-numbering shown for the asymmetric unit. Non-coordinated molecules and hydrogen atoms are omitted for clarity. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The 1D double chain in the title complex. Non-coordinated molecules and hydrogen atoms are omitted for clarity.
catena-Poly[[[bis(µ-4-hydroxybenzoato)bis[(4- hydroxybenzoato)manganese(II)]]- di-µ-4,4'-bipyridine] 4,4'-bipyridine disolvate tetrahydrate] top
Crystal data top
[Mn(C7H5O3)2(C10H8N2)]·C10H8N2·2H2OF(000) = 2808
Mr = 677.56Dx = 1.391 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2470 reflections
a = 18.1031 (17) Åθ = 2.3–20.7°
b = 11.6448 (11) ŵ = 0.47 mm1
c = 31.771 (3) ÅT = 293 K
β = 104.957 (1)°Irregular, yellow
V = 6470.6 (11) Å30.20 × 0.13 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII 1K CCD area-detector
diffractometer
7526 independent reflections
Radiation source: fine-focus sealed tube4072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 28.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2317
Tmin = 0.931, Tmax = 0.955k = 1514
20618 measured reflectionsl = 2741
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
7526 reflections(Δ/σ)max = 0.002
428 parametersΔρmax = 0.48 e Å3
7 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Mn(C7H5O3)2(C10H8N2)]·C10H8N2·2H2OV = 6470.6 (11) Å3
Mr = 677.56Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.1031 (17) ŵ = 0.47 mm1
b = 11.6448 (11) ÅT = 293 K
c = 31.771 (3) Å0.20 × 0.13 × 0.10 mm
β = 104.957 (1)°
Data collection top
Bruker APEXII 1K CCD area-detector
diffractometer
7526 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4072 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.955Rint = 0.055
20618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0517 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.01Δρmax = 0.48 e Å3
7526 reflectionsΔρmin = 0.34 e Å3
428 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.08008 (2)0.15824 (3)0.713098 (13)0.03256 (13)
O10.19470 (11)0.15352 (16)0.69639 (6)0.0465 (5)
O1W0.06897 (16)0.1109 (3)0.51429 (10)0.1000 (9)
H1WA0.05790.04150.52630.30 (4)*
H1WB0.03410.11200.48560.16 (2)*
O20.09014 (11)0.15001 (16)0.64305 (6)0.0458 (5)
O2W0.01136 (14)0.0156 (3)0.57296 (8)0.0980 (10)
H2WB0.00310.04860.58380.23 (4)*
H2WA0.04310.05740.59810.144 (19)*
O30.33963 (13)0.1358 (2)0.53460 (7)0.0775 (8)
H3B0.38340.11400.54590.116*
O40.03921 (11)0.15809 (17)0.80555 (7)0.0573 (6)
O50.14062 (11)0.16769 (16)0.77935 (6)0.0483 (5)
O60.27872 (16)0.3557 (2)0.97038 (8)0.0966 (9)
H6B0.32410.36230.97090.145*
N10.08390 (12)0.03575 (18)0.71607 (8)0.0399 (6)
N20.08120 (13)0.64423 (17)0.71374 (8)0.0412 (6)
N30.51598 (16)0.0563 (3)0.56051 (11)0.0741 (9)
N40.12265 (15)0.0748 (3)0.59787 (10)0.0636 (8)
C10.16240 (16)0.1471 (2)0.65617 (9)0.0384 (7)
C20.20923 (16)0.1390 (2)0.62421 (9)0.0386 (7)
C30.28472 (17)0.1051 (3)0.63700 (10)0.0484 (8)
H3A0.30610.08420.66580.058*
C40.32916 (18)0.1016 (3)0.60746 (10)0.0544 (9)
H4A0.37970.07710.61630.065*
C50.29825 (18)0.1346 (3)0.56487 (11)0.0541 (9)
C60.22282 (18)0.1687 (3)0.55139 (10)0.0564 (9)
H6A0.20200.19120.52270.068*
C70.17852 (17)0.1690 (3)0.58084 (10)0.0492 (8)
H7A0.12730.18970.57150.059*
C80.10840 (16)0.1807 (2)0.80963 (9)0.0352 (7)
C90.15477 (15)0.2283 (2)0.85155 (9)0.0359 (7)
C100.22868 (17)0.2643 (2)0.85611 (10)0.0499 (8)
H10A0.25020.25890.83260.060*
C110.27225 (18)0.3093 (3)0.89598 (11)0.0586 (9)
H11A0.32200.33470.89900.070*
C120.2391 (2)0.3146 (3)0.93039 (11)0.0598 (9)
C130.1661 (2)0.2796 (3)0.92614 (11)0.0689 (10)
H13A0.14460.28460.94970.083*
C140.12380 (18)0.2368 (3)0.88709 (10)0.0516 (8)
H14A0.07370.21310.88440.062*
C150.03712 (17)0.0965 (2)0.68436 (10)0.0548 (9)
H15A0.00240.05710.66240.066*
C160.03788 (18)0.2137 (2)0.68267 (11)0.0567 (9)
H16A0.00440.25180.65980.068*
C170.08816 (15)0.2762 (2)0.71470 (9)0.0383 (7)
C180.13833 (16)0.2140 (2)0.74664 (10)0.0459 (8)
H18A0.17460.25140.76840.055*
C190.13412 (16)0.0958 (2)0.74605 (10)0.0447 (8)
H19A0.16840.05560.76790.054*
C200.01869 (16)0.5805 (2)0.69826 (10)0.0468 (8)
H20A0.02750.61810.68680.056*
C210.01906 (16)0.4630 (2)0.69834 (10)0.0470 (8)
H21A0.02630.42300.68750.056*
C220.08681 (15)0.4033 (2)0.71451 (9)0.0379 (7)
C230.15139 (16)0.4697 (2)0.73069 (10)0.0507 (9)
H23A0.19840.43460.74220.061*
C240.14585 (16)0.5868 (2)0.72969 (11)0.0514 (9)
H24A0.19020.62900.74090.062*
C250.4703 (2)0.1155 (3)0.54225 (14)0.0797 (12)
H25A0.49100.17660.52410.096*
C260.3937 (2)0.0916 (3)0.54861 (12)0.0715 (11)
H26A0.36430.13490.53440.086*
C270.36040 (18)0.0029 (3)0.57622 (10)0.0514 (8)
C280.40861 (19)0.0576 (3)0.59569 (11)0.0595 (9)
H28A0.38960.11750.61480.071*
C290.4846 (2)0.0285 (3)0.58664 (12)0.0719 (11)
H29A0.51600.07130.59970.086*
C300.1652 (2)0.0374 (3)0.56010 (12)0.0735 (11)
H30A0.14180.02790.53750.088*
C310.24157 (19)0.0116 (3)0.55193 (11)0.0686 (10)
H31A0.26820.01450.52460.082*
C320.27841 (17)0.0247 (3)0.58427 (10)0.0498 (8)
C330.23480 (19)0.0645 (3)0.62397 (11)0.0592 (9)
H33A0.25670.07560.64710.071*
C340.1590 (2)0.0875 (3)0.62865 (12)0.0662 (10)
H34A0.13080.11410.65560.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0373 (2)0.0223 (2)0.0358 (2)0.00006 (18)0.00524 (18)0.00108 (19)
O10.0462 (12)0.0540 (12)0.0382 (12)0.0019 (10)0.0087 (10)0.0069 (10)
O1W0.103 (2)0.106 (2)0.084 (2)0.0188 (18)0.0113 (19)0.0147 (18)
O20.0410 (12)0.0535 (13)0.0409 (12)0.0010 (10)0.0071 (9)0.0006 (10)
O2W0.0773 (19)0.156 (3)0.0601 (17)0.0445 (19)0.0172 (15)0.0286 (19)
O30.0578 (15)0.127 (2)0.0515 (15)0.0158 (14)0.0203 (13)0.0114 (15)
O40.0376 (12)0.0491 (12)0.0768 (16)0.0018 (10)0.0003 (11)0.0030 (12)
O50.0580 (13)0.0488 (12)0.0350 (11)0.0001 (10)0.0061 (10)0.0049 (10)
O60.118 (2)0.110 (2)0.0490 (16)0.0248 (17)0.0017 (15)0.0248 (15)
N10.0428 (14)0.0241 (12)0.0461 (15)0.0004 (10)0.0005 (11)0.0037 (11)
N20.0447 (14)0.0238 (12)0.0501 (15)0.0004 (11)0.0035 (12)0.0037 (11)
N30.0562 (19)0.092 (3)0.078 (2)0.0014 (18)0.0234 (17)0.0091 (19)
N40.0528 (18)0.077 (2)0.059 (2)0.0074 (15)0.0102 (16)0.0033 (16)
C10.0439 (17)0.0311 (15)0.0382 (17)0.0037 (13)0.0070 (14)0.0007 (13)
C20.0453 (17)0.0333 (16)0.0376 (17)0.0026 (13)0.0114 (14)0.0021 (13)
C30.0444 (19)0.0562 (19)0.0400 (18)0.0027 (15)0.0026 (15)0.0011 (15)
C40.0407 (18)0.079 (2)0.043 (2)0.0091 (17)0.0094 (16)0.0028 (18)
C50.048 (2)0.072 (2)0.044 (2)0.0008 (17)0.0159 (17)0.0006 (17)
C60.056 (2)0.079 (2)0.0327 (17)0.0038 (18)0.0096 (16)0.0069 (17)
C70.0437 (18)0.058 (2)0.0441 (19)0.0032 (15)0.0083 (15)0.0035 (16)
C80.0382 (17)0.0218 (14)0.0408 (17)0.0020 (11)0.0015 (14)0.0005 (12)
C90.0401 (16)0.0296 (14)0.0352 (16)0.0013 (12)0.0048 (13)0.0010 (12)
C100.0495 (19)0.0499 (19)0.046 (2)0.0045 (15)0.0047 (15)0.0024 (15)
C110.052 (2)0.057 (2)0.059 (2)0.0117 (16)0.0003 (18)0.0025 (18)
C120.074 (3)0.056 (2)0.042 (2)0.0070 (18)0.0011 (19)0.0054 (16)
C130.088 (3)0.071 (3)0.050 (2)0.006 (2)0.023 (2)0.0096 (19)
C140.057 (2)0.051 (2)0.047 (2)0.0006 (16)0.0128 (17)0.0031 (16)
C150.060 (2)0.0326 (17)0.053 (2)0.0013 (15)0.0178 (16)0.0013 (15)
C160.069 (2)0.0290 (16)0.054 (2)0.0061 (15)0.0185 (17)0.0020 (15)
C170.0401 (16)0.0253 (14)0.0455 (18)0.0015 (12)0.0035 (14)0.0010 (13)
C180.0521 (18)0.0268 (15)0.0468 (19)0.0032 (13)0.0089 (14)0.0022 (14)
C190.0488 (18)0.0296 (16)0.0451 (18)0.0027 (13)0.0074 (14)0.0022 (14)
C200.0460 (18)0.0293 (15)0.057 (2)0.0057 (14)0.0017 (15)0.0003 (14)
C210.0410 (17)0.0270 (15)0.061 (2)0.0027 (13)0.0077 (15)0.0016 (14)
C220.0450 (17)0.0209 (14)0.0428 (17)0.0008 (12)0.0022 (14)0.0000 (13)
C230.0393 (17)0.0292 (15)0.074 (2)0.0012 (13)0.0033 (16)0.0015 (15)
C240.0398 (18)0.0285 (15)0.077 (2)0.0049 (13)0.0008 (16)0.0007 (16)
C250.057 (3)0.084 (3)0.092 (3)0.005 (2)0.009 (2)0.024 (2)
C260.057 (2)0.081 (3)0.074 (3)0.012 (2)0.013 (2)0.022 (2)
C270.055 (2)0.052 (2)0.0469 (19)0.0095 (16)0.0112 (16)0.0000 (16)
C280.060 (2)0.063 (2)0.062 (2)0.0013 (18)0.0262 (19)0.0100 (18)
C290.071 (3)0.077 (3)0.077 (3)0.004 (2)0.035 (2)0.006 (2)
C300.053 (2)0.115 (3)0.054 (2)0.016 (2)0.0187 (19)0.009 (2)
C310.048 (2)0.103 (3)0.050 (2)0.018 (2)0.0041 (18)0.006 (2)
C320.0447 (19)0.0517 (19)0.051 (2)0.0126 (15)0.0084 (17)0.0018 (16)
C330.062 (2)0.065 (2)0.050 (2)0.0018 (18)0.0137 (18)0.0075 (17)
C340.063 (2)0.077 (3)0.052 (2)0.002 (2)0.0014 (19)0.0085 (19)
Geometric parameters (Å, º) top
Mn1—O4i2.087 (2)C10—C111.409 (4)
Mn1—O52.1102 (19)C10—H10A0.9300
Mn1—N12.261 (2)C11—C121.377 (5)
Mn1—O12.271 (2)C11—H11A0.9300
Mn1—O22.281 (2)C12—C131.357 (4)
Mn1—N2ii2.300 (2)C13—C141.372 (4)
Mn1—C12.627 (3)C13—H13A0.9300
O1—C11.263 (3)C14—H14A0.9300
O1W—H1WA0.9383C15—C161.366 (4)
O1W—H1WB0.9656C15—H15A0.9300
O2—C11.267 (3)C16—C171.384 (4)
O2W—H2WB0.8897C16—H16A0.9300
O2W—H2WA0.9833C17—C181.380 (4)
O3—C51.363 (4)C17—C221.480 (3)
O3—H3B0.8200C18—C191.378 (4)
O4—C81.253 (3)C18—H18A0.9300
O4—Mn1i2.087 (2)C19—H19A0.9300
O5—C81.256 (3)C20—C211.368 (4)
O6—C121.373 (4)C20—H20A0.9300
O6—H6B0.8200C21—C221.388 (4)
N1—C191.333 (3)C21—H21A0.9300
N1—C151.339 (3)C22—C231.385 (4)
N2—C241.330 (3)C23—C241.367 (4)
N2—C201.336 (3)C23—H23A0.9300
N2—Mn1iii2.300 (2)C24—H24A0.9300
N3—C251.320 (4)C25—C261.378 (4)
N3—C291.321 (4)C25—H25A0.9300
N4—C341.320 (4)C26—C271.388 (4)
N4—C301.321 (4)C26—H26A0.9300
C1—C21.484 (4)C27—C281.385 (4)
C2—C31.379 (4)C27—C321.475 (4)
C2—C71.391 (4)C28—C291.373 (4)
C3—C41.385 (4)C28—H28A0.9300
C3—H3A0.9300C29—H29A0.9300
C4—C51.379 (4)C30—C311.372 (4)
C4—H4A0.9300C30—H30A0.9300
C5—C61.380 (4)C31—C321.370 (4)
C6—C71.381 (4)C31—H31A0.9300
C6—H6A0.9300C32—C331.384 (4)
C7—H7A0.9300C33—C341.369 (4)
C8—C91.486 (4)C33—H33A0.9300
C9—C101.374 (4)C34—H34A0.9300
C9—C141.388 (4)
O4i—Mn1—O5121.08 (9)C12—C11—H11A120.9
O4i—Mn1—N191.68 (8)C10—C11—H11A120.9
O5—Mn1—N190.46 (8)C13—C12—O6117.3 (3)
O4i—Mn1—O1150.99 (8)C13—C12—C11121.3 (3)
O5—Mn1—O187.92 (8)O6—C12—C11121.3 (3)
N1—Mn1—O188.03 (8)C12—C13—C14120.0 (3)
O4i—Mn1—O293.46 (8)C12—C13—H13A120.0
O5—Mn1—O2145.44 (8)C14—C13—H13A120.0
N1—Mn1—O289.40 (8)C13—C14—C9120.9 (3)
O1—Mn1—O257.53 (7)C13—C14—H14A119.5
O4i—Mn1—N2ii90.54 (8)C9—C14—H14A119.5
O5—Mn1—N2ii86.44 (8)N1—C15—C16123.2 (3)
N1—Mn1—N2ii176.82 (8)N1—C15—H15A118.4
O1—Mn1—N2ii91.13 (8)C16—C15—H15A118.4
O2—Mn1—N2ii92.75 (8)C15—C16—C17120.5 (3)
O4i—Mn1—C1122.28 (9)C15—C16—H16A119.7
O5—Mn1—C1116.65 (9)C17—C16—H16A119.7
N1—Mn1—C187.86 (8)C18—C17—C16116.6 (2)
O1—Mn1—C128.72 (7)C18—C17—C22122.4 (2)
O2—Mn1—C128.83 (7)C16—C17—C22121.1 (2)
N2ii—Mn1—C192.88 (8)C19—C18—C17119.4 (3)
C1—O1—Mn191.46 (17)C19—C18—H18A120.3
H1WA—O1W—H1WB103.8C17—C18—H18A120.3
C1—O2—Mn190.90 (17)N1—C19—C18124.0 (3)
H2WB—O2W—H2WA105.7N1—C19—H19A118.0
C5—O3—H3B109.5C18—C19—H19A118.0
C8—O4—Mn1i164.27 (19)N2—C20—C21123.4 (3)
C8—O5—Mn1123.08 (19)N2—C20—H20A118.3
C12—O6—H6B109.5C21—C20—H20A118.3
C19—N1—C15116.3 (2)C20—C21—C22120.4 (3)
C19—N1—Mn1124.21 (18)C20—C21—H21A119.8
C15—N1—Mn1119.35 (18)C22—C21—H21A119.8
C24—N2—C20116.1 (2)C23—C22—C21116.0 (2)
C24—N2—Mn1iii120.75 (18)C23—C22—C17123.0 (2)
C20—N2—Mn1iii123.16 (18)C21—C22—C17121.0 (2)
C25—N3—C29116.8 (3)C24—C23—C22119.9 (3)
C34—N4—C30115.1 (3)C24—C23—H23A120.1
O1—C1—O2120.0 (3)C22—C23—H23A120.1
O1—C1—C2119.9 (3)N2—C24—C23124.2 (3)
O2—C1—C2120.0 (3)N2—C24—H24A117.9
O1—C1—Mn159.82 (15)C23—C24—H24A117.9
O2—C1—Mn160.27 (15)N3—C25—C26123.4 (4)
C2—C1—Mn1179.2 (2)N3—C25—H25A118.3
C3—C2—C7118.4 (3)C26—C25—H25A118.3
C3—C2—C1120.9 (3)C25—C26—C27120.0 (3)
C7—C2—C1120.6 (3)C25—C26—H26A120.0
C2—C3—C4120.9 (3)C27—C26—H26A120.0
C2—C3—H3A119.6C28—C27—C26116.1 (3)
C4—C3—H3A119.6C28—C27—C32122.3 (3)
C5—C4—C3119.8 (3)C26—C27—C32121.7 (3)
C5—C4—H4A120.1C29—C28—C27119.6 (3)
C3—C4—H4A120.1C29—C28—H28A120.2
O3—C5—C4122.5 (3)C27—C28—H28A120.2
O3—C5—C6117.3 (3)N3—C29—C28124.1 (4)
C4—C5—C6120.2 (3)N3—C29—H29A117.9
C5—C6—C7119.5 (3)C28—C29—H29A117.9
C5—C6—H6A120.3N4—C30—C31124.5 (4)
C7—C6—H6A120.3N4—C30—H30A117.7
C6—C7—C2121.1 (3)C31—C30—H30A117.7
C6—C7—H7A119.4C32—C31—C30119.7 (3)
C2—C7—H7A119.4C32—C31—H31A120.1
O4—C8—O5123.0 (3)C30—C31—H31A120.1
O4—C8—C9119.3 (3)C31—C32—C33116.5 (3)
O5—C8—C9117.7 (3)C31—C32—C27120.6 (3)
C10—C9—C14118.6 (3)C33—C32—C27122.9 (3)
C10—C9—C8121.2 (3)C34—C33—C32119.0 (3)
C14—C9—C8120.2 (3)C34—C33—H33A120.5
C9—C10—C11120.8 (3)C32—C33—H33A120.5
C9—C10—H10A119.6N4—C34—C33125.1 (3)
C11—C10—H10A119.6N4—C34—H34A117.4
C12—C11—C10118.2 (3)C33—C34—H34A117.4
Symmetry codes: (i) x, y, z+3/2; (ii) x, y+1, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2W0.942.002.781 (4)140
O1W—H1WB···O2Wiv0.972.152.992 (4)145
O2W—H2WB···N40.892.342.934 (4)124
O2W—H2WA···O20.981.822.793 (3)172
O3—H3B···N3v0.821.882.694 (4)169
O6—H6B···O1Wvi0.821.902.701 (4)167
Symmetry codes: (iv) x, y, z+1; (v) x+1, y, z; (vi) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mn(C7H5O3)2(C10H8N2)]·C10H8N2·2H2O
Mr677.56
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.1031 (17), 11.6448 (11), 31.771 (3)
β (°) 104.957 (1)
V3)6470.6 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.20 × 0.13 × 0.10
Data collection
DiffractometerBruker APEXII 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.931, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
20618, 7526, 4072
Rint0.055
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.130, 1.01
No. of reflections7526
No. of parameters428
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2W0.942.002.781 (4)140
O1W—H1WB···O2Wi0.972.152.992 (4)145
O2W—H2WB···N40.892.342.934 (4)124
O2W—H2WA···O20.981.822.793 (3)172
O3—H3B···N3ii0.821.882.694 (4)169
O6—H6B···O1Wiii0.821.902.701 (4)167
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+3/2.
 

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorey, S., Hu, N.-X. & Wan, S.-N. (2001). J. Chem. Soc. Dalton Trans. pp. 134–137.  Google Scholar
First citationLeonard, R., Millivray, R., Groe, M. & Jerry, L. A. (1998). J. Am. Chem. Soc. 212, 2676–2677.  Google Scholar
First citationLucia, C., Gianfranco, C., Davide, M. & Angelo, S. (1997). J. Chem. Soc. Dalton Trans. pp. 1801–1803.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds